EP1527351A1 - Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches - Google Patents
Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couchesInfo
- Publication number
- EP1527351A1 EP1527351A1 EP03787611A EP03787611A EP1527351A1 EP 1527351 A1 EP1527351 A1 EP 1527351A1 EP 03787611 A EP03787611 A EP 03787611A EP 03787611 A EP03787611 A EP 03787611A EP 1527351 A1 EP1527351 A1 EP 1527351A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- magnetoresistive
- magnetic layer
- alloy
- layer system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 98
- 230000000694 effects Effects 0.000 claims abstract description 9
- 238000001514 detection method Methods 0.000 claims abstract 2
- 229910045601 alloy Inorganic materials 0.000 claims description 16
- 239000000956 alloy Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 9
- 230000005294 ferromagnetic effect Effects 0.000 claims description 4
- 229910019222 CoCrPt Inorganic materials 0.000 claims description 2
- 229910003321 CoFe Inorganic materials 0.000 claims description 2
- 229910018979 CoPt Inorganic materials 0.000 claims description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 claims description 2
- 229910002555 FeNi Inorganic materials 0.000 claims description 2
- 229910005335 FePt Inorganic materials 0.000 claims description 2
- 239000010952 cobalt-chrome Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000005415 magnetization Effects 0.000 description 16
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005536 Jahn Teller effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/096—Magnetoresistive devices anisotropic magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
Definitions
- the invention relates to a magnetoresistive layer system and a sensor element with this layer system according to the independent claims.
- Magnetoresistive layer systems or sensor elements are known from the prior art whose operating point is shifted, for example for use in motor vehicles, by auxiliary magnetic fields generated in various ways.
- the generation of such an auxiliary magnetic field by means of mounted macroscopic hard magnets or by current-carrying field coils is known.
- DE 101 28 135.8 also describes a concept in which a hard magnetic layer is deposited near a magnetoresistive layer stack, in particular on or under the layer stack, which is coupled to the actual sensitive layers primarily by means of its stray field. The focus is on the highest possible coercivity as the target parameter and on the other hand the remanent magnetic field as the limiting parameter.
- Such a hard magnetic layer also causes an electrical short circuit of the adjacent sensitive layers of the magnetoresistive layer system in the case of vertical integration, which results in a desired GMR effect or AMR effect and
- the layer system's sensitivity to external magnetic fields is limited.
- the object of the present invention was to provide a possibility of generating a magnetic bias field or auxiliary magnetic field, which acts on a magnetoresistive layer stack in a cost-effective and simple manner, in order to be able to produce magnetoresistive sensor elements inexpensively and yet reliably, in particular for use in motor vehicles , Advantages of the invention
- the magnetoresistive layer system according to the invention has the advantage over the prior art that an increased magnetic stray field with simultaneously increased coercivity or coercive field strength is achieved via the layer arrangement provided in an environment of the magnetoresistive layer stack, in particular based on the GMR or AMR effect is provided, at the same time the layer arrangement being simple and inexpensive to produce or integrating into the layer system.
- the layer arrangement has a very thin structural shape, especially with regard to the thickness of the hard magnetic layer.
- the layer arrangement offers the possibility, within a certain framework, of varying the strength of the stray field generated by the hard magnetic and the soft magnetic layer, and that the particularly thin soft magnetic layer that is coupled to the hard magnetic layer or arranged adjacent to it is, the demagnetization of the hard magnetic layer when applying an external magnetic alternating field prevented by domain stray fields (so-called "creeping"), as described in Phys. Rev. Lett, 84, (2000), page 1816 and page 3462.
- a system consisting of a hard magnetic and a soft magnetic layer generally has an increased magnetization compared to a purely hard magnetic layer, i.e. a higher magnetic moment per volume.
- the field strength of the stray magnetic field of a layer arrangement with a hard magnetic and a soft magnetic layer, which are in particular ferromagnetically coupled increases compared to the field strength of only one hard magnetic layer.
- the soft magnetic layer advantageously has a chiral magnetization which, when the external field is switched off, is parallel to the hard magnetic magnetization Back orientation jumps as described in IEEE Trans. Magn., 27, (1991), page 3588.
- the magnetization of the soft magnetic layer is rotated coherently and not remagnetized by domain nucleation. Stray fields from other or other soft magnetic layers (domain stray fields) at a short distance cannot demagnetize the hard magnetic layer.
- the concept of building the magnetoresistive layer system can be easily integrated into existing magnetoresistive sensor elements or layer systems with GMR multilayers, magnetoresistive sensor elements or layer systems based on the spin valve principle, AMR sensor elements or sensor elements based on granular magnetoresistors or
- Insert magnetoresistors caused by structural changes in material properties or integrate them into the corresponding manufacturing processes The deposition of the individual layers of the layer system is not critical to known influencing factors.
- FIG. 1 shows a comparison of magnetization curves of different layer arrangements
- FIG. 2 shows a section through a magnetoresistive layer system on a substrate.
- FIG. 2 shows a substrate 10 made of silicon or silicon oxide, for example, on which there is a hard magnetic layer 12 over an optionally available buffer layer 11, for example made of Cr, W or Mo, and a soft magnetic layer 13 on the hard magnetic layer 12. These two layers 12, 13 form a layer arrangement 15.
- a magnetoresistive layer stack 14 which is known per se and preferably works on the basis of the GMR effect (“Giant Magnetoresistance”) or AMR effect (“Anisotropy Magnetoresistance”).
- the layer stack 14 preferably has a plurality of individual layers, which operate according to the coupled multilayer principle or the spin valve principle. Layer stack 14 and layer arrangement 15 are thus vertically integrated and together form a magnetoresistive layer system 5.
- the magnetoresistive layer stack 14 can also be constructed from a CMR material ("Colossal Magnetoresistance") such as La 0.67 Cao ; 3 Mn0 3 . In this case, the magnetoresistive layer stack 14 has a material in which a magnetic field or a temperature
- a structural change (“Jahn-Teller effect”) is inducible, which causes an electrical transition of the material from a conductor or metal to an insulator. This can cause changes in electrical resistance of more than 100%.
- CMR material is also understood to mean “powder magnetoresistance” (“PMR” or “powder magnetoresistance”), in which a magnetoresistance between
- a ferromagnetic, exchange-coupled, thin, soft magnetic layer 13 is preferably deposited on the hard magnetic layer 12.
- the soft magnetic layer 13 ensures both an increased coercivity and .5 an increased amount of the stray magnetic field of the layer arrangement 15.
- the soft magnetic layer 13 increases the amount of the stray field disproportionately in relation to a comparable layer thickness of a purely hard magnetic layer in accordance with the high saturation magnetization of the soft magnetic layer 13.
- the comparatively expensive hard magnetic materials of the hard magnetic layer 12 are a relevant cost factor in comparison to the comparatively inexpensive soft magnetic materials of the soft magnetic layer 13, ie the manufacturing costs for the layer arrangement 15 are reduced through the use of the soft magnetic layer 13.
- the soft magnetic layer 13 prevents demagnetization of the hard magnetic layer 12 when an external magnetic alternating field is present.
- a soft magnetic layer 13 made of a CoFe alloy such as Co 90 Fe 10 , Co, Fe, Ni, a FeNi alloy such as Fe 9 Ni 8] and magnetic alloys containing these materials with a thickness between 1 nm is preferred and 50 nm, via which, as explained, properties of the layer arrangement 15 can be set, deposited on or under the hard magnetic layer 12.
- the soft magnetic layer 13 preferably has a thickness of
- the hard magnetic layer preferably consists of a CoCrPt alloy such as Co 75 Cr 13 Pti 2 , a CoSm alloy such as Co 8 oSm 20 , a CoCr alloy such as Co 80 Cr 2 o, a CoCrTa alloy such as Co 84 Cr ⁇ 3 Ta 3 , a CoPt alloy such as Co 50 Pt 5 o or a FePt alloy such as Fe 5 oPt 5 o.
- the thickness of the hard magnetic layer 12 is preferably between 20 nm and 100 nm.
- the soft magnetic layer 13 is preferably located between the magnetoresistive layer stack 14 and the hard magnetic layer 12.
- a plurality of soft magnetic layers 13, in particular of different composition and / or of different thicknesses, which are located below or preferably according to FIG. 2 on the hard magnetic layer 12, and each preferably have a thickness, can also be provided between 1 nm and 50 nm, in particular 1 nm to 10 nm, and from the abovementioned Materials exist.
- the layer arrangement 15 can also consist of multilayers of several soft magnetic ones
- Layers 13 and hard magnetic layers 12 can be constructed with layer pairs corresponding to FIG. 2.
- the layer arrangement 15 can also be arranged on one or both sides next to the layer stack 14 or can also be integrated into the layer stack 14.
- FIG. 1 shows a first magnetization curve 1, ie the strength of the magnetization as a function of a magnetic field, for an exclusively hard magnetic layer, a second magnetization curve 2 for this hard magnetic layer with a thin soft magnetic layer applied thereon and a third magnetization curve 3 for this hard magnetic layer with a soft magnetic layer applied thereon which is thicker than curve 2.
- the magnetization is the sum of magnetic moments, ie an increased magnetization also means an increased field strength of the stray field.
- the layer arrangement 15 has an increased coercivity and increased remanent magnetization compared to the purely hard magnetic layer 12. This is based on the fact that the soft magnetic layer 13 generates a comparatively high stray field due to the high magnetic moment of the material forming it, and that the coupling of the soft magnetic layer 13 to the hard magnetic layer 12 aligns this high magnetic moment in the direction of the magnetization of the hard magnetic layer 12 , This results overall in a high field strength of the stray field.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Hall/Mr Elements (AREA)
- Thin Magnetic Films (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
L'invention concerne un système de couches magnétorésistif (5) caractérisé en ce qu'il comprend, à proximité d'un empilement de couches magnétorésistif (14) opérant notamment sur la base de l'effet GMR ou AMR, un agencement de couches (15) qui génère un champ magnétique agissant sur l'empilement de couches magnétorésistif (14) et qui présente au moins une couche magnétique dure (12) et au moins une couche magnétique douce (13). L'invention concerne en outre un élément capteur comprenant un tel système de couches (5) et servant notamment à détecter la force et la direction de champs magnétiques.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10234349 | 2002-07-26 | ||
DE10234349 | 2002-07-26 | ||
DE10256246A DE10256246A1 (de) | 2002-07-26 | 2002-12-02 | Magnetoresistives Schichtsystem und Sensorelement mit diesem Schichtsystem |
DE10256246 | 2002-12-02 | ||
PCT/DE2003/002134 WO2004017085A1 (fr) | 2002-07-26 | 2003-06-26 | Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1527351A1 true EP1527351A1 (fr) | 2005-05-04 |
Family
ID=31889085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03787611A Withdrawn EP1527351A1 (fr) | 2002-07-26 | 2003-06-26 | Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches |
Country Status (7)
Country | Link |
---|---|
US (1) | US7498805B2 (fr) |
EP (1) | EP1527351A1 (fr) |
JP (1) | JP2005534198A (fr) |
CN (1) | CN100504425C (fr) |
AU (1) | AU2003250761B2 (fr) |
RU (1) | RU2316783C2 (fr) |
WO (1) | WO2004017085A1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100452471C (zh) * | 2005-09-27 | 2009-01-14 | 中国科学院物理研究所 | 一种基于硬磁材料的自旋阀磁电阻器件及其制备方法 |
US8486545B2 (en) * | 2005-09-28 | 2013-07-16 | Southwest Research Institute | Systems and methods for flaw detection and monitoring at elevated temperatures with wireless communication using surface embedded, monolithically integrated, thin-film, magnetically actuated sensors, and methods for fabricating the sensors |
CN101775644B (zh) * | 2010-02-10 | 2012-10-03 | 中国科学技术大学 | 具有各向异性磁阻效应的锰氧化物外延薄膜及其制备方法与应用 |
US8761987B2 (en) * | 2010-10-05 | 2014-06-24 | Checkpoint Llc | Automatic guided vehicle sensor system and method of using same |
RU2483393C1 (ru) * | 2011-10-27 | 2013-05-27 | Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН | Магниторезистивный преобразователь |
RU2607672C1 (ru) * | 2015-08-14 | 2017-01-10 | Общество с ограниченной ответственностью "ЭНЕРГОКОМСЕРВИС" (ООО "ЭКС") | Индикатор воздействия магнитным полем |
KR102451098B1 (ko) | 2015-09-23 | 2022-10-05 | 삼성전자주식회사 | 자기 메모리 장치 및 이의 제조 방법 |
CN113884956B (zh) * | 2020-07-02 | 2024-01-19 | 华润微电子控股有限公司 | 锑-铟系化合物半导体磁阻连续电流传感器及其制造方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2648942B1 (fr) | 1989-06-27 | 1995-08-11 | Thomson Csf | Capteur a effet magnetoresistif |
JP2856856B2 (ja) * | 1990-07-25 | 1999-02-10 | 東芝タンガロイ株式会社 | 仕上げ用のエンドミル |
US5206590A (en) | 1990-12-11 | 1993-04-27 | International Business Machines Corporation | Magnetoresistive sensor based on the spin valve effect |
DE4243358A1 (de) | 1992-12-21 | 1994-06-23 | Siemens Ag | Magnetowiderstands-Sensor mit künstlichem Antiferromagneten und Verfahren zu seiner Herstellung |
TW265440B (fr) * | 1993-04-30 | 1995-12-11 | Ibm | |
JPH06318515A (ja) * | 1993-05-07 | 1994-11-15 | Hitachi Ltd | 磁気抵抗素子およびその製造方法並びに磁気ヘッドおよび磁気記録装置 |
JPH0766033A (ja) * | 1993-08-30 | 1995-03-10 | Mitsubishi Electric Corp | 磁気抵抗素子ならびにその磁気抵抗素子を用いた磁性薄膜メモリおよび磁気抵抗センサ |
US5841611A (en) * | 1994-05-02 | 1998-11-24 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same |
JP3990751B2 (ja) * | 1995-07-25 | 2007-10-17 | 株式会社日立グローバルストレージテクノロジーズ | 磁気抵抗効果型磁気ヘッド及び磁気記録再生装置 |
JPH09282612A (ja) * | 1996-04-09 | 1997-10-31 | Hitachi Metals Ltd | 磁気抵抗効果型ヘッド |
US6690553B2 (en) * | 1996-08-26 | 2004-02-10 | Kabushiki Kaisha Toshiba | Magnetoresistance effect device, magnetic head therewith, magnetic recording/reproducing head, and magnetic storing apparatus |
US6144534A (en) * | 1997-03-18 | 2000-11-07 | Seagate Technology Llc | Laminated hard magnet in MR sensor |
JP3253556B2 (ja) | 1997-05-07 | 2002-02-04 | 株式会社東芝 | 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気記憶装置 |
JP3234814B2 (ja) * | 1998-06-30 | 2001-12-04 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置 |
US6452204B1 (en) * | 1998-12-08 | 2002-09-17 | Nec Corporation | Tunneling magnetoresistance transducer and method for manufacturing the same |
DE19949713C2 (de) | 1999-10-15 | 2001-08-16 | Bosch Gmbh Robert | Magnetoresistives Schichtsystem |
JP2001176028A (ja) * | 1999-12-14 | 2001-06-29 | Matsushita Electric Ind Co Ltd | 薄膜磁気ヘッド及びその製造方法 |
JP2001312803A (ja) * | 2000-04-28 | 2001-11-09 | Fujitsu Ltd | 磁気ヘッド及び磁気ヘッドの製造方法 |
US20020076579A1 (en) | 2000-10-27 | 2002-06-20 | Showa Denko Kabushiki Kaisha | Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and medium substrate |
DE10128135A1 (de) | 2001-06-09 | 2002-12-19 | Bosch Gmbh Robert | Magnetoresistive Schichtanordnung und Gradiometer mit einer derartigen Schichtanordnung |
US7248446B2 (en) * | 2001-11-27 | 2007-07-24 | Seagate Technology Llc | Magnetoresistive element using an organic nonmagnetic layer |
-
2003
- 2003-06-26 JP JP2005502010A patent/JP2005534198A/ja active Pending
- 2003-06-26 RU RU2004115753/28A patent/RU2316783C2/ru not_active IP Right Cessation
- 2003-06-26 EP EP03787611A patent/EP1527351A1/fr not_active Withdrawn
- 2003-06-26 US US10/519,968 patent/US7498805B2/en not_active Expired - Fee Related
- 2003-06-26 AU AU2003250761A patent/AU2003250761B2/en not_active Ceased
- 2003-06-26 CN CNB038027682A patent/CN100504425C/zh not_active Expired - Fee Related
- 2003-06-26 WO PCT/DE2003/002134 patent/WO2004017085A1/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2004017085A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN1623100A (zh) | 2005-06-01 |
WO2004017085A1 (fr) | 2004-02-26 |
JP2005534198A (ja) | 2005-11-10 |
CN100504425C (zh) | 2009-06-24 |
RU2316783C2 (ru) | 2008-02-10 |
RU2004115753A (ru) | 2006-01-10 |
AU2003250761B2 (en) | 2008-07-24 |
AU2003250761A1 (en) | 2004-03-03 |
US7498805B2 (en) | 2009-03-03 |
US20050270022A1 (en) | 2005-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69624323T2 (de) | Magnetoresistives Element, magnetoresistiver Kopf und magnetoresistiver Speicher | |
DE69533636T2 (de) | Magnetowiderstandseffektvorrichtung und hiermit versehener Magnetkopf, Speicher- und Verstärkungsanordnung | |
DE69219750T2 (de) | Magnetoresistiver Fühler für schwache Magnetfelder | |
EP0674769B1 (fr) | Detecteur magneto-resistif muni d'une substance antiferromagnetique et son procede de fabrication | |
DE19528245B4 (de) | Magneto-Widerstandskopf und dessen Verwendung in einer Magnetaufzeichnungsvorrichtung | |
DE69901790T2 (de) | Tunneleffekt-magnetowiderstand und anwendung eines solchen magnetowiderstands in einem magnetischen sensor | |
DE102006008257B4 (de) | Magnetoresistives Mehrschichtensystem vom Spin Valve-Typ mit einer magnetisch weicheren Elektrode aus mehreren Schichten und dessen Verwendung | |
DE4427495C2 (de) | Sensoreinrichtung mit einem GMR-Sensorelement | |
EP1417690B1 (fr) | Systeme de couches a effet magnetoresistif renforce et son utilisation | |
WO2000010172A2 (fr) | Ensemble cellule de memoire et son procede de production | |
DE19936378B4 (de) | Magnetowiderstands-Dünnschichtelement vom Spin-Valve-Typ | |
DE4243357A1 (de) | Magnetowiderstands-Sensor mit verkürzten Meßschichten | |
DE4232244C2 (de) | Magnetowiderstands-Sensor | |
DE102019113815B4 (de) | Magnetsensor | |
WO2012175567A1 (fr) | Système multicouche magnétostrictif | |
DE602004007986T2 (de) | Magnetische Anordnung mit verbesserter Kopplung | |
WO2000072387A1 (fr) | Dispositif de couplage magnetique et son utilisation | |
EP1576381A1 (fr) | Systeme stratifie magnetoresistif et element detecteur presentant ce dernier | |
WO2004017085A1 (fr) | Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches | |
DE102019126320B4 (de) | Magnetoresistiver Sensor und Fertigungsverfahren für einen magnetoresistiven Sensor | |
DE102012204083A1 (de) | Nanopartikel, Permanentmagnet, Motor und Generator | |
DE69332038T2 (de) | Magnetowiderstandeffekt-Element | |
EP0572465B1 (fr) | Systeme multicouche pour palpeurs magnetoresistifs et procede pour sa fabrication | |
DE10128964B4 (de) | Digitale magnetische Speicherzelleneinrichtung | |
DE10106860A1 (de) | MTJ-Element und Magnetspeicher unter Verwendung eines solchen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050228 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CZ DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20101117 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150106 |