EP1527351A1 - Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches - Google Patents

Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches

Info

Publication number
EP1527351A1
EP1527351A1 EP03787611A EP03787611A EP1527351A1 EP 1527351 A1 EP1527351 A1 EP 1527351A1 EP 03787611 A EP03787611 A EP 03787611A EP 03787611 A EP03787611 A EP 03787611A EP 1527351 A1 EP1527351 A1 EP 1527351A1
Authority
EP
European Patent Office
Prior art keywords
layer
magnetoresistive
magnetic layer
alloy
layer system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03787611A
Other languages
German (de)
English (en)
Inventor
Henrik Siegle
Maik Rabe
Ulrich May
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10256246A external-priority patent/DE10256246A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1527351A1 publication Critical patent/EP1527351A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Definitions

  • the invention relates to a magnetoresistive layer system and a sensor element with this layer system according to the independent claims.
  • Magnetoresistive layer systems or sensor elements are known from the prior art whose operating point is shifted, for example for use in motor vehicles, by auxiliary magnetic fields generated in various ways.
  • the generation of such an auxiliary magnetic field by means of mounted macroscopic hard magnets or by current-carrying field coils is known.
  • DE 101 28 135.8 also describes a concept in which a hard magnetic layer is deposited near a magnetoresistive layer stack, in particular on or under the layer stack, which is coupled to the actual sensitive layers primarily by means of its stray field. The focus is on the highest possible coercivity as the target parameter and on the other hand the remanent magnetic field as the limiting parameter.
  • Such a hard magnetic layer also causes an electrical short circuit of the adjacent sensitive layers of the magnetoresistive layer system in the case of vertical integration, which results in a desired GMR effect or AMR effect and
  • the layer system's sensitivity to external magnetic fields is limited.
  • the object of the present invention was to provide a possibility of generating a magnetic bias field or auxiliary magnetic field, which acts on a magnetoresistive layer stack in a cost-effective and simple manner, in order to be able to produce magnetoresistive sensor elements inexpensively and yet reliably, in particular for use in motor vehicles , Advantages of the invention
  • the magnetoresistive layer system according to the invention has the advantage over the prior art that an increased magnetic stray field with simultaneously increased coercivity or coercive field strength is achieved via the layer arrangement provided in an environment of the magnetoresistive layer stack, in particular based on the GMR or AMR effect is provided, at the same time the layer arrangement being simple and inexpensive to produce or integrating into the layer system.
  • the layer arrangement has a very thin structural shape, especially with regard to the thickness of the hard magnetic layer.
  • the layer arrangement offers the possibility, within a certain framework, of varying the strength of the stray field generated by the hard magnetic and the soft magnetic layer, and that the particularly thin soft magnetic layer that is coupled to the hard magnetic layer or arranged adjacent to it is, the demagnetization of the hard magnetic layer when applying an external magnetic alternating field prevented by domain stray fields (so-called "creeping"), as described in Phys. Rev. Lett, 84, (2000), page 1816 and page 3462.
  • a system consisting of a hard magnetic and a soft magnetic layer generally has an increased magnetization compared to a purely hard magnetic layer, i.e. a higher magnetic moment per volume.
  • the field strength of the stray magnetic field of a layer arrangement with a hard magnetic and a soft magnetic layer, which are in particular ferromagnetically coupled increases compared to the field strength of only one hard magnetic layer.
  • the soft magnetic layer advantageously has a chiral magnetization which, when the external field is switched off, is parallel to the hard magnetic magnetization Back orientation jumps as described in IEEE Trans. Magn., 27, (1991), page 3588.
  • the magnetization of the soft magnetic layer is rotated coherently and not remagnetized by domain nucleation. Stray fields from other or other soft magnetic layers (domain stray fields) at a short distance cannot demagnetize the hard magnetic layer.
  • the concept of building the magnetoresistive layer system can be easily integrated into existing magnetoresistive sensor elements or layer systems with GMR multilayers, magnetoresistive sensor elements or layer systems based on the spin valve principle, AMR sensor elements or sensor elements based on granular magnetoresistors or
  • Insert magnetoresistors caused by structural changes in material properties or integrate them into the corresponding manufacturing processes The deposition of the individual layers of the layer system is not critical to known influencing factors.
  • FIG. 1 shows a comparison of magnetization curves of different layer arrangements
  • FIG. 2 shows a section through a magnetoresistive layer system on a substrate.
  • FIG. 2 shows a substrate 10 made of silicon or silicon oxide, for example, on which there is a hard magnetic layer 12 over an optionally available buffer layer 11, for example made of Cr, W or Mo, and a soft magnetic layer 13 on the hard magnetic layer 12. These two layers 12, 13 form a layer arrangement 15.
  • a magnetoresistive layer stack 14 which is known per se and preferably works on the basis of the GMR effect (“Giant Magnetoresistance”) or AMR effect (“Anisotropy Magnetoresistance”).
  • the layer stack 14 preferably has a plurality of individual layers, which operate according to the coupled multilayer principle or the spin valve principle. Layer stack 14 and layer arrangement 15 are thus vertically integrated and together form a magnetoresistive layer system 5.
  • the magnetoresistive layer stack 14 can also be constructed from a CMR material ("Colossal Magnetoresistance") such as La 0.67 Cao ; 3 Mn0 3 . In this case, the magnetoresistive layer stack 14 has a material in which a magnetic field or a temperature
  • a structural change (“Jahn-Teller effect”) is inducible, which causes an electrical transition of the material from a conductor or metal to an insulator. This can cause changes in electrical resistance of more than 100%.
  • CMR material is also understood to mean “powder magnetoresistance” (“PMR” or “powder magnetoresistance”), in which a magnetoresistance between
  • a ferromagnetic, exchange-coupled, thin, soft magnetic layer 13 is preferably deposited on the hard magnetic layer 12.
  • the soft magnetic layer 13 ensures both an increased coercivity and .5 an increased amount of the stray magnetic field of the layer arrangement 15.
  • the soft magnetic layer 13 increases the amount of the stray field disproportionately in relation to a comparable layer thickness of a purely hard magnetic layer in accordance with the high saturation magnetization of the soft magnetic layer 13.
  • the comparatively expensive hard magnetic materials of the hard magnetic layer 12 are a relevant cost factor in comparison to the comparatively inexpensive soft magnetic materials of the soft magnetic layer 13, ie the manufacturing costs for the layer arrangement 15 are reduced through the use of the soft magnetic layer 13.
  • the soft magnetic layer 13 prevents demagnetization of the hard magnetic layer 12 when an external magnetic alternating field is present.
  • a soft magnetic layer 13 made of a CoFe alloy such as Co 90 Fe 10 , Co, Fe, Ni, a FeNi alloy such as Fe 9 Ni 8] and magnetic alloys containing these materials with a thickness between 1 nm is preferred and 50 nm, via which, as explained, properties of the layer arrangement 15 can be set, deposited on or under the hard magnetic layer 12.
  • the soft magnetic layer 13 preferably has a thickness of
  • the hard magnetic layer preferably consists of a CoCrPt alloy such as Co 75 Cr 13 Pti 2 , a CoSm alloy such as Co 8 oSm 20 , a CoCr alloy such as Co 80 Cr 2 o, a CoCrTa alloy such as Co 84 Cr ⁇ 3 Ta 3 , a CoPt alloy such as Co 50 Pt 5 o or a FePt alloy such as Fe 5 oPt 5 o.
  • the thickness of the hard magnetic layer 12 is preferably between 20 nm and 100 nm.
  • the soft magnetic layer 13 is preferably located between the magnetoresistive layer stack 14 and the hard magnetic layer 12.
  • a plurality of soft magnetic layers 13, in particular of different composition and / or of different thicknesses, which are located below or preferably according to FIG. 2 on the hard magnetic layer 12, and each preferably have a thickness, can also be provided between 1 nm and 50 nm, in particular 1 nm to 10 nm, and from the abovementioned Materials exist.
  • the layer arrangement 15 can also consist of multilayers of several soft magnetic ones
  • Layers 13 and hard magnetic layers 12 can be constructed with layer pairs corresponding to FIG. 2.
  • the layer arrangement 15 can also be arranged on one or both sides next to the layer stack 14 or can also be integrated into the layer stack 14.
  • FIG. 1 shows a first magnetization curve 1, ie the strength of the magnetization as a function of a magnetic field, for an exclusively hard magnetic layer, a second magnetization curve 2 for this hard magnetic layer with a thin soft magnetic layer applied thereon and a third magnetization curve 3 for this hard magnetic layer with a soft magnetic layer applied thereon which is thicker than curve 2.
  • the magnetization is the sum of magnetic moments, ie an increased magnetization also means an increased field strength of the stray field.
  • the layer arrangement 15 has an increased coercivity and increased remanent magnetization compared to the purely hard magnetic layer 12. This is based on the fact that the soft magnetic layer 13 generates a comparatively high stray field due to the high magnetic moment of the material forming it, and that the coupling of the soft magnetic layer 13 to the hard magnetic layer 12 aligns this high magnetic moment in the direction of the magnetization of the hard magnetic layer 12 , This results overall in a high field strength of the stray field.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

L'invention concerne un système de couches magnétorésistif (5) caractérisé en ce qu'il comprend, à proximité d'un empilement de couches magnétorésistif (14) opérant notamment sur la base de l'effet GMR ou AMR, un agencement de couches (15) qui génère un champ magnétique agissant sur l'empilement de couches magnétorésistif (14) et qui présente au moins une couche magnétique dure (12) et au moins une couche magnétique douce (13). L'invention concerne en outre un élément capteur comprenant un tel système de couches (5) et servant notamment à détecter la force et la direction de champs magnétiques.
EP03787611A 2002-07-26 2003-06-26 Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches Withdrawn EP1527351A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10234349 2002-07-26
DE10234349 2002-07-26
DE10256246A DE10256246A1 (de) 2002-07-26 2002-12-02 Magnetoresistives Schichtsystem und Sensorelement mit diesem Schichtsystem
DE10256246 2002-12-02
PCT/DE2003/002134 WO2004017085A1 (fr) 2002-07-26 2003-06-26 Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches

Publications (1)

Publication Number Publication Date
EP1527351A1 true EP1527351A1 (fr) 2005-05-04

Family

ID=31889085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03787611A Withdrawn EP1527351A1 (fr) 2002-07-26 2003-06-26 Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches

Country Status (7)

Country Link
US (1) US7498805B2 (fr)
EP (1) EP1527351A1 (fr)
JP (1) JP2005534198A (fr)
CN (1) CN100504425C (fr)
AU (1) AU2003250761B2 (fr)
RU (1) RU2316783C2 (fr)
WO (1) WO2004017085A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452471C (zh) * 2005-09-27 2009-01-14 中国科学院物理研究所 一种基于硬磁材料的自旋阀磁电阻器件及其制备方法
US8486545B2 (en) * 2005-09-28 2013-07-16 Southwest Research Institute Systems and methods for flaw detection and monitoring at elevated temperatures with wireless communication using surface embedded, monolithically integrated, thin-film, magnetically actuated sensors, and methods for fabricating the sensors
CN101775644B (zh) * 2010-02-10 2012-10-03 中国科学技术大学 具有各向异性磁阻效应的锰氧化物外延薄膜及其制备方法与应用
US8761987B2 (en) * 2010-10-05 2014-06-24 Checkpoint Llc Automatic guided vehicle sensor system and method of using same
RU2483393C1 (ru) * 2011-10-27 2013-05-27 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Магниторезистивный преобразователь
RU2607672C1 (ru) * 2015-08-14 2017-01-10 Общество с ограниченной ответственностью "ЭНЕРГОКОМСЕРВИС" (ООО "ЭКС") Индикатор воздействия магнитным полем
KR102451098B1 (ko) 2015-09-23 2022-10-05 삼성전자주식회사 자기 메모리 장치 및 이의 제조 방법
CN113884956B (zh) * 2020-07-02 2024-01-19 华润微电子控股有限公司 锑-铟系化合物半导体磁阻连续电流传感器及其制造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648942B1 (fr) 1989-06-27 1995-08-11 Thomson Csf Capteur a effet magnetoresistif
JP2856856B2 (ja) * 1990-07-25 1999-02-10 東芝タンガロイ株式会社 仕上げ用のエンドミル
US5206590A (en) 1990-12-11 1993-04-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
DE4243358A1 (de) 1992-12-21 1994-06-23 Siemens Ag Magnetowiderstands-Sensor mit künstlichem Antiferromagneten und Verfahren zu seiner Herstellung
TW265440B (fr) * 1993-04-30 1995-12-11 Ibm
JPH06318515A (ja) * 1993-05-07 1994-11-15 Hitachi Ltd 磁気抵抗素子およびその製造方法並びに磁気ヘッドおよび磁気記録装置
JPH0766033A (ja) * 1993-08-30 1995-03-10 Mitsubishi Electric Corp 磁気抵抗素子ならびにその磁気抵抗素子を用いた磁性薄膜メモリおよび磁気抵抗センサ
US5841611A (en) * 1994-05-02 1998-11-24 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same
JP3990751B2 (ja) * 1995-07-25 2007-10-17 株式会社日立グローバルストレージテクノロジーズ 磁気抵抗効果型磁気ヘッド及び磁気記録再生装置
JPH09282612A (ja) * 1996-04-09 1997-10-31 Hitachi Metals Ltd 磁気抵抗効果型ヘッド
US6690553B2 (en) * 1996-08-26 2004-02-10 Kabushiki Kaisha Toshiba Magnetoresistance effect device, magnetic head therewith, magnetic recording/reproducing head, and magnetic storing apparatus
US6144534A (en) * 1997-03-18 2000-11-07 Seagate Technology Llc Laminated hard magnet in MR sensor
JP3253556B2 (ja) 1997-05-07 2002-02-04 株式会社東芝 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気記憶装置
JP3234814B2 (ja) * 1998-06-30 2001-12-04 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US6452204B1 (en) * 1998-12-08 2002-09-17 Nec Corporation Tunneling magnetoresistance transducer and method for manufacturing the same
DE19949713C2 (de) 1999-10-15 2001-08-16 Bosch Gmbh Robert Magnetoresistives Schichtsystem
JP2001176028A (ja) * 1999-12-14 2001-06-29 Matsushita Electric Ind Co Ltd 薄膜磁気ヘッド及びその製造方法
JP2001312803A (ja) * 2000-04-28 2001-11-09 Fujitsu Ltd 磁気ヘッド及び磁気ヘッドの製造方法
US20020076579A1 (en) 2000-10-27 2002-06-20 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and medium substrate
DE10128135A1 (de) 2001-06-09 2002-12-19 Bosch Gmbh Robert Magnetoresistive Schichtanordnung und Gradiometer mit einer derartigen Schichtanordnung
US7248446B2 (en) * 2001-11-27 2007-07-24 Seagate Technology Llc Magnetoresistive element using an organic nonmagnetic layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004017085A1 *

Also Published As

Publication number Publication date
CN1623100A (zh) 2005-06-01
WO2004017085A1 (fr) 2004-02-26
JP2005534198A (ja) 2005-11-10
CN100504425C (zh) 2009-06-24
RU2316783C2 (ru) 2008-02-10
RU2004115753A (ru) 2006-01-10
AU2003250761B2 (en) 2008-07-24
AU2003250761A1 (en) 2004-03-03
US7498805B2 (en) 2009-03-03
US20050270022A1 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
DE69624323T2 (de) Magnetoresistives Element, magnetoresistiver Kopf und magnetoresistiver Speicher
DE69533636T2 (de) Magnetowiderstandseffektvorrichtung und hiermit versehener Magnetkopf, Speicher- und Verstärkungsanordnung
DE69219750T2 (de) Magnetoresistiver Fühler für schwache Magnetfelder
EP0674769B1 (fr) Detecteur magneto-resistif muni d'une substance antiferromagnetique et son procede de fabrication
DE19528245B4 (de) Magneto-Widerstandskopf und dessen Verwendung in einer Magnetaufzeichnungsvorrichtung
DE69901790T2 (de) Tunneleffekt-magnetowiderstand und anwendung eines solchen magnetowiderstands in einem magnetischen sensor
DE102006008257B4 (de) Magnetoresistives Mehrschichtensystem vom Spin Valve-Typ mit einer magnetisch weicheren Elektrode aus mehreren Schichten und dessen Verwendung
DE4427495C2 (de) Sensoreinrichtung mit einem GMR-Sensorelement
EP1417690B1 (fr) Systeme de couches a effet magnetoresistif renforce et son utilisation
WO2000010172A2 (fr) Ensemble cellule de memoire et son procede de production
DE19936378B4 (de) Magnetowiderstands-Dünnschichtelement vom Spin-Valve-Typ
DE4243357A1 (de) Magnetowiderstands-Sensor mit verkürzten Meßschichten
DE4232244C2 (de) Magnetowiderstands-Sensor
DE102019113815B4 (de) Magnetsensor
WO2012175567A1 (fr) Système multicouche magnétostrictif
DE602004007986T2 (de) Magnetische Anordnung mit verbesserter Kopplung
WO2000072387A1 (fr) Dispositif de couplage magnetique et son utilisation
EP1576381A1 (fr) Systeme stratifie magnetoresistif et element detecteur presentant ce dernier
WO2004017085A1 (fr) Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches
DE102019126320B4 (de) Magnetoresistiver Sensor und Fertigungsverfahren für einen magnetoresistiven Sensor
DE102012204083A1 (de) Nanopartikel, Permanentmagnet, Motor und Generator
DE69332038T2 (de) Magnetowiderstandeffekt-Element
EP0572465B1 (fr) Systeme multicouche pour palpeurs magnetoresistifs et procede pour sa fabrication
DE10128964B4 (de) Digitale magnetische Speicherzelleneinrichtung
DE10106860A1 (de) MTJ-Element und Magnetspeicher unter Verwendung eines solchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): CZ DE FR GB

17Q First examination report despatched

Effective date: 20101117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150106