EP1526268B1 - Méthode de régulation de la pression d'un accumulateur de carburant dans un moteur à combustion interne - Google Patents

Méthode de régulation de la pression d'un accumulateur de carburant dans un moteur à combustion interne Download PDF

Info

Publication number
EP1526268B1
EP1526268B1 EP04018196A EP04018196A EP1526268B1 EP 1526268 B1 EP1526268 B1 EP 1526268B1 EP 04018196 A EP04018196 A EP 04018196A EP 04018196 A EP04018196 A EP 04018196A EP 1526268 B1 EP1526268 B1 EP 1526268B1
Authority
EP
European Patent Office
Prior art keywords
control
control mode
switch
over
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04018196A
Other languages
German (de)
English (en)
Other versions
EP1526268A3 (fr
EP1526268A2 (fr
Inventor
Guenter Veit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1526268A2 publication Critical patent/EP1526268A2/fr
Publication of EP1526268A3 publication Critical patent/EP1526268A3/fr
Application granted granted Critical
Publication of EP1526268B1 publication Critical patent/EP1526268B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • the invention relates to a method for regulating the pressure in a fuel reservoir of an internal combustion engine, in particular a common rail system. Moreover, the invention relates to a computer program and an apparatus for carrying out this method.
  • Such a method and apparatus are basically known. More specifically, this document teaches to provide at least first and second control circuits for regulating the pressure in a fuel tank.
  • a first control mode only the first control loop is used to regulate the pressure, wherein the pressure in the fuel accumulator is controlled by suitable control of a high pressure pump as a pressure control means.
  • a second control mode is provided in which the pressure control takes place with the aid of the second control circuit via a pressure control valve, which acts directly on the fuel tank.
  • the first or second control mode used for pressure control.
  • a switching process takes place from the first to the second control mode when certain values for the rotational speed or the fuel quantity to be injected are exceeded in a specific operating state of the internal combustion engine.
  • suitable criteria are defined for the complementary switching from the second to the first control mode.
  • WO 03/046357 A1 describes a method for controlling an internal combustion engine, in which a controlled system for regulating the rail pressure at a detected faulty rail pressure sensor separated and transferred to a controlled emergency operation. During the transition phase to controlled emergency operation, the control deviation is specified by a transition function. Based on this prior art, it is therefore an object of the invention to develop a known method for regulating the pressure in a fuel storage of an internal combustion engine and a known computer program and a known device for performing this method such that the course of the rail pressure during a switching between two different control modes are not disturbed in an unacceptable way.
  • This object is achieved by the method claimed in claim 1.
  • This method is characterized in that for carrying out the switching operation involved in the switching control loops are opened by their control devices are controlled instead of the previous input signal for preferably preferably each switching individually predetermined Umschalteingangssignalen, which are designed so that the control devices in the desired manner from a current operating state defined by the current control mode to one by the future control mode defined future operating state.
  • This claimed procedure for performing a switching from a current control mode to a future control mode has the advantage that undesirable disturbances of the rail pressure during the switching operation are avoided. According to the invention, this takes place in such a way that the control circuits involved in the switching operation are continuously transferred from their activated or deactivated operating state during the current control mode into their new activated or deactivated operating state during the future control mode by the switching input signal.
  • the switching input signal advantageously represents individually suitable control values for each switching cycle.
  • a control loop which changes in the context of a switching from an activated to a deactivated operating state or vice versa, opened to perform the switching, that is, the control loop is separated for the duration of the switching operation.
  • the control device of the separated control loop is then no longer operated with the input signal but with the switching input signal, wherein the control value represented by the switching input signal is at least approximately adapted to the last control error supplied to the control device. In this way, a smoother as possible or more homogeneous Transition from the current control mode into the switching process ensured.
  • the switching control signal is formed from the predetermined control values and a rail pressure deviation applied thereto.
  • This rail pressure deviation causes a correction of the fixed predetermined control values with respect to a current pressure situation in the fuel tank 200, wherein depending on the magnitude and sign of this pressure deviation, the speed at which the pressure in the fuel tank 200 is controlled, in view of the current there Drucksituaticn positive being affected.
  • the connection of the rail pressure control deviation also causes the pressure deviation caused by the switching process in the fuel storage 200 to be kept as low as possible.
  • transitions between steady-state control operation and switching operation are further smoothed or homogenized in both directions by monitoring a shift in the operating point caused by the switching input signal during at least that control device which switches from an activated to a deactivated operating state during the switching process reversed changes. It is then advantageous for homogenization purposes, if the transition from the switching operation in the future control mode is actually only carried out by disconnecting the switching input signal and clamping the usual input signal to the regulator device, if at least the monitored control device provided her for the future control mode activated or has reached deactivated operating state.
  • control devices of the two control circuits are each fed with an input signal which not only the control loop associated with the control error, but also the represents a control deviation assigned to each other control loop.
  • FIG. 1 shows the structure of the inventive device 100 for regulating the pressure in a fuel tank 200 of an internal combustion engine (not shown here) according to the invention.
  • the fuel accumulator is in particular a so-called common rail.
  • the device comprises a first control loop 110 with a first subtraction device 112 for providing a control deviation r1, a first control device 114 and a throttle valve 116 as an actuator.
  • This first control circuit regulates via the throttle valve 116, the high-pressure pump 210 supplied Kraftstcffmenge.
  • the first control circuit ensures that precisely the amount of fuel which is predetermined via a setpoint signal S M-setpoint of the subtraction unit 112 is supplied to the high-pressure pump 210 via the throttle valve 116.
  • the difference formation device 112 performs a constant comparison between the desired fuel quantity requested by the desired quantity signal S M-desired and the flow rate through the throttle valve 116 actually provided and represented by the is-quantity signal S M-ist actual fuel quantity and outputs a possibly detected difference r1 between the target and the actual amount as a quantity deviation.
  • This quantity deviation r1 is output to the control device 114 during steady-state operation of the first control loop as a control deviation in the form of an input signal e1.
  • the amount of fuel actually metered in by the throttle valve 116 in accordance with FIG.
  • the first control circuit 110 initially controls only the fuel quantity supplied to the high-pressure pump 210.
  • the high-pressure pump 210 is connected to the fuel storage 200 via a fuel line 220.
  • the control of the amount of fuel supplied to the fuel reservoir 200 by means of the first control circuit can therefore indirectly also control the pressure in the fuel accumulator.
  • a second control circuit 120 In addition to the first control loop, the device 100 according to FIG. 1 Furthermore, a second control circuit 120. This includes a second difference formation device 122, which a possible deviation between a predetermined target pressure, represented by a signal S D target and that of one. Pressure sensor 230 measured actual pressure in the fuel reservoir 200, represented by a signal S D-actual detected.
  • the second control circuit 120 further comprises a second control device 124 which receives the pressure deviation r2 detected by the second subtraction device 122 during stationary control operation in the form of an input signal e2 and controls a pressure control valve 126 in response to this pressure deviation r2 which is directly dependent on the pressure in Fuel tank 200 acts.
  • the second control circuit therefore carries out a direct regulation of the pressure in the fuel accumulator.
  • the first and second control circuits 110, 120 can be operated both individually and simultaneously, that is to say in parallel. Thus, in a first control mode only the first control loop 110 and in a second control mode only the second control loop 120 is activated, while in a third control mode the first and the second control loop 110, 120 are activated simultaneously.
  • the decision on which of the three rule modes mentioned the device according to FIG. 1 is operated takes place in response to a control mode signal S R , which specifies a current or future control mode, in particular depending on a current operating state of the internal combustion engine.
  • this control mode signal S R is supplied to a control management device 130 in which, inter alia, preferably the two difference-forming devices 112 and 122 already mentioned are integrated.
  • This rule management device 130 is designed, the respective control devices 114, 124 of the two control loops 110, 120 in response to a respective to control desired, represented by the control mode signal S R control mode.
  • FIG. 2 shows the structure of the rule management device 130 according to the invention.
  • the input signals of this device 130 have been described with reference to FIG FIG. 1 mentioned; They are in FIG. 2 denoted by the same reference sign.
  • the rule management device 130 in addition to the two differentiation devices 120, 122, also has a memory device 132 for storing and providing predetermined control values. These control values substantially shape the switching input signals u1, u2 for the controllers 114, 124 during a switching operation.
  • the rule management device 130 comprises a first and a second switching device 134, 136 for generating the first and second input signals e1, e2 for the first and the second control device 114, 124 during stationary control operation in one of the three said control modes or for generating the switching input signal u1, u2 for at least one of the control devices 114, 124 during a switching process.
  • the rule management device 130 comprises a control device 138 for controlling the memory device 132 and the switching devices 134, 136 in response to the control mode signal S R via control signals St1, St2 and St3.
  • FIG. 2 illustrated rule management device 130 according to the invention will be described in detail below. In this case, a distinction is made between a stationary control operation of the device 100 in the three named control modes and between the possible transitional operations between these control modes.
  • the control management device 130 For operation of the device 100 during a first control mode during which the pressure in the fuel reservoir 200 is controlled only by means of the first control loop 110, the control management device 130 operates as follows: In this case, the control device 138 controls the first switching device 134 via the first control signal St1 such that the switching device 134 forms the input signal e1 for the first control device 114 at its output in such a way that it represents the pressure deviation r2 provided by the second subtraction device 112. At the same time, the control device 138 controls the second switching device 136 via the control signal St2 in such a way that the switching device 136 generates the input signal e2 for the second control device 124 on the basis of predetermined control values.
  • control values are provided to the second switching device 136 by the memory device 132 after it has been informed by the third control signal St3 of the control device 138 which control values from which memory addresses within the memory device 132 are currently to be output to the second switching device 136.
  • the control values in this case are preferably predetermined so that they keep the second control device 124 in an inactive, ie deactivated state.
  • the control values may also cause a shutdown of the second control device, preferably in a standby mode.
  • the rule management device 130 operates as follows. With her first and third control signal St1, St3, it controls the memory device 132 and the first switching device 134 in an analogous manner as the second switching device 136 during the operation described in the last paragraph in the first control mode. The first switching device 134 then generates an input signal e1 for the first control device 114 on the basis of suitable control values provided by the memory device 132. These control values are then designed such that they deactivate or switch off the first control device. When operating in the second control mode, the second switching device 136 is controlled by the second control signal St2 of the control device 138 such that it forms the input signal e2 for the second control device 124 from the pressure deviation r2 provided by the second subtraction device 122.
  • the rule management device 130 operates as follows.
  • the control device 138 then controls the first switching device 134 via the first control signal St1 in such a way that it forms the input signal e1 for the first control device 114 on the basis of the quantity deviation r1 provided by the first subtraction device 112.
  • the control device controls the second switching device 136 via the second control signal St2 in such a way that the input signal e2 for the second control device 124 is formed on the basis of the pressure deviation r2 provided by the second subtraction device 122.
  • the input signals do not become formed only on the basis of the mentioned, but with additional consideration of the other deviations r1, r2.
  • the behavior of the rule management device 130 has been described for each stationary control operation in either the first, second or third control mode.
  • the rule management device 130 is designed to open the control circuits involved in a switching process by their control device 114, 124 no longer actuated as before in stationary control operation with the input signal e1 or e2, but instead with special switching input signal u1, u2 become.
  • These switching input signals are designed such that the control devices 114, 124 are transferred in the desired manner from a current operating state defined by the current control mode, active or passive, into a future operating state defined by the future control mode, active or passive.
  • the switching input signals u1, u2 are basically based on suitably predetermined control values provided by the memory device 132.
  • the control values are individually predetermined for each possible switching operation between two different control modes.
  • the structure of the control means 130, the first and the second switching means 134, 136 are then controlled during a switching operation by the first and the second control signal St1, St2, that they generate the switching signals u1, u2 on the basis of suitable control values provided by the memory device 132.
  • the memory device 132 is in turn instructed by the third control signal St3 accordingly.
  • the switching input signals u1, u2 are formed not only from the pure control values but instead from control values which have been subjected to the current pressure deviation r2 provided by the second subtraction device 122. Depending on the magnitude and sign of this pressure deviation, the switching input signals u1, u2 then deviate more or less strongly from the originally predetermined control values; In this way, not only the control speed is optimized in terms of the current pressure situation in the fuel storage, but it is also kept as low as possible caused by the switching pressure deviation.
  • the control device 138 may be designed as a state machine, which allows monitoring of the operating points of the control device 114, 124 during a switching operation.
  • both control loops 110, 120 are opened by not using them the input signals e1, e2, but instead be controlled with the switching Eihgangssignal u1, u2. It Then takes place a monitoring of the switching input points u1, u2 conditional shift of the operating points of the two control device 114, 124, in particular with regard to when the to be disabled in this switching control device leaves its previous effective workspace.
  • the hitherto active switching control device the hitherto entered switching input signal u1, u2 is turned off.
  • the associated control circuit is then closed again by the control device - instead of the switching input signal - with the predetermined for the selected future first or second control mode input signal e1, e2, which represents one of said control deviations, is controlled.
  • control device to be deactivated continues to be supplied with the changeover input signal until this control device has been deactivated due to the operating point shift.
  • control device to be deactivated can also simply be switched off.
  • control device to be activated As soon as it has been determined that the control device to be activated has entered the effective working range, that control device which is activated both in the current and in the future desired control mode and which is still controlled by the input signal e1, e2 of the current control mode, will also be actuated. cut off from this input signal and instead fed with the same switching input signal u1, u2 as the regulator to be activated. Both control devices are then supplied with the same switching input signal as long as possible, until both control devices have been converted into such an active operating state as is provided for the future desired control mode.
  • Switching operations from the first to the second control mode or vice versa are preferably not realized by a direct switching between these control modes. Such a direct switching disadvantageously would have severe disturbances of the rail pressure during the Switchover result.
  • a switching process from the second control mode to the first control mode is realized by first switching over from the second to the third and subsequently from the third to the first control mode.
  • the control device 138 is designed such that, for each of the said switching operations, it appropriately controls the memory device 132 and the first and second switching devices 134, 136 via the control signals St1, St2 in order to implement in particular the switching input signals u1, u2 in a suitable manner.
  • the inventive method described is preferably realized in the form of a computer program.
  • the computer program may optionally be stored together with other computer programs on a computer-readable medium.
  • the data carrier may be a floppy disk, a compact disc or a so-called flash memory.
  • the computer program stored on the data carrier can then be transferred or sold as a product to a customer.
  • the computer program can also be transmitted without the aid of a data carrier via an electronic communication network, in particular the Internet, as a product to the customer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (14)

  1. Procédé de régulation de la pression dans un accumulateur de carburant (200) de moteur à combustion interne, présentant les étapes suivantes :
    a) activation stationnaire de la régulation de pression selon un mode de régulation actuel dans lequel au moins un premier circuit de régulation est activé pour réguler la pression ;
    b) mise en oeuvre d'un processus de commutation servant à commuter la régulation de pression du mode de régulation actuel dans un mode de régulation souhaité à l'avenir en réponse à un signal de mode de régulation (SR) ; et
    c) activation stationnaire de la régulation de pression selon le futur mode de régulation dans lequel au moins un deuxième circuit de régulation est activé pour réguler la pression ;
    un dispositif de régulation (114, 124) associé à chaque circuit de régulation étant commandé individuellement à chaque fonctionnement stationnaire d'un circuit de régulation à l'aide d'un signal d'entrée (e1, e2) représentant un écart de régulation ;
    caractérisé en ce que des signaux d'entrée de commutation (u1, u2) sont définis individuellement sur la base des valeurs de commande prédéfinies mises à la disposition dans un dispositif de mémoire (132) pour chaque processus de commutation et que les circuits de régulation (110, 120) prenant part au processus de commutation sont ouverts pour mettre en oeuvre le processus de commutation selon l'étape b) en commandant leurs dispositifs de régulation (114, 124) à l'aide des signaux d'entrée de commutation (u1, u2) à la place du signal d'entrée (e1, e2) précédent et que les dispositifs de régulation (114, 124) sont commutés d'un état de fonctionnement actuel défini par le mode de régulation actuel dans un état de fonctionnement futur défini par le mode de régulation futur, ultérieur, par rapport au moment actuel, à l'aide des signaux d'entrée de commutation (u1, u2).
  2. Procédé selon la revendication 1, caractérisé en ce que les signaux d'entrée de commutation représentent des valeurs de commande prédéfinies respectivement dimensionnées sur le plan individuel en fonction du processus de commutation souhaité.
  3. Procédé selon la revendication 2, caractérisé en ce que les signaux d'entrée de commutation représentent des valeurs de commande constantes prédéfinies.
  4. Procédé selon la revendication 2 ou 3, caractérisé en ce que les signaux de commutation prennent également respectivement en compte, outre les valeurs de commande, un écart de pression de rail actuel.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le passage des dispositifs de régulation (114, 124) de l'état de fonctionnement actuel dans l'état de fonctionnement futur est surveillé par le biais du déplacement du point de travail du dispositif de régulation (114, 124) respectif provoqué par les signaux d'entrée de commutation (u1, u2).
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un premier, un deuxième et un troisième mode de régulation sont disponibles en alternance, seul un premier circuit de régulation (110) étant activé dans le premier mode de régulation, seul un deuxième circuit de régulation (120) étant activé dans le deuxième mode de régulation et tant le premier que le deuxième circuit de régulation (110, 120) étant activés dans le troisième mode de régulation pour réguler la pression.
  7. Procédé selon la revendication 6, caractérisé en ce que lors d'un processus de commutation permettant de passer du troisième au premier ou au deuxième mode de régulation, le procédé présente les étapes partielles suivantes :
    b1.1) ouverture du premier et du deuxième circuit de régulation en commandant tant le dispositif de régulation (114, 124) à désactiver dans le cadre du processus de commutation que celui restant actif au lieu des signaux d'entrée (e1, e2) composés du mode de fonctionnement de régulation stationnaire actuel avec de préférence les mêmes signaux d'entrée de commutation (u1, u2) représentant les valeurs de commande prédéfinies ;
    b1.2) surveillance du déplacement des points de travail des deux dispositifs de régulation (114, 124) conditionné par les signaux d'entrée de commutation (u1, u2) et mise en oeuvre des étapes suivantes lorsque le dispositif de régulation à désactiver quitte sa zone de travail active précédente ;
    b1.3) déconnexion du signal d'entrée de commutation (u1, u2) précédent représentant les valeurs de commande prédéfinies pour le circuit de régulation (110, 120) restant actif et fermeture de ce circuit de régulation par commande du même dispositif de régulation à l'aide d'un autre signal d'entrée selon l'étape de procédé c) et du signal d'entrée sélectionné prédéfinissant le futur premier ou deuxième mode de régulation et représentant un écart de régulation ;
    b1.4) continuation de la commande du dispositif de régulation (114, 124) du circuit de régulation à désactiver à l'aide du signal d'entrée de commutation (u1, u2) jusqu'à ce que son dispositif de régulation (114, 124) soit désactivé sur la base du déplacement du point de travail ; et
    pendant l'étape de procédé c) : maintien du circuit de régulation désactivé dans l'état désactivé soit en poursuivant une commande adaptée à l'aide du signal d'entrée de commutation (u1, u2) soit en déconnectant ce circuit de régulation de préférence dans un mode de veille.
  8. Procédé selon la revendication 6, caractérisé en ce que lors d'un processus de commutation selon l'étape de procédé b) permettant de passer du premier ou du deuxième mode de régulation actuel dans le troisième mode de régulation, le procédé présente les étapes partielles suivantes :
    b2.1) commande du dispositif de régulation (114, 124) désactivé jusqu'ici dans le mode de régulation mais devant être activé dans le futur mode de régulation à l'aide d'un signal d'entrée de commutation (u1, u2) adapté ;
    b2.2) surveillance du déplacement, conditionné par la commande, du point de travail du dispositif de régulation du circuit de régulation à activer pour déterminer le moment où le dispositif de régulation désactivé jusqu'ici entre de nouveau dans une zone de travail active ;
    b2.3) continuation de la commande du dispositif de régulation (u1, u2) à activer à l'aide du signal de commutation (u1, u2) au-delà du moment de détection selon l'étape b2.2) et ouverture simultanée du circuit de régulation (110, 120) activé pendant le mode de régulation actuel et futur par commande de son dispositif de régulation (114, 124) avec de préférence le même signal de commutation (u1, u2) que celui du dispositif de régulation à activer, respectivement jusqu'à ce que les deux dispositifs de régulation soient passés dans un état de fonctionnement actif tel que prévu pour le troisième mode de régulation souhaité à l'avenir.
  9. Procédé selon la revendication 6 au moins, caractérisé en ce qu'une transition du premier mode de régulation actuel à un futur deuxième mode de régulation selon l'étape b) comprend les étapes partielles suivantes : mise en oeuvre d'un processus de commutation du premier mode de régulation actuel au troisième mode de régulation selon les revendications 1 et 8 ; et mise en oeuvre d'un processus de commutation du troisième mode de régulation au futur deuxième mode de régulation selon les revendications 1 et 7.
  10. Procédé selon la revendication 6 au moins, caractérisé en ce qu'une transition du deuxième mode de régulation actuel à un futur premier mode de régulation selon l'étape b) comprend les étapes partielles suivantes :
    mise en oeuvre d'un processus de commutation du deuxième mode de régulation actuel à un troisième mode de régulation selon les revendications 1 et 8 ; et
    mise en oeuvre d'un processus de commutation du troisième mode de régulation au futur premier mode de régulation selon les revendications 1 et 7.
  11. Procédé selon la revendication 6 au moins, caractérisé en ce qu'en cas de fonctionnement selon le troisième mode de régulation, les signaux d'entrée (e1, e2) des deux dispositifs de régulation (114, 124) représentent respectivement non seulement un écart de régulation associé à leur propre circuit de régulation mais aussi un écart de régulation associé à l'autre circuit de régulation.
  12. Programme informatique conçu pour un dispositif de commande et/ou de régulation, caractérisé en ce qu'il est programmé pour mettre en oeuvre un procédé selon l'une quelconque des revendications 1 à 11.
  13. Dispositif (100) de régulation de la pression dans un accumulateur de carburant (200) de moteur à combustion interne, caractérisé en ce qu'il comporte une mémoire sur laquelle est mémorisée un programme informatique selon la revendication 12 et caractérisé en ce qu'il est réalisé pour exécuter un programme informatique selon la revendication 12.
  14. Dispositif (100) selon la revendication 13, caractérisé en ce que l'accumulateur de carburant (200) envisagé est un système à rampe commune.
EP04018196A 2003-10-24 2004-07-31 Méthode de régulation de la pression d'un accumulateur de carburant dans un moteur à combustion interne Expired - Lifetime EP1526268B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10349628A DE10349628A1 (de) 2003-10-24 2003-10-24 Verfahren zum Regeln des Druckes in einem Kraftstoffspeicher einer Brennkraftmaschine
DE10349628 2003-10-24

Publications (3)

Publication Number Publication Date
EP1526268A2 EP1526268A2 (fr) 2005-04-27
EP1526268A3 EP1526268A3 (fr) 2011-01-05
EP1526268B1 true EP1526268B1 (fr) 2012-12-12

Family

ID=34384449

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04018196A Expired - Lifetime EP1526268B1 (fr) 2003-10-24 2004-07-31 Méthode de régulation de la pression d'un accumulateur de carburant dans un moteur à combustion interne

Country Status (4)

Country Link
US (1) US7040291B2 (fr)
EP (1) EP1526268B1 (fr)
JP (1) JP4621472B2 (fr)
DE (1) DE10349628A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090033A1 (fr) * 2007-01-24 2008-07-31 Continental Automotive Gmbh Procédé de régulation d'un dispositif d'alimentation en carburant d'un moteur à combustion interne
DE102007027943B3 (de) * 2007-06-18 2008-10-16 Mtu Friedrichshafen Gmbh Verfahren zur Regelung des Raildrucks während eines Startvorgangs
DE102007058539A1 (de) * 2007-12-06 2009-06-10 Robert Bosch Gmbh Verfahren zum Einstellen eines Kraftstoffdrucks
JP4955601B2 (ja) * 2008-04-08 2012-06-20 ボッシュ株式会社 コモンレール式燃料噴射制御装置における圧力制御電磁弁の駆動方法及びコモンレール式燃料噴射制御装置
US8210156B2 (en) * 2009-07-01 2012-07-03 Ford Global Technologies, Llc Fuel system with electrically-controllable mechanical pressure regulator
DE102009031528B3 (de) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031527B3 (de) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009045563B4 (de) * 2009-10-12 2019-06-13 Robert Bosch Gmbh Verfahren zum Bestimmen wenigstens eines Raildruck-Schließstrom-Wertepaares für ein Druckregelventil eines Common-Rail-Einspritzsystems
DE102012209256A1 (de) 2012-06-01 2013-12-05 Robert Bosch Gmbh Kraftstoffeinspritzsystem
DE102013221981A1 (de) * 2013-10-29 2015-04-30 Robert Bosch Gmbh Verfahren zur Steuerung eines Druckregelventils einer Kraftstoffeinspritzanlage insbesondere eines Kraftfahrzeugs
DE102014226565A1 (de) * 2014-12-19 2016-06-23 Robert Bosch Gmbh Verfahren zur Prüfung einer Kraftstofffördereinrichtung, sowie ein Steuergerät und ein Werkstatt-Tester

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374569A (ja) * 1989-08-15 1991-03-29 Fuji Heavy Ind Ltd ガソリンエンジンの燃料噴射制御装置
US5092301A (en) * 1990-02-13 1992-03-03 Zenith Fuel Systems, Inc. Digital fuel control system for small engines
JPH08109862A (ja) * 1994-10-11 1996-04-30 Nippondenso Co Ltd 燃料供給装置
WO1997032122A1 (fr) * 1996-02-29 1997-09-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Dispositif d'alimentation en carburant pour moteurs a combustion interne
US6024064A (en) * 1996-08-09 2000-02-15 Denso Corporation High pressure fuel injection system for internal combustion engine
JP3612175B2 (ja) * 1997-07-15 2005-01-19 株式会社日立製作所 筒内噴射エンジンの燃料圧力制御装置
US6694950B2 (en) * 1999-02-17 2004-02-24 Stanadyne Corporation Hybrid control method for fuel pump using intermittent recirculation at low and high engine speeds
DE19916100A1 (de) * 1999-04-09 2000-10-12 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP3714099B2 (ja) * 2000-03-23 2005-11-09 トヨタ自動車株式会社 内燃機関の燃料圧力制御装置
DE10157641C2 (de) * 2001-11-24 2003-09-25 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
US6712045B1 (en) * 2002-08-08 2004-03-30 Detroit Diesel Corporation Engine control for a common rail fuel system using fuel spill determination
DE10301236B4 (de) * 2003-01-15 2017-08-17 Robert Bosch Gmbh Verfahren zum Starten einer Brennkraftmaschine, insbesondere einer Brennkraftmaschine mit Direkteinspritzung

Also Published As

Publication number Publication date
EP1526268A3 (fr) 2011-01-05
US20050087174A1 (en) 2005-04-28
JP2005127322A (ja) 2005-05-19
US7040291B2 (en) 2006-05-09
DE10349628A1 (de) 2005-06-02
EP1526268A2 (fr) 2005-04-27
JP4621472B2 (ja) 2011-01-26

Similar Documents

Publication Publication Date Title
DE102005058966B3 (de) Verfahren zur Adaption einer Vorsteuerung in einer Druckregelung für eine Common-Rail-Einspritzanlage für eine Brennkraftmaschine und Mittel zur Durchführung des Verfahrens
EP2203263B1 (fr) Procédé de fonctionnement d'un circuit de refroidissement à saisie centralisée de caractéristiques de vannes et objets correspondants
EP1526268B1 (fr) Méthode de régulation de la pression d'un accumulateur de carburant dans un moteur à combustion interne
EP0437559B1 (fr) Procede et dispositif de commande et/ou de regulation de la puissance du moteur a combustion interne d'un vehicule
DE19848368C2 (de) Verfahren und Vorrichtung zur Steuerung einer fremdgezündeten Brennkraftmaschine
EP1581735B1 (fr) Procede pour commander une soupape de regulation de pression dans un systeme d'injection de carburant d'un moteur a combustion interne
WO2007090216A2 (fr) Procede de regulation du systeme d'alimentation en air d'un moteur a combustion interne
DE10354656B4 (de) Verfahren zum Überwachen eines Einspritzsystems einer Brennkraftmaschine
WO2021073997A1 (fr) Procédé de surveillance d'au moins une partie d'un processus de production d'un système d'extrusion de film
DE102010043755B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät sowie Brennkraftmaschine
EP2452234B1 (fr) Procédé de commande pour un laminoir doté d'une adaptation d'un modèle supplémentaire différent d'un modèle de laminage à l'aide d'une grandeur de laminage
EP1597469B1 (fr) Appareil de commande, programme informatique et automate d'etat dans un appareil de commande pour faire fonctionner un moteur a combustion interne
EP3599365A1 (fr) Procédé de fonctionnement d'un moteur à combustion interne
DE102005047350A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2449438B1 (fr) Procédé et système pour commander au moins un actionneur
EP3045675B1 (fr) Système et procédé de réglage d'une soupape d'admission de turbine
EP4139849A1 (fr) Procédé de configuration de composants dans un système au moyen d'un apprentissage par renforcement multi-agent, support de stockage lisible par ordinateur et système
DE102017106840A1 (de) Verfahren zum Ansteuern eines hydraulischen Stellantriebes, Steuereinrichtung und Stellantriebsteuerung
EP1309784B1 (fr) Procede et dispositif pour reguler une grandeur de fonctionnement d'un moteur a combustion interne
EP1029168B1 (fr) Procede d'exploitation d'un moteur a combustion interne, en particulier, de vehicule automobile
DE102009046101B4 (de) Verfahren zum Ansteuern einer Verbrauchsmaterial verbrauchenden Werkzeugmaschinenkomponente sowie Computerprogrammprodukt und Werkzeugmaschine
DE102017208110A1 (de) Multiple dynamische Jobreihenfolge
DE102006062930B3 (de) Steuereinheit zum Steuern eines Verbrennungsmotors
DE102006045139B4 (de) Vorrichtung und Verfahren zur Zustandverwaltung eines Betriebssteuergeräts eines Kraftfahrzeugs
DE102005008039A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20110705

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20111114

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013922

Country of ref document: DE

Effective date: 20130207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013922

Country of ref document: DE

Effective date: 20130913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140724

Year of fee payment: 11

Ref country code: GB

Payment date: 20140721

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140728

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004013922

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230922

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004013922

Country of ref document: DE