EP1526268B1 - Method for controlling the common rail pressure in an internal combustion engine - Google Patents
Method for controlling the common rail pressure in an internal combustion engine Download PDFInfo
- Publication number
- EP1526268B1 EP1526268B1 EP04018196A EP04018196A EP1526268B1 EP 1526268 B1 EP1526268 B1 EP 1526268B1 EP 04018196 A EP04018196 A EP 04018196A EP 04018196 A EP04018196 A EP 04018196A EP 1526268 B1 EP1526268 B1 EP 1526268B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- control
- control mode
- switch
- over
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 55
- 238000002485 combustion reaction Methods 0.000 title claims description 10
- 230000008569 process Effects 0.000 claims description 23
- 238000004590 computer program Methods 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims 1
- 239000000446 fuel Substances 0.000 description 26
- 230000001105 regulatory effect Effects 0.000 description 7
- 239000002828 fuel tank Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D41/3836—Controlling the fuel pressure
- F02D41/3845—Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D41/3836—Controlling the fuel pressure
- F02D41/3863—Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1418—Several control loops, either as alternatives or simultaneous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/31—Control of the fuel pressure
Definitions
- the invention relates to a method for regulating the pressure in a fuel reservoir of an internal combustion engine, in particular a common rail system. Moreover, the invention relates to a computer program and an apparatus for carrying out this method.
- Such a method and apparatus are basically known. More specifically, this document teaches to provide at least first and second control circuits for regulating the pressure in a fuel tank.
- a first control mode only the first control loop is used to regulate the pressure, wherein the pressure in the fuel accumulator is controlled by suitable control of a high pressure pump as a pressure control means.
- a second control mode is provided in which the pressure control takes place with the aid of the second control circuit via a pressure control valve, which acts directly on the fuel tank.
- the first or second control mode used for pressure control.
- a switching process takes place from the first to the second control mode when certain values for the rotational speed or the fuel quantity to be injected are exceeded in a specific operating state of the internal combustion engine.
- suitable criteria are defined for the complementary switching from the second to the first control mode.
- WO 03/046357 A1 describes a method for controlling an internal combustion engine, in which a controlled system for regulating the rail pressure at a detected faulty rail pressure sensor separated and transferred to a controlled emergency operation. During the transition phase to controlled emergency operation, the control deviation is specified by a transition function. Based on this prior art, it is therefore an object of the invention to develop a known method for regulating the pressure in a fuel storage of an internal combustion engine and a known computer program and a known device for performing this method such that the course of the rail pressure during a switching between two different control modes are not disturbed in an unacceptable way.
- This object is achieved by the method claimed in claim 1.
- This method is characterized in that for carrying out the switching operation involved in the switching control loops are opened by their control devices are controlled instead of the previous input signal for preferably preferably each switching individually predetermined Umschalteingangssignalen, which are designed so that the control devices in the desired manner from a current operating state defined by the current control mode to one by the future control mode defined future operating state.
- This claimed procedure for performing a switching from a current control mode to a future control mode has the advantage that undesirable disturbances of the rail pressure during the switching operation are avoided. According to the invention, this takes place in such a way that the control circuits involved in the switching operation are continuously transferred from their activated or deactivated operating state during the current control mode into their new activated or deactivated operating state during the future control mode by the switching input signal.
- the switching input signal advantageously represents individually suitable control values for each switching cycle.
- a control loop which changes in the context of a switching from an activated to a deactivated operating state or vice versa, opened to perform the switching, that is, the control loop is separated for the duration of the switching operation.
- the control device of the separated control loop is then no longer operated with the input signal but with the switching input signal, wherein the control value represented by the switching input signal is at least approximately adapted to the last control error supplied to the control device. In this way, a smoother as possible or more homogeneous Transition from the current control mode into the switching process ensured.
- the switching control signal is formed from the predetermined control values and a rail pressure deviation applied thereto.
- This rail pressure deviation causes a correction of the fixed predetermined control values with respect to a current pressure situation in the fuel tank 200, wherein depending on the magnitude and sign of this pressure deviation, the speed at which the pressure in the fuel tank 200 is controlled, in view of the current there Drucksituaticn positive being affected.
- the connection of the rail pressure control deviation also causes the pressure deviation caused by the switching process in the fuel storage 200 to be kept as low as possible.
- transitions between steady-state control operation and switching operation are further smoothed or homogenized in both directions by monitoring a shift in the operating point caused by the switching input signal during at least that control device which switches from an activated to a deactivated operating state during the switching process reversed changes. It is then advantageous for homogenization purposes, if the transition from the switching operation in the future control mode is actually only carried out by disconnecting the switching input signal and clamping the usual input signal to the regulator device, if at least the monitored control device provided her for the future control mode activated or has reached deactivated operating state.
- control devices of the two control circuits are each fed with an input signal which not only the control loop associated with the control error, but also the represents a control deviation assigned to each other control loop.
- FIG. 1 shows the structure of the inventive device 100 for regulating the pressure in a fuel tank 200 of an internal combustion engine (not shown here) according to the invention.
- the fuel accumulator is in particular a so-called common rail.
- the device comprises a first control loop 110 with a first subtraction device 112 for providing a control deviation r1, a first control device 114 and a throttle valve 116 as an actuator.
- This first control circuit regulates via the throttle valve 116, the high-pressure pump 210 supplied Kraftstcffmenge.
- the first control circuit ensures that precisely the amount of fuel which is predetermined via a setpoint signal S M-setpoint of the subtraction unit 112 is supplied to the high-pressure pump 210 via the throttle valve 116.
- the difference formation device 112 performs a constant comparison between the desired fuel quantity requested by the desired quantity signal S M-desired and the flow rate through the throttle valve 116 actually provided and represented by the is-quantity signal S M-ist actual fuel quantity and outputs a possibly detected difference r1 between the target and the actual amount as a quantity deviation.
- This quantity deviation r1 is output to the control device 114 during steady-state operation of the first control loop as a control deviation in the form of an input signal e1.
- the amount of fuel actually metered in by the throttle valve 116 in accordance with FIG.
- the first control circuit 110 initially controls only the fuel quantity supplied to the high-pressure pump 210.
- the high-pressure pump 210 is connected to the fuel storage 200 via a fuel line 220.
- the control of the amount of fuel supplied to the fuel reservoir 200 by means of the first control circuit can therefore indirectly also control the pressure in the fuel accumulator.
- a second control circuit 120 In addition to the first control loop, the device 100 according to FIG. 1 Furthermore, a second control circuit 120. This includes a second difference formation device 122, which a possible deviation between a predetermined target pressure, represented by a signal S D target and that of one. Pressure sensor 230 measured actual pressure in the fuel reservoir 200, represented by a signal S D-actual detected.
- the second control circuit 120 further comprises a second control device 124 which receives the pressure deviation r2 detected by the second subtraction device 122 during stationary control operation in the form of an input signal e2 and controls a pressure control valve 126 in response to this pressure deviation r2 which is directly dependent on the pressure in Fuel tank 200 acts.
- the second control circuit therefore carries out a direct regulation of the pressure in the fuel accumulator.
- the first and second control circuits 110, 120 can be operated both individually and simultaneously, that is to say in parallel. Thus, in a first control mode only the first control loop 110 and in a second control mode only the second control loop 120 is activated, while in a third control mode the first and the second control loop 110, 120 are activated simultaneously.
- the decision on which of the three rule modes mentioned the device according to FIG. 1 is operated takes place in response to a control mode signal S R , which specifies a current or future control mode, in particular depending on a current operating state of the internal combustion engine.
- this control mode signal S R is supplied to a control management device 130 in which, inter alia, preferably the two difference-forming devices 112 and 122 already mentioned are integrated.
- This rule management device 130 is designed, the respective control devices 114, 124 of the two control loops 110, 120 in response to a respective to control desired, represented by the control mode signal S R control mode.
- FIG. 2 shows the structure of the rule management device 130 according to the invention.
- the input signals of this device 130 have been described with reference to FIG FIG. 1 mentioned; They are in FIG. 2 denoted by the same reference sign.
- the rule management device 130 in addition to the two differentiation devices 120, 122, also has a memory device 132 for storing and providing predetermined control values. These control values substantially shape the switching input signals u1, u2 for the controllers 114, 124 during a switching operation.
- the rule management device 130 comprises a first and a second switching device 134, 136 for generating the first and second input signals e1, e2 for the first and the second control device 114, 124 during stationary control operation in one of the three said control modes or for generating the switching input signal u1, u2 for at least one of the control devices 114, 124 during a switching process.
- the rule management device 130 comprises a control device 138 for controlling the memory device 132 and the switching devices 134, 136 in response to the control mode signal S R via control signals St1, St2 and St3.
- FIG. 2 illustrated rule management device 130 according to the invention will be described in detail below. In this case, a distinction is made between a stationary control operation of the device 100 in the three named control modes and between the possible transitional operations between these control modes.
- the control management device 130 For operation of the device 100 during a first control mode during which the pressure in the fuel reservoir 200 is controlled only by means of the first control loop 110, the control management device 130 operates as follows: In this case, the control device 138 controls the first switching device 134 via the first control signal St1 such that the switching device 134 forms the input signal e1 for the first control device 114 at its output in such a way that it represents the pressure deviation r2 provided by the second subtraction device 112. At the same time, the control device 138 controls the second switching device 136 via the control signal St2 in such a way that the switching device 136 generates the input signal e2 for the second control device 124 on the basis of predetermined control values.
- control values are provided to the second switching device 136 by the memory device 132 after it has been informed by the third control signal St3 of the control device 138 which control values from which memory addresses within the memory device 132 are currently to be output to the second switching device 136.
- the control values in this case are preferably predetermined so that they keep the second control device 124 in an inactive, ie deactivated state.
- the control values may also cause a shutdown of the second control device, preferably in a standby mode.
- the rule management device 130 operates as follows. With her first and third control signal St1, St3, it controls the memory device 132 and the first switching device 134 in an analogous manner as the second switching device 136 during the operation described in the last paragraph in the first control mode. The first switching device 134 then generates an input signal e1 for the first control device 114 on the basis of suitable control values provided by the memory device 132. These control values are then designed such that they deactivate or switch off the first control device. When operating in the second control mode, the second switching device 136 is controlled by the second control signal St2 of the control device 138 such that it forms the input signal e2 for the second control device 124 from the pressure deviation r2 provided by the second subtraction device 122.
- the rule management device 130 operates as follows.
- the control device 138 then controls the first switching device 134 via the first control signal St1 in such a way that it forms the input signal e1 for the first control device 114 on the basis of the quantity deviation r1 provided by the first subtraction device 112.
- the control device controls the second switching device 136 via the second control signal St2 in such a way that the input signal e2 for the second control device 124 is formed on the basis of the pressure deviation r2 provided by the second subtraction device 122.
- the input signals do not become formed only on the basis of the mentioned, but with additional consideration of the other deviations r1, r2.
- the behavior of the rule management device 130 has been described for each stationary control operation in either the first, second or third control mode.
- the rule management device 130 is designed to open the control circuits involved in a switching process by their control device 114, 124 no longer actuated as before in stationary control operation with the input signal e1 or e2, but instead with special switching input signal u1, u2 become.
- These switching input signals are designed such that the control devices 114, 124 are transferred in the desired manner from a current operating state defined by the current control mode, active or passive, into a future operating state defined by the future control mode, active or passive.
- the switching input signals u1, u2 are basically based on suitably predetermined control values provided by the memory device 132.
- the control values are individually predetermined for each possible switching operation between two different control modes.
- the structure of the control means 130, the first and the second switching means 134, 136 are then controlled during a switching operation by the first and the second control signal St1, St2, that they generate the switching signals u1, u2 on the basis of suitable control values provided by the memory device 132.
- the memory device 132 is in turn instructed by the third control signal St3 accordingly.
- the switching input signals u1, u2 are formed not only from the pure control values but instead from control values which have been subjected to the current pressure deviation r2 provided by the second subtraction device 122. Depending on the magnitude and sign of this pressure deviation, the switching input signals u1, u2 then deviate more or less strongly from the originally predetermined control values; In this way, not only the control speed is optimized in terms of the current pressure situation in the fuel storage, but it is also kept as low as possible caused by the switching pressure deviation.
- the control device 138 may be designed as a state machine, which allows monitoring of the operating points of the control device 114, 124 during a switching operation.
- both control loops 110, 120 are opened by not using them the input signals e1, e2, but instead be controlled with the switching Eihgangssignal u1, u2. It Then takes place a monitoring of the switching input points u1, u2 conditional shift of the operating points of the two control device 114, 124, in particular with regard to when the to be disabled in this switching control device leaves its previous effective workspace.
- the hitherto active switching control device the hitherto entered switching input signal u1, u2 is turned off.
- the associated control circuit is then closed again by the control device - instead of the switching input signal - with the predetermined for the selected future first or second control mode input signal e1, e2, which represents one of said control deviations, is controlled.
- control device to be deactivated continues to be supplied with the changeover input signal until this control device has been deactivated due to the operating point shift.
- control device to be deactivated can also simply be switched off.
- control device to be activated As soon as it has been determined that the control device to be activated has entered the effective working range, that control device which is activated both in the current and in the future desired control mode and which is still controlled by the input signal e1, e2 of the current control mode, will also be actuated. cut off from this input signal and instead fed with the same switching input signal u1, u2 as the regulator to be activated. Both control devices are then supplied with the same switching input signal as long as possible, until both control devices have been converted into such an active operating state as is provided for the future desired control mode.
- Switching operations from the first to the second control mode or vice versa are preferably not realized by a direct switching between these control modes. Such a direct switching disadvantageously would have severe disturbances of the rail pressure during the Switchover result.
- a switching process from the second control mode to the first control mode is realized by first switching over from the second to the third and subsequently from the third to the first control mode.
- the control device 138 is designed such that, for each of the said switching operations, it appropriately controls the memory device 132 and the first and second switching devices 134, 136 via the control signals St1, St2 in order to implement in particular the switching input signals u1, u2 in a suitable manner.
- the inventive method described is preferably realized in the form of a computer program.
- the computer program may optionally be stored together with other computer programs on a computer-readable medium.
- the data carrier may be a floppy disk, a compact disc or a so-called flash memory.
- the computer program stored on the data carrier can then be transferred or sold as a product to a customer.
- the computer program can also be transmitted without the aid of a data carrier via an electronic communication network, in particular the Internet, as a product to the customer.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Fuel-Injection Apparatus (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Regeln des Druckes in einem Kraftstoffspeicher einer Brennkraftmaschine, insbesondere einem Common-Rail-System. Darüber hinaus betrifft die Erfindung ein Computerprogramm und eine Vorrichtung zum Durchführen dieses Verfahrens.The invention relates to a method for regulating the pressure in a fuel reservoir of an internal combustion engine, in particular a common rail system. Moreover, the invention relates to a computer program and an apparatus for carrying out this method.
Aus dem Stand der Technik, zum Beispiel aus der
Ausgehend von diesem Stand der Technik ist es deshalb die Aufgabe der Erfindung, ein bekanntes Verfahren zum Regeln des Druckes in einem Kraftstoffspeicher einer Brennkraftmaschine sowie ein bekanntes Computerprogramm und eine bekannte Vorrichtung zum Durchführen dieses Verfahrens derart weiterzubilden, dass der Verlauf des Raildruckes während eines Umschaltvorganges zwischen zwei verschiedenen Regelmodi nicht in inakzeptabler Weise gestört wird.
Based on this prior art, it is therefore an object of the invention to develop a known method for regulating the pressure in a fuel storage of an internal combustion engine and a known computer program and a known device for performing this method such that the course of the rail pressure during a switching between two different control modes are not disturbed in an unacceptable way.
Diese Aufgabe wird durch das in Patentanspruch 1 beanspruchte Verfahren gelöst. Dieses Verfahren ist dadurch gekennzeichnet, dass zur Durchführung des Umschaltvorganges die an dem Umschaltvorgang beteiligten Regelkreise geöffnet werden, indem ihre Regeleinrichtungen anstelle mit dem bisherigen Eingangssignal mit für vorzugsweise jeden Umschaltvorgang individuell vorbestimmten Umschalteingangssignalen angesteuert werden, welche so ausgebildet sind, dass die Regeleinrichtungen in gewünschter Weise von einem durch den aktuellen Regelmodus definierten aktuellen Betriebszustand in einen durch den zukünftigen Regelmodus definierten zukünftigen Betriebszustand überführt werden.This object is achieved by the method claimed in claim 1. This method is characterized in that for carrying out the switching operation involved in the switching control loops are opened by their control devices are controlled instead of the previous input signal for preferably preferably each switching individually predetermined Umschalteingangssignalen, which are designed so that the control devices in the desired manner from a current operating state defined by the current control mode to one by the future control mode defined future operating state.
Diese beanspruchte Vorgehensweise zur Durchführung eines Umschaltvorgangs von einem aktuellen Regelmodus auf einen zukünftigen Regelmodus bietet den Vorteil, dass dadurch unerwünschte Störungen des Raildrucks während des Umschaltvorganges vermieden werden. Erfindungsgemäß erfolgt dies in der Weise, dass die an dem Umschaltvorgang beteiligten Regelkreise durch das Umschalt-Eingangssignal auf stetige Weise von ihrem aktivierten oder deaktivierten Betriebszustand während des aktuellen Regelmodus in ihren neuen aktivierten oder deaktivierten Betriebszustand während des zukünftigen Regelmodus überführt werden.This claimed procedure for performing a switching from a current control mode to a future control mode has the advantage that undesirable disturbances of the rail pressure during the switching operation are avoided. According to the invention, this takes place in such a way that the control circuits involved in the switching operation are continuously transferred from their activated or deactivated operating state during the current control mode into their new activated or deactivated operating state during the future control mode by the switching input signal.
Zur Realisierung dieses erfindungsgemäßen homogenen Umschaltvorganges repräsentiert das Umschalt-Eingangssignal vorteilhafterweise für jeden Umschaltvörgang individuell geeignete Steuerwerte.To realize this homogeneous switching operation according to the invention, the switching input signal advantageously represents individually suitable control values for each switching cycle.
Vorteilhafterweise wird insbesondere ein Regelkreis, der im Rahmen eines Umschaltvorganges von einem aktivierten in einen deaktivierten Betriebszustand oder umgekehrt wechselt, zur Durchführung des Umschaltvorganges geöffnet, das heißt die Regelschleife wird für die Dauer des Umschaltvorganges aufgetrennt. Wie bereits erwähnt wird die Regeleinrichtung des aufgetrennten Regelkreises dann nicht mehr mit dem Eingangssignal, sondern mit dem Umschalt-Eingangssignal betrieben, wobei der durch das Umschalt-Eingangssignal repräsentierte Steuerwert zumindest näherungsweise an die zuletzt der Regeleinrichtung zugeführten Regelabweichungen angepasst ist. Auf diese Weise wird ein möglichst glatter beziehungsweise homogener Übergang von dem aktuellen Regelmodus in den Umschaltvorgang gewährleistet.Advantageously, in particular, a control loop, which changes in the context of a switching from an activated to a deactivated operating state or vice versa, opened to perform the switching, that is, the control loop is separated for the duration of the switching operation. As already mentioned, the control device of the separated control loop is then no longer operated with the input signal but with the switching input signal, wherein the control value represented by the switching input signal is at least approximately adapted to the last control error supplied to the control device. In this way, a smoother as possible or more homogeneous Transition from the current control mode into the switching process ensured.
Vorteilhafterweise wird das Umschalt-Steuersignal aus den vorgegebenen Steuerwerten und einer auf diese aufgeschalteten Raildruck-Abweichung gebildet. Diese Raildruck-Abweichung bewirkt eine Korrektur der fest vorbestimmten Steuerwerte im Hinblick auf eine aktuelle Drucksituation im Kraftstoffspeicher 200, wobei je nach Betrag und Vorzeichen dieser Druckabweichung die Geschwindigkeit, mit welcher der Druck im Kraftstoffspeicher 200 geregelt wird, im Hinblick auf die aktuelle dortige Drucksituaticn positiv beeinflusst wird. Die Aufschaltung der Raildruck-Regelabweichung bewirkt außerdem, dass die durch den Umschaltvorgang bewirkte Druckabweichung im Kraftstoffspeicher 200 möglichst gering gehalten wird.Advantageously, the switching control signal is formed from the predetermined control values and a rail pressure deviation applied thereto. This rail pressure deviation causes a correction of the fixed predetermined control values with respect to a current pressure situation in the
Die Übergänge zwischen stationärem Regelbetrieb und Umschaltvorgang werden in beiderlei Richtung weiterhin dadurch geglättet beziehungsweise homogenisiert, dass während des Umschaltvorganges eine durch das Umschalt-Eingangssignal bedingte Verschiebung des Arbeitspunktes bei zumindest derjenigen Regeleinrichtung überwacht wird, die während des Umschaltvorganges von einem aktivierten in einen deaktivierten Betriebszustand oder umgekehrt wechselt. Es ist dann zu Homogenisierungszwecken vorteilhaft, wenn der Übergang von dem Umschaltvorgang in den zukünftigen Regelmodus erst dann tatsächlich durch Abklemmen des Umschalt-Eingangssignals und Anklemmen des üblichen Eingangssignals an die Reglereinrichtung vollzogen wird, wenn zumindest die überwachte Regeleinrichtung ihren für den zukünftigen Regelmodus vorgesehenen aktivierten oder deaktivierten Betriebszustand erreicht hat. Im Hinblick auf einen Übergang von einem ersten auf einen zweiten Regelmodus, bei denen jeweils nur ein unterschiedlicher Regelkreis aktiviert ist, ist es im Hinblick auf eine Harmonisierung des Übergangs vorteilhaft, wenn nicht sofort von dem ersten auf den zweiten oder von dem zweiten auf den ersten Regelmodus umgeschaltet wird, sondern wenn stattdessen von dem aktuellen ersten oder zweiten Regelmodus zunächst auf den dritten Regelmodus und von dort aus auf den zweiten oder ersten Regelmodus umgeschaltet wird.The transitions between steady-state control operation and switching operation are further smoothed or homogenized in both directions by monitoring a shift in the operating point caused by the switching input signal during at least that control device which switches from an activated to a deactivated operating state during the switching process reversed changes. It is then advantageous for homogenization purposes, if the transition from the switching operation in the future control mode is actually only carried out by disconnecting the switching input signal and clamping the usual input signal to the regulator device, if at least the monitored control device provided her for the future control mode activated or has reached deactivated operating state. in the With regard to a transition from a first to a second control mode, in each case only a different control loop is activated, it is advantageous in terms of harmonization of the transition, if not immediately from the first to the second or from the second to the first control mode is switched instead, but from the current first or second control mode first to the third control mode and from there to the second or first control mode is switched.
Schließlich ist es vorteilhaft, dass während des dritten Regelmodus, währenddessen beide Regelkreise zur Regelung des Drucks in dem Kraftstoffspeicher aktiviert sind, die Regeleinrichtungen der beiden Regelkreise jeweils mit einem Eingangssignal gespeist werden, welches nicht nur die dem jeweiligen Regelkreis zugeordnete Regelabweichung, sondern auch die dem jeweils anderen Regelkreis zugeordnete Regelabweichung repräsentiert.Finally, it is advantageous that during the third control mode, while both control circuits are activated to control the pressure in the fuel storage, the control devices of the two control circuits are each fed with an input signal which not only the control loop associated with the control error, but also the represents a control deviation assigned to each other control loop.
Die oben genannte Aufgabe der Erfindung wird weiterhin durch eine Vorrichtung und ein Computerprogramm zum Durchführen des erfindungsgemäßen Verfahrens gelöst. Die Vorteile dieser genannten Lösungen entsprechen den oben mit Bezug auf das beanspruchte Verfahren genannten Vorteilen.The above object of the invention is further achieved by a device and a computer program for carrying out the method according to the invention. The advantages of these solutions correspond to the advantages mentioned above with reference to the claimed method.
Weitere vorteilhafte Ausgestaltungen des Verfahrens und der Vorrichtung sind Gegenstand der Unteransprüche.Further advantageous embodiments of the method and the device are the subject of the dependent claims.
Der Beschreibung sind insgesamt zwei Figuren beigefügt, wobei
- Figur 1
- den schematischen Aufbau einer erfindungsgemäßen Vorrichtung; und
- Figur 2
- den schematischen Aufbau einer Management-Regeleinrichtung als Bestandteil der erfindungsgemäßen Vorrichtung
- FIG. 1
- the schematic structure of a device according to the invention; and
- FIG. 2
- the schematic structure of a management control device as part of the device according to the invention
Die Erfindung wird nachfolgend in Form verschiedener Ausführungsbeispiele unter Bezugnahme auf die
Die Vorrichtung umfasst einen ersten Regelkreis 110 mit einer ersten Differenzbildungseinrichtung 112 zum Bereitstellen einer Regelabweichung r1, einer ersten Regeleinrichtung 114 und einem Drosselventil 116 als Stellglied. Dieser erste Regelkreis regelt über das Drosselventil 116 die einer Hochdruckpumpe 210 zugeführte Kraftstcffmenge. Der erste Regelkreis gewährleistet, dass über das Drosselventil 116 der Hochdruckpumpe 210 genau diejenige Kraftstoffmenge zugeführt wird, welche über ein Sollmengensignal SM-Soll der Differenzbildungseinheit 112 vorgegeben wird. Zu diesem Zweck führt die Differenzbildungseinrichtung 112 einen ständigen Vergleich zwischen der durch das Sollmengensignal SM-Soll angeforderten Soll-Kraftstoffmenge mit der durch das Drosselventil 116 tatsächlich bereitgestellten und durch das ist-Mengen-Signal SM-ist repräsentierten Ist-Kraftstoffmenge durch und gibt eine eventuell festgestellte Differenz r1 zwischen der Soll- und der Ist-Menge als Mengenabweichung aus. Diese Mengenabweichung r1 wird während eines stationären Betriebs des ersten Regelkreises als Regelabweichung in Form eines Eingangssignals e1 auf die Regeleinrichtung 114 ausgegeben. Als Besonderheit bei dem ersten Regelkreis sei darauf hingewiesen, dass die durch das Drosselventil 116 tatsächlich dosierte Kraftstoffmenge gemäß
Wie soeben beschrieben regelt der erste Regelkreis 110 zunächst nur die der Hochdruckpumpe 210 zugeführte Kraftstoffmenge. Die Hochdruckpumpe 210 ist jedoch über eine Kraftstoffleitung 220 mit dem Kraftstoffspeicher 200 verbunden. Über die Steuerung der dem Kraftstoffspeicher 200 zugeführten Kraftstoffmenge mit Hilfe des ersten Regelkreises kann deshalb indirekt auch der Druck in dem Kraftstoffspeicher gesteuert werden.As just described, the
Neben dem ersten Regelkreis umfasst die Vorrichtung 100 gemäß
Der erste und der zweite Regelkreis 110, 120 können sowohl einzeln wie auch gleichzeitig, das heißt parallel betrieben werden. So ist in einem ersten Regelmodus nur der erste Regelkreis 110 und in einem zweiten Regelmodus nur der zweite Regelkreis 120 aktiviert, während in einem dritten Regelmodus der erste und der zweite Regelkreis 110, 120 gleichzeitig aktiviert sind. Die Entscheidung darüber, in welchem der drei genannten Regelmodi die Vorrichtung gemäß
Diese Regelmanagementeinrichtung 130 ist ausgebildet, die jeweiligen Regeleinrichtungen 114, 124 der beiden Regelkreise 110, 120 im Ansprechen auf einen jeweils gewünschten, durch das Regelmodussignal SR repräsentierten Regelmodus anzusteuern.This
Die Funktionsweise der in
Zum Betrieb der Vorrichtung 100 während eines ersten Regelmodus, währenddessen der Druck in dem Kraftstoffspeicher 200 nur mit Hilfe des ersten Regelkreises 110 geregelt wird, arbeitet die Regelmanagementeinrichtung 130 wie folgt: In diesem Fall steuert die Steuereinrichtung 138 die erste Umschalteinrichtung 134 über das erste Steuersignal St1 so an, dass die Umschalteinrichtung 134 an ihrem Ausgang das Eingangssignal e1 für die erste Regeleinrichtung 114 so ausbildet, dass dieses die von der zweiten Differenzbildungseinrichtung 112 bereitgestellte Druckabweichung r2 repräsentiert. Gleichzeitig steuert die Steuereinrichtung 138 die zweite Umschalteinrichtung 136 über das Steuersignal St2 in der Weise an, dass die Umschalteinrichtung 136 das Eingangssignal e2 für die zweite Regeleinrichtung 124 auf Basis von vorbestimmten Steuerwerten generiert. Diese Steuerwerte werden der zweiten Umschalteinrichtung 136 durch die Speichereinrichtung 132 bereitgestellt, nachdem diese durch das dritte Steuersignal St3 der Steuereinrichtung 138 darüber informiert wurde, welche Steuerwerte aus welchen Speicheradressen innerhalb der Speichereinrichtung 132 aktuell an die zweite Umschalteinrichtung 136 auszugeben sind. Die Steuerwerte sind in diesem Fall vorzugsweise so vorbestimmt, dass sie die zweite Regeleinrichtung 124 in einem unwirksamen, das heißt deaktivierten Zustand halten. Alternativ dazu können die Steuerwerte auch eine Abschaltung der zweiten Regeleinrichtung, vorzugsweise in einen Standby-Modus bewirken.For operation of the
Bei einem Betrieb der Vorrichtung 100 während des zweiten Regelmodus, währenddessen der Druck in dem Kraftstoffspeicher 200 nur mit Hilfe des zweiten Regelkreises 120 geregelt wird, arbeitet die Regelmanagementeinrichtung 130 wie folgt. Mit ihrem ersten und dritten Steuersignal St1, St3 steuert sie die Speichereinrichtung 132 und die erste Umschalteinrichtung 134 in analoger Weise an, wie die zweite Umschalteinrichtung 136 während des im letzten Absatz beschriebenen Betriebs in dem ersten Regelmodus. Die erste Umschalteinrichtung 134 generiert dann ein Eingangssignal e1 für die erste Regeleinrichtung 114 auf Basis von geeigneten, durch die Speichereinrichtung 132 bereitgestellten Steuerwerten. Diese Steuerwerte sind dann so ausgebildet, dass sie die erste Regeleinrichtung deaktivieren oder abschalten. Bei Betrieb in dem zweiten Regelmodus wird die zweite Umschalteinrichtung 136 durch das zweite Steuersignal St2 der Steuereinrichtung 138 so angesteuert, dass sie das Eingangssignal e2 für die zweite Regeleinrichtung 124 aus der von der zweiten Differenzbildungseinrichtung 122 bereitgestellten Druckabweichung r2 bildet.In an operation of the
Für den Fall, dass die Vorrichtung 100 in dem dritten Regelmodus betrieben wird, während dessen der Druck in dem Kraftstoffspeicher 200 mit Hilfe von sowohl dem ersten wie auch dem zweiten Regelkreis 110, 120 geregelt wird, arbeitet die Regelmanagementeinrichtung 130 wie folgt. Die Steuereinrichtung 138 steuert dann über das erste Steuersignal St1 die erste Umschalteinrichtung 134 so an, dass sie das Eingangssignal e1 für die erste Regeleinrichtung 114 auf Basis der von der ersten Differenzbildungseinrichtung 112 bereitgestellten Mengenabweichung r1 bildet. Gleichzeitig steuert die Steuereinrichtung die zweite Umschalteinrichtung 136 über das zweite Steuersignal St2 so an, dass das Eingangssignal e2 für die zweite Regeleinrichtung 124 auf Basis der durch die zweite Differenzbildungseinrichtung 122 bereitgestellten Druckabweichung r2 gebildet wird. Vorteilhafterweise werden die Eingangssignale jedoch nicht nur auf Basis der erwähnten, sondern unter zusätzlicher Berücksichtigung der jeweils anderen Abweichungen r1, r2 gebildet.In the event that the
Bisher wurde das Verhalten der Regelmanagementeinrichtung 130 für einen jeweils stationären Regelbetrieb in entweder dem ersten, zweiten oder dritten Regelmodus beschrieben. Nachfolgend wird das erfindungsgemäße Verhalten der Regelmanagementeinrichtung 130 während eines Umschaltvorganges, bei dem von einem aktuellen Regelmodus auf einen zukünftig gewünschten Regelmodus im Ansprechen auf das Regelmodus-Signal SR umgeschaltet wird. Zur Durchführung dieses Umschaltvorganges ist die Regelmanagementeinrichtung 130 ausgebildet, die an einem Umschaltvorgang beteiligten Regelkreise zu öffnen, indem ihre Regeleinrichtung 114, 124 nicht mehr wie bisher bei stationärem Regelbetrieb mit den Eingangssignal e1 beziehungsweise e2, sondern stattdessen mit speziellen Umschalt-Eingangssignal u1, u2 angesteuert werden. Diese Umschalt-Eingangssignale sind so ausgebildet, dass die Regeleinrichtungen 114, 124 in gewünschter Weise von einem durch den aktuellen Regelmodus definierten aktuellen Betriebszustand, aktiv oder passiv, in einen durch den zukünftigen Regelmodus definierten zukünftigen Betriebszustand, aktiv oder passiv, überführt werden.So far, the behavior of the
Die Umschalt-Eingangssignale u1, u2 basieren grundsätzlich auf geeignet vorbestimmten, durch die Speichereinrichtung 132 bereitgestellten Steuerwerten. Die Steuerwerte sind für jeden einzelnen möglichen Umschaltvorgang zwischen zwei verschiedenen Regelmodi individuell vorbestimmt. Bei dem in
Zur Optimierung der Geschwindigkeit, mit welcher der Druck während eines Umschaltvorganges in dem Kraftstoffspeicher 200 verändert beziehungsweise geregelt werden soll, ist es vorteilhaft, wenn die Umschalt-Eingangssignale u1, u2 nicht nur aus den reinen Steuerwerten gebildet werden, sondern wenn sie stattdessen aus Steuerwerten gebildet werden, welche mit der aktuellen, durch die zweite Differenzbildungseinrichtung 122 bereitgestellten Druckabweichung r2 beaufschlagt wurden. Je nach Betrag und Vorzeichen dieser Druckabweichung weichen die Umschalt-Eingangssignale u1, u2 dann mehr oder weniger stark von den ursprünglich vorbestimmten Steuerwerten ab; auf diese Weise wird nicht nur die Regelgeschwindigkeit im Hinblick auf die aktuelle Drucksituation im Kraftstoffspeicher optimiert, sondern es wird auch die durch den Umschaltvorgang hervorgerufene Druckabweichung möglichst gering gehalten.In order to optimize the speed with which the pressure is to be changed or regulated during a switching process in the
Die Steuereinrichtung 138 kann als Zustandsautomat ausgebildet sein, welcher eine Überwachung der Arbeitspunkte der Regeleinrichtung 114, 124 während eines Umschaltvorganges ermöglicht.The
Bei einem Umschaltvorgang von dem dritten Regelmodus, bei dem beide Regelkreise aktiv sind, auf den ersten oder zweiten Regelmodus, bei dem jeweils nur ein Regelkreis aktiv ist, wird wie folgt verfahren: Zunächst werden beide Regelkreise 110, 120 geöffnet, indem diese nicht mehr mit den Eingangssignalen e1, e2, sondern stattdessen mit den Umschalt-Eihgangssignal u1, u2 angesteuert werden. Es erfolgt dann eine Überwachung der durch die Umschalt-Eingangssignale u1, u2 bedingten Verschiebung der Arbeitspunkte beider Regeleinrichtung 114, 124 insbesondere im Hinblick darauf, wann die bei diesem Umschaltvorgang zu deaktivierende Regeleinrichtung ihren bisherigen wirksamen Arbeitsbereich verlässt. Wenn dieser Zeitpunkt erreicht ist, wird bei der aktiv bleibenden Regeleinrichtung das bisher eingegebene Umschalt-Eingangssignal u1, u2 abgeschaltet. Der zugehörige Regelkreis wird dann wieder geschlossen, indem die Regeleinrichtung - statt mit dem Umschalt-Eingangssignal - mit dem für den ausgewählten zukünftigen ersten oder zweiten Regelmodus vorgegebenen Eingangssignal e1, e2, welches eine der besagten Regelabweichungen repräsentiert, angesteuert wird.In a switching operation from the third control mode, in which both control loops are active, to the first or second control mode, in which only one control loop is active, the procedure is as follows: First, both
Parallel dazu wird die zu deaktivierende Regeleinrichtung so lange weiterhin mit dem Umschalt-Eingangssignal gespeist, bis diese Regeleinrichtung aufgrund der Arbeitspunktverschiebung deaktiviert worden ist. Alternativ dazu kann die zu deaktivierende Regeleinrichtung auch einfach abgeschaltet werden.In parallel, the control device to be deactivated continues to be supplied with the changeover input signal until this control device has been deactivated due to the operating point shift. Alternatively, the control device to be deactivated can also simply be switched off.
Bei einem Umschaltvorgang von einem aktuellen ersten oder zweiten Regelmodus, bei dem nur ein Regelkreis aktiv ist, auf den dritten Regelmodus, bei dem beide Regelkreise 110, 120 aktiv sind, verfährt die Regelmanagementeinrichtung 130 wie folgt:
- Sie steuert über eines der Steuersignal St1, St2 zunächst nur diejenige Umschalteinrichtung 134, 136 an, die der bei dem aktuellen Regelmodus deaktivierten, aber für den zukünftigen Regelmodus zu aktivierenden Regeleinrichtung 114, 124 zugeordnet ist. Die Ansteuerung erfolgt so, dass diese Umschalteinrichtung 134
oder 136 der zu aktivierenden Regeleinrichtung ein auf geeigneten, wiederum durch dieSpeichereinrichtung 132 bereitgestellten Steuerwerten basierendes Umschalt-Eingangssignal u1, u2 zuführt. Es wird dann vorzugsweise wiederum über die alsZustandsautomat ausgebildete Steuereinrichtung 138 eine Verschiebung des Arbeitspunktes bei der zu aktivierenden Regeleinrichtung überwacht, um festzustellen, wann diese Regeleinrichtung überhaupt wieder in einen wirksamen Arbeitsbereich eintritt. Der Zeitpunkt des Eintritts des Arbeitspunktes in den wirksamen Arbeitsbereich ist zu unterscheiden von einem anderen Zeitpunkt, wann der Arbeitspunkt der zu aktivierenden Regeleinrichtung einen durch den zukünftigen Regelmodus geprägten Betriebspunkt repräsentiert; zwischen beiden Zeitpunkten liegt üblicherweise ein zeitlicher Abstand.
- Initially, via one of the control signals St1, St2, it only activates that switching
134, 136 which is associated with thedevice 114, 124 deactivated in the current control mode but to be activated for the future control mode. The control is carried out so that this switching means 134 or 136 of the control device to be activated on a suitable, in turn by thecontrol device Memory controller 132 based control values supplied switching input signal u1, u2 supplies. In turn, it is then preferably monitored via thecontrol device 138, which is designed as a state machine, to shift the operating point in the control device to be activated in order to determine when this control device will even reenter an effective working area. The time of entry of the working point into the effective working range is to be distinguished from another time when the operating point of the control device to be activated represents an operating point characterized by the future control mode; between the two times is usually a time interval.
Sobald festgestellt wurde, dass die zu aktivierende Regeleinrichtung in den wirksamen Arbeitsbereich eingetreten ist, wird auch diejenige Regeleinrichtung, die sowohl bei dem aktuellen wie auch bei dem zukünftig gewünschten Regelmodus aktiviert ist und bisher noch mit dem Eingangssignal e1, e2 des aktuellen Regelmodus angesteuert wird, von diesem Eingangssignal abgeschnitten und stattdessen mit demselben Umschalt-Eingangssignal u1, u2 wie die zu aktivierende Regeleinrichtung gespeist. Beide Regeleinrichtung werden dann so lange mit vorzugsweise demselben Umschalt-Eingangssignal gespeist, bis beide Regeleinrichtungen in einen solchen aktiven Betriebszustand überführt worden sind, wie er für den zukünftig gewünschten Regelmodus vorgesehen ist.As soon as it has been determined that the control device to be activated has entered the effective working range, that control device which is activated both in the current and in the future desired control mode and which is still controlled by the input signal e1, e2 of the current control mode, will also be actuated. cut off from this input signal and instead fed with the same switching input signal u1, u2 as the regulator to be activated. Both control devices are then supplied with the same switching input signal as long as possible, until both control devices have been converted into such an active operating state as is provided for the future desired control mode.
Umschaltvorgänge von dem ersten auf den zweiten Regelmodus oder umgekehrt werden vorzugsweise nicht durch eine direkte Umschaltung zwischen diesen Regelmodi realisiert. Eine derartige direkte Umschaltung hätte nachteiligerweise starke Störungen des Raildrucks während des Umschaltvorganges zur Folge. Erfindungsgemäß wird deshalb vorgeschlagen, bei derartigen Umschaltvorgängen einen Umweg über den dritten Regelmodus zu wählen. Konkret bedeutet dies, dass bei einem Umschaltvorgang von dem ersten auf den zweiten Regelmodus zunächst ein Umschaltvcrgang von dem ersten auf den dritten und nachfolgend ein Umschaltvorgang von dem dritten auf den zweiten Regelmodus erfolgen soll. Analog wird ein Umschaltvorgang von dem zweiten Regelmodus auf den ersten Regelmodus dadurch realisiert, dass zunächst von dem zweiten auf den dritten und nachfolgend von dem dritten auf den ersten Regelmodus umgeschaltet wird. Diese beschriebenen Umschaltvorgänge unter Beteiligung des dritten Regelmodus erfolgen vorzugsweise wie oben beschrieben.Switching operations from the first to the second control mode or vice versa are preferably not realized by a direct switching between these control modes. Such a direct switching disadvantageously would have severe disturbances of the rail pressure during the Switchover result. According to the invention it is therefore proposed to choose a detour via the third control mode in such switching operations. Specifically, this means that in a switching operation from the first to the second control mode first a Umschaltvcrgang from the first to the third and subsequent switching from the third to the second control mode should be done. Analogously, a switching process from the second control mode to the first control mode is realized by first switching over from the second to the third and subsequently from the third to the first control mode. These described switching operations involving the third control mode are preferably carried out as described above.
Die Steuereinrichtung 138 ist so ausgebildet, dass sie für jeden der genannten Umschaltvorgänge die Speichereinrichtung 132 sowie die erste und zweite Umschalteinrichtung 134, 136 über die Steuersignale St1, St2 geeignet ansteuert, um insbesondere die Umschalt-Eingangssignale u1, u2 in geeigneter Weise zu realisieren.The
Das beschriebene erfindungsgemäße Verfahren wird vorzugsweise in Form eines Computerprogramms realisiert. Das Computerprogramm kann gegebenenfalls zusammen mit weiteren Computerprogrammen auf einem computerlesbaren Datenträger abgespeichert sein. Bei dem Datenträger kann es sich um eine Diskette, eine Compact Disc oder einen sogenannten Flash-Memory handeln. Das auf dem Datenträger abgespeicherte Computerprogramm kann dann als Produkt an einen Kunden übertragen oder verkauft werden. Das Computerprogramm kann jedoch auch ohne die Zuhilfenahme eines Datenträgers über ein elektronisches Kommunikationsnetzwerk, insbesondere das Internet, als Produkt an den Kunden übertragen werden.The inventive method described is preferably realized in the form of a computer program. The computer program may optionally be stored together with other computer programs on a computer-readable medium. The data carrier may be a floppy disk, a compact disc or a so-called flash memory. The computer program stored on the data carrier can then be transferred or sold as a product to a customer. However, the computer program can also be transmitted without the aid of a data carrier via an electronic communication network, in particular the Internet, as a product to the customer.
Claims (14)
- Method for controlling the pressure in a common rail (200) of an internal combustion engine, comprising the steps:a) steady-state operation of the pressure control in accordance with a current control mode in which at least a first control circuit for controlling the pressure is activated;b) carrying out a switch-over process for switching over the pressure control from the current control mode to a control mode which will be desired in the future, in response to a control mode signal (SR); andc) steady-state operation of the pressure control according to the future control mode in which an at least second control circuit for controlling the pressure is activated;wherein during each steady-state operation of a control circuit a control device (114, 124) which is individually assigned to each control circuit is actuated with an input signal (e1, e2) which represents a control error;
characterized in that on the basis of predetermined control values which are made available in a memory device (132) switch-over input signals (u1, u2) are determined individually for each switch-over process, and in that in order to carry out the switch-over process according to step b) the control circuits (110, 120) which are involved in the switch-over process are opened in that their control devices (114, 124) are actuated by means of the switch-over input signals (u1, u2) instead of with the previous input signal (e1, e2), and the control devices (114, 124) are switched over by means of the switch-over input signals (u1, u2) from a current operating state, defined by the current control mode, into a future operating state, which is defined by the future control mode and is therefore later compared to the current time. - Method according to Claim 1, characterized in that the switch-over input signals represent predetermined control values which are dimensioned individually depending on the desired switch-over process.
- Method according to Claim 2, characterized in that the switch-over input signals represent predetermined constant control values.
- Method according to Claim 2 or 3, characterized in that the switch-over signals take into account not only the control values but in each case also a current rail pressure error.
- Method according to one of the preceding claims, characterized in that the transfer of the control devices (114, 124) from the current operating state into the future operating state is monitored on the basis of a shift of the working point of the respective control device (114, 124) which is caused by the switch-over input signals (u1, u2).
- Method according to one of the preceding claims, characterized in that a first, a second and a third control mode are available alternatively, wherein in the first control mode only a first control circuit (110) is activated, in the second control mode only a second control circuit (120) is activated, and in the third control mode both the first and the second control circuit (110, 120) for controlling the pressure are activated.
- Method according to Claim 6, characterized in that during a switch-over process from the third control mode to the first or second control mode the method has the following partial steps:b1.1) The opening of the first and of the second control circuit by actuating both the control device (114) which is to be deactivated within the scope of the switch-over process and the control device (124) which remains active within the scope of the switch-over process instead of with the input signals (e1, e2) from the current steady-state control mode with preferably the same switch-over input signals (u1, u2) which represent the predetermined control values;b1.2) Monitoring of the shifting, due to the switch-over input signals (u1, u2), of the working points of the two control devices (114, 124), and execution of the following steps if the control device which is to be deactivated leaves its previous effective working range:b1.3) Switching off the previous switch-over input signal (u1, u2) which represents the predefined control values, when the control circuit (110, 120) remains active, and closing this control circuit by actuating the control device thereof with a different input signal which is predefined according to method step c) and the selected future first or second control mode and which represents a control error;b1.4) Continuation of the actuation of the control device (114, 124) of the control circuit which is to be deactivated, with the switch-over input signal (u1, u2) until the control device (114, 124) thereof has been deactivated on the basis of the shifting of the working point; and during the method step c): Stopping of the deactivated control circuit in the deactivated state either by continued suitable actuation with the switch-over input signal (u1, u2) or by switching off this control circuit, preferably into a stand-by mode.
- Method according to Claim 6, characterized in that a switch-over process according to method step b) from the current first or second control mode to the third control mode of the method has the following partial steps:b2.1) Actuation of the control device (114, 124) which was previously deactivated in the current control mode but is to be activated for the future control mode, with a suitable switch-over input signal (u1, u2);b2.2) Monitoring of the shifting, due to the actuation, of the working point of the control device of the control circuit which is to be activated, in order to determine when the previously deactivated control device enters an effective working range again;b2.3) Continuation of the actuation of the control device (u1, u2) which is to be activated with the switch-over signal (u1, u2) beyond the time of detection according to step b2.2) and simultaneous opening of the control circuit (110, 120), activated during the current control mode and the future control mode, by actuating the control device (114, 124) of said control circuit (110, 120) with preferably the same switch-over signal (u1, u2) as the control device which is to be activated, in each case until both control devices have been transferred into an active operating state, such as is provided for the third control mode which will be desired in future.
- Method at least according to Claim 6, characterized in that a transition from the current first control mode to a future second control mode according to step b) comprises the following partial steps: execution of a switch-over process from the current first control mode to the third control mode according to Claims 1 and 8; and execution of a switch-over process from the third control mode to the future second control mode according to Claims 1 and 7.
- Method at least according to Claim 6, characterized in that a transition from the current second control mode to a future first control mode according to step b) comprises the following partial steps:Execution of a switch-over process from the current second control mode to the third control mode according to Claims 1 and 8; andExecution of a switch-over process from the third control mode to the future first control mode according to Claims 1 and 7.
- Method at least according to Claim 6, characterized in that during operation according to the third control mode the input signals (e1, e2) for both control devices (114, 124) each represent not only a control error which is assigned to the particular control circuit but also a control error which is assigned to the other control circuit.
- Computer program for an open-loop and/or closed-loop control device, characterized in that said computer program is programmed to carry out a method according to one of Claims 1 to 11.
- Device (100) for controlling the pressure in a common rail (200) of an internal combustion engine, characterized in that said device (100) has a memory on which a computer program according to Claim 12 is stored, and in that said device (100) is designed to carry out a computer program according to Claim 12.
- Device (100) according to Claim 13, characterized in that the common rail (200) is a common rail system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10349628A DE10349628A1 (en) | 2003-10-24 | 2003-10-24 | Method for regulating the pressure in a fuel accumulator of an internal combustion engine |
DE10349628 | 2003-10-24 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1526268A2 EP1526268A2 (en) | 2005-04-27 |
EP1526268A3 EP1526268A3 (en) | 2011-01-05 |
EP1526268B1 true EP1526268B1 (en) | 2012-12-12 |
Family
ID=34384449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04018196A Expired - Lifetime EP1526268B1 (en) | 2003-10-24 | 2004-07-31 | Method for controlling the common rail pressure in an internal combustion engine |
Country Status (4)
Country | Link |
---|---|
US (1) | US7040291B2 (en) |
EP (1) | EP1526268B1 (en) |
JP (1) | JP4621472B2 (en) |
DE (1) | DE10349628A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008090033A1 (en) * | 2007-01-24 | 2008-07-31 | Continental Automotive Gmbh | Method for controlling a fuel supply device for an internal combustion engine |
DE102007027943B3 (en) * | 2007-06-18 | 2008-10-16 | Mtu Friedrichshafen Gmbh | Method for regulating the rail pressure during a start-up procedure |
DE102007058539A1 (en) * | 2007-12-06 | 2009-06-10 | Robert Bosch Gmbh | Method for adjusting a fuel pressure |
JP4955601B2 (en) * | 2008-04-08 | 2012-06-20 | ボッシュ株式会社 | Method for driving pressure control solenoid valve in common rail fuel injection control device and common rail fuel injection control device |
US8210156B2 (en) * | 2009-07-01 | 2012-07-03 | Ford Global Technologies, Llc | Fuel system with electrically-controllable mechanical pressure regulator |
DE102009031528B3 (en) * | 2009-07-02 | 2010-11-11 | Mtu Friedrichshafen Gmbh | Method for controlling and regulating an internal combustion engine |
DE102009031527B3 (en) * | 2009-07-02 | 2010-11-18 | Mtu Friedrichshafen Gmbh | Method for controlling and regulating an internal combustion engine |
DE102009045563B4 (en) * | 2009-10-12 | 2019-06-13 | Robert Bosch Gmbh | A method for determining at least one rail pressure-closing flow value pair for a pressure control valve of a common rail injection system |
DE102012209256A1 (en) | 2012-06-01 | 2013-12-05 | Robert Bosch Gmbh | Fuel injection system |
DE102013221981A1 (en) * | 2013-10-29 | 2015-04-30 | Robert Bosch Gmbh | Method for controlling a pressure regulating valve of a fuel injection system, in particular of a motor vehicle |
DE102014226565A1 (en) * | 2014-12-19 | 2016-06-23 | Robert Bosch Gmbh | Method for testing a fuel delivery device, as well as a control device and a workshop tester |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0374569A (en) * | 1989-08-15 | 1991-03-29 | Fuji Heavy Ind Ltd | Fuel injection control device for gasoline engine |
US5092301A (en) * | 1990-02-13 | 1992-03-03 | Zenith Fuel Systems, Inc. | Digital fuel control system for small engines |
JPH08109862A (en) * | 1994-10-11 | 1996-04-30 | Nippondenso Co Ltd | Fuel feeding device |
WO1997032122A1 (en) * | 1996-02-29 | 1997-09-04 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Device for supplying fuel for internal combustion engines |
US6024064A (en) * | 1996-08-09 | 2000-02-15 | Denso Corporation | High pressure fuel injection system for internal combustion engine |
JP3612175B2 (en) * | 1997-07-15 | 2005-01-19 | 株式会社日立製作所 | Fuel pressure control device for in-cylinder injection engine |
US6694950B2 (en) * | 1999-02-17 | 2004-02-24 | Stanadyne Corporation | Hybrid control method for fuel pump using intermittent recirculation at low and high engine speeds |
DE19916100A1 (en) * | 1999-04-09 | 2000-10-12 | Bosch Gmbh Robert | Method and device for controlling an internal combustion engine |
JP3714099B2 (en) * | 2000-03-23 | 2005-11-09 | トヨタ自動車株式会社 | Fuel pressure control device for internal combustion engine |
DE10157641C2 (en) * | 2001-11-24 | 2003-09-25 | Mtu Friedrichshafen Gmbh | Method for controlling an internal combustion engine |
US6712045B1 (en) * | 2002-08-08 | 2004-03-30 | Detroit Diesel Corporation | Engine control for a common rail fuel system using fuel spill determination |
DE10301236B4 (en) * | 2003-01-15 | 2017-08-17 | Robert Bosch Gmbh | Method for starting an internal combustion engine, in particular an internal combustion engine with direct injection |
-
2003
- 2003-10-24 DE DE10349628A patent/DE10349628A1/en not_active Ceased
-
2004
- 2004-07-31 EP EP04018196A patent/EP1526268B1/en not_active Expired - Lifetime
- 2004-10-18 JP JP2004303443A patent/JP4621472B2/en not_active Expired - Fee Related
- 2004-10-25 US US10/973,324 patent/US7040291B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP1526268A3 (en) | 2011-01-05 |
US20050087174A1 (en) | 2005-04-28 |
JP2005127322A (en) | 2005-05-19 |
US7040291B2 (en) | 2006-05-09 |
DE10349628A1 (en) | 2005-06-02 |
EP1526268A2 (en) | 2005-04-27 |
JP4621472B2 (en) | 2011-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005058966B3 (en) | Method for adapting a precontrol in a pressure control for a common-rail injection system for an internal combustion engine and means for carrying out the method | |
EP2203263B1 (en) | Operating method for a cooling section having centralized detection of valve characteristics and objects corresponding thereto | |
EP1526268B1 (en) | Method for controlling the common rail pressure in an internal combustion engine | |
EP0437559B1 (en) | Process and device for controlling and/or regulating the output of an internal combustion engine in a motor vehicle | |
DE19848368C2 (en) | Method and device for controlling a spark ignition internal combustion engine | |
EP1581735B1 (en) | Method for regulating a pressure-control valve in a fuel-injection system of an internal combustion engine | |
WO2007090216A2 (en) | Method for controlling the air system in an internal combustion engine | |
DE10354656B4 (en) | Method for monitoring an injection system of an internal combustion engine | |
WO2021073997A1 (en) | Monitoring method for monitoring at least one part of a production process of a film extrusion system | |
DE102010043755B4 (en) | Method for operating an internal combustion engine, control device and internal combustion engine | |
EP2452234B1 (en) | Control method for a milling system with adaptation of an additional model that differs from a milling model using a milling size | |
EP1597469B1 (en) | Controller, computer program and state machine in a controller for operating an internal combustion engine | |
EP3599365A1 (en) | Method for operating a combustion engine | |
DE102005047350A1 (en) | Method for controlling internal combustion engine, involves determination of actual variable based on lambda value which is compared to set-point variable whereby an error is identified when corrective value changes abruptly | |
EP2449438B1 (en) | Method and system for driving at least one actuator | |
EP3045675B1 (en) | System and method for controlling a turbine inlet valve | |
EP4139849A1 (en) | Method for configuring components in a system by means of multi-agent reinforcement learning, computer-readable storage medium, and system | |
DE102017106840A1 (en) | Method for controlling a hydraulic actuator, control device and actuator control | |
EP1309784B1 (en) | Method and device for regulating an operating variable of an internal combustion engine | |
EP1029168B1 (en) | Process for operating an internal combustion engine, in particular of a motor vehicle | |
DE102009046101B4 (en) | A method for driving a consumable consuming machine tool component and computer program product and machine tool | |
DE102017208110A1 (en) | Multiple dynamic job order | |
DE102006062930B3 (en) | Combustion engine controlling method, involves changing actuation of injector assigned to combustion chamber having exhaust gas temperature deviating by more than predetermined value to change amount of fuel injected | |
DE102006045139B4 (en) | Device and method for state management of an operation control device of a motor vehicle | |
DE102005008039A1 (en) | Internal combustion engine controlling method for vehicle, involves controlling servo unit for influencing fuel pressure, in abrupt starting procedure, until further condition is satisfied |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20110705 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20111114 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004013922 Country of ref document: DE Effective date: 20130207 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130913 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004013922 Country of ref document: DE Effective date: 20130913 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140724 Year of fee payment: 11 Ref country code: GB Payment date: 20140721 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140728 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150731 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502004013922 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230922 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004013922 Country of ref document: DE |