EP1309784B1 - Method and device for regulating an operating variable of an internal combustion engine - Google Patents

Method and device for regulating an operating variable of an internal combustion engine Download PDF

Info

Publication number
EP1309784B1
EP1309784B1 EP01956349A EP01956349A EP1309784B1 EP 1309784 B1 EP1309784 B1 EP 1309784B1 EP 01956349 A EP01956349 A EP 01956349A EP 01956349 A EP01956349 A EP 01956349A EP 1309784 B1 EP1309784 B1 EP 1309784B1
Authority
EP
European Patent Office
Prior art keywords
operating mode
operating
internal combustion
combustion engine
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01956349A
Other languages
German (de)
French (fr)
Other versions
EP1309784A1 (en
Inventor
Mario Kustosch
Christian Koehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1309784A1 publication Critical patent/EP1309784A1/en
Application granted granted Critical
Publication of EP1309784B1 publication Critical patent/EP1309784B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/16Introducing closed-loop corrections for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1508Digital data processing using one central computing unit with particular means during idling

Definitions

  • the invention relates to a method and a device for controlling an operating variable of an internal combustion engine.
  • control systems In modern control systems for internal combustion engines of vehicles control systems are widely used, which a Operating size of the internal combustion engine and / or the vehicle regulate to a predetermined setpoint.
  • An example for such control systems are idle speed controllers, by which indicates the engine idle speed a predetermined setpoint is regulated.
  • Other examples are control systems for regulating the air flow through the Internal combustion engine, the exhaust gas composition, the torque, etc.
  • DE 30 39 435 A1 US patent 4,441,471
  • an idle speed control system in which to improve the control properties is provided, at least to design a variable parameter of the controller.
  • the proportional portion of the Controller adjusted depending on the size of the control deviation.
  • the prior art discloses a switchover from the acceleration mode to cruise control; (DE-C 44 43 219) with a P or PDT1 controller at least partially fixed controller parameters or between operating modes, characterized by the use of various speed controls (EP-A-0936354) with variable controller parameters in each controller type, whereby in the different operating modes different controller parameters for the operation of one Internal combustion engine can be used.
  • an internal combustion engine is used for each operating mode Direct gasoline injection each on this operating mode adjusted optimal control quality in terms of speed and Control stability achieved.
  • Figure 1 is an overview circuit diagram of a controller for an operating variable an internal combustion engine using the example of an idle speed controller
  • Figure 2 is a flow chart is shown, which is a preferred embodiment represents a controller in which at least one parameter is changed depending on the current operating mode.
  • Figure 1 shows an electronic control unit 10 for control an internal combustion engine, the one not shown Computer unit, in which a regulation at least a company size is implemented.
  • the regulation is a Idle speed control.
  • the regulation can it be an air flow control, a load control, torque regulation, regulation of the exhaust gas composition, the driving speed, etc. act where the corresponding target and actual values as well as control signals are to be used.
  • a setpoint value image 12 is shown in FIG. 1, which depending on at least one over the input lines 14 to 18 fed to the control unit 10 Operating variable a setpoint SHOULD for the to be controlled Company size forms.
  • an idle speed controller is for Setpoint formation using the variables around motor temperature, the operating status of secondary consumers such as an air conditioning system, etc.
  • control unit 10 A signal is fed via the input line 20, which represents the actual size of the farm size to be controlled. Should- and actual size are compared in the comparator 22.
  • the deviation between target and actual size is called Control deviation ⁇ supplied to controllers 24 and 25.
  • At least one this controller 24 and 25 has at least one variable Parameters. In the preferred embodiment there is at least one of these controllers from proportional, differential and integral part, depending on the embodiment each of the shares or only one or more shares are variable, both depending on company sizes as well as in terms of switching depending on the operating mode the internal combustion engine.
  • the Controller 24 as a function of the control deviation ⁇ at least an output signal ⁇ 1, which at least one of the control variables the internal combustion engine influenced by one cause rapid torque change of the internal combustion engine.
  • These manipulated variables are the ignition angle and / or fuel supply, whereby in homogeneous operation an ignition angle influence, outside of which a fuel quantity control was carried out becomes.
  • the second controller 25 also forms depending the control deviation ⁇ in accordance with the implemented control strategy (preferably PD structure) at least one more Output signal ⁇ 2, which is at least one control variable influenced, which leads to a comparatively slow adjustment of the torque leads.
  • control variable represents the air supply, so that the control signal ⁇ 2 an actuator, for example a throttle valve, to influence the air supply to the internal combustion engine controls.
  • each part forms controller 24 or controller 25 a controller output signal, which merges (e.g. adds) the output signal Form ⁇ 1 or ⁇ 2.
  • the different proportions of the controller 24 and / or the Regulator 25 have parameters, for example gain factors, depending on the version, the value of which may be is changeable, d. H. between at least two values or Characteristic curves can be switched.
  • an idle control is usually a controller with proportional, integral and differential component used.
  • a controller is used to adjust the ignition angle, another to adjust the filling (air supply).
  • stratified charging or in homogeneous Lean operation is an adjustment of the engine torque only about the amount of fuel, not about the amount of air possible. It differs in these operating modes hence the dynamic behavior of the internal combustion engine from that in homogeneous operation.
  • the time of the torque determining Intervention in relation to the top dead center of the cylinder is different in these operating modes. This gives another dead time of the controlled system. Also lets a large change in torque by changing the amount of fuel Realize much faster than in homogeneous operation.
  • At least one parameter of controller 24 and / or 25 is shown in Dependence on one mode signal between different Values (individual values or characteristic curves) switched. This is generated in 30 depending on the current operating mode and via line 32 or 34 to the respective controller Switching fed. Take the parameter values into account the optimal adaptation of the controller to the changing System dynamics. In this respect, the idle controller is under Use of operating mode dependent parameter sets better adapted to the route dynamics. In addition to switching the parameter values depending on the operating mode In one embodiment, all parameter values are additional Functions of the control deviation.
  • the controller 25 which represents the air fraction, switched off, for example by its controller output signal or its parameter values set to 0 becomes.
  • the controller parameter values are determined by the switching signal of the controller 24, there in the preferred embodiment of the proportional, integral and differential components, matched to those for the new operating mode Values set. The following must be considered as the operating mode all shift operation and homogeneous lean operation. Corresponding is used when switching between shift operation and homogeneous lean operation method. Here too there is a parameter value switchover made in controller 24. The controller 25 for the slow intervention remains switched off.
  • FIG. 2 is a program of the computer unit of the control unit 10.
  • the flowchart shows special ones Refinements of the controllers 24 and 25.
  • the control deviation ⁇ is fed to the controllers as a deviation between actual and target value (actual and target speed).
  • controller 24 is an integrator 100, an amplifier stage 102 and a differential stage 104 provided while in the preferred embodiment an amplifier stage 106 in the controller 25 for the slow path and a differential stage 108 are provided.
  • controller 24 is an integrator 100, an amplifier stage 102 and a differential stage 104 provided while in the preferred embodiment an amplifier stage 106 in the controller 25 for the slow path and a differential stage 108 are provided.
  • the control strategy shown each represents only a preferred embodiment.
  • the described procedure for switching parameter values depending on the operating mode of the internal combustion engine is also used for other controller structures with the corresponding Advantages used.
  • the idle controller shown in Figure 2 is used of mode-dependent parameter sets better adapted to the route dynamics.
  • the control deviation ⁇ becomes preferably by subtracting the target speed from the Actual engine speed IS calculated.
  • the output signal DMLLRI of the integral part 100 is obtained by integrating the control deviation ⁇ over time in integrator 100 and subsequent Gain (multiplication) in amplifier stage 110 educated.
  • the integrator output signal multiplied by a parameter KI, which each assumes different values depending on the current operating mode.
  • a switching means 112 is provided for selecting the parameter values, which depending on the supplied via line 32 Operating mode signal BDEMOD is switched.
  • the Signal BDEMOD contains information about the current operating mode the internal combustion engine.
  • a proportional share exists. Its output signal DMLLRP is implemented in amplifier stage 102 by linking (Multiplication) of the control deviation ⁇ by a proportional gain factor KP formed. This factor too has different values depending on the operating mode. This Selection takes place by means of a switching means 114 as specified of the operating mode signal BDEMOD. Here too Shift operation one or more first parameter values KPSCH, in homogeneous lean operation one or more second values KPHMM and selected third values KPHOM in homogeneous operation.
  • the differential portion of the controller 24 is formed by temporal differentiation of the control deviation ⁇ in the differentiator 104 and subsequent linking (multiplication) the result of the differentiation in the amplifier stage 116.
  • This is where the result of the differentiation level is linked 104 with a predetermined parameter KD instead, which differs depending on the current operating mode Assumes values.
  • the selection is made using a Switching means 118 as a function of the above-mentioned operating mode signal BDemod. So in shift operation it becomes a parameter value KDSCH fed to multiplication, in homogeneous lean operation a value KDHMM and a value in homogeneous operation KDHOM.
  • the output signal DMLLRD is in an addition point 120 with the output signal DMLLRP of the proportional portion linked to the controller output signal DMLLR.
  • Addition point 122 becomes this controller output signal the output signal DMLLRI of the integral component is applied.
  • the output signal of stage 122 forms the drive signal ⁇ 1, through which an adjustment in homogeneous operation the ignition angle and in the shift mode and homogeneous lean operation an adjustment of the injected Fuel mass takes place.
  • the control signal ⁇ 1 acts on the so-called fast path, since with the represented Intervention options a quick change of Torque of the internal combustion engine is made possible.
  • the controller 25 operates the slow one as shown above Path, the intervention on the amount of air supplied.
  • This path is only used in homogeneous operation to set the torque used while in lean modes like Shift operation or homogeneous lean operation from the consumption advantage benefits from dethrottling the internal combustion engine. Therefore, a switching element 124 is provided, which of the shown position switches to its second position and so that the controller 25 switches to the outside when the The homogeneous mode is set.
  • a corresponding one Switching signal is supplied via line 34. In all other operating modes, the switching element 124 takes shown position, so that as the output signal ⁇ 2 of Regulator 25 has the value 0.
  • the formation of the controller output signal DMLLRL or ⁇ 2 of the controller 25 takes place in the Amplifier stage 106 by multiplying the system deviation ⁇ with a factor KPLHOM for homogeneous operation. Corresponding becomes the control deviation ⁇ in the differentiation stage 108 differentiated and then in the multiplication level 126 multiplied by the factor KDLHOM.
  • the output signals of the proportional and differential parts are in the link 128 to the controller output signal DMLLRL merged, which in the addition point 130 with the Output signal DMLLRI of the integral component 100, 110 is applied becomes.
  • the output of node 130 forms the output signal ⁇ 2 of the controller 25, which like said above only in the operating mode homogeneous operation to the outside acts.
  • the individual parameter values for the individual operating modes are tailored to the specific requirements of the respective controlled system customized. Experience has shown that in many In shifts, smaller values must be specified than in the other modes.
  • controller becomes a in other embodiments other control strategy used, e.g. can depending on the embodiment the differential parts are dispensed with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

The invention relates to a method and a device for regulating an operating variable of an internal combustion engine. A controller which generates an output signal for regulating the operating variable depending on the deviation according to at least one variable parameter is provided. The value of this at least one parameter is switched over to values that are specially adapted to the route in the respective operating mode, according to the operating mode (shift operation, homogenous operation, homogenous lean operation).

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Regelung einer Betriebsgröße einer Brennkraftmaschine.The invention relates to a method and a device for controlling an operating variable of an internal combustion engine.

In modernen Steuersystemen für Brennkraftmaschinen von Fahrzeugen werden vielfach Regelsysteme eingesetzt, welche eine Betriebsgröße der Brennkraftmaschine und/oder des Fahrzeugs auf einen vorgegebenen Sollwert regeln. Ein Beispiel für derartige Regelsysteme sind Leerlaufdrehzahlregler, durch welche die Drehzahl im Leerlauf der Brennkraftmaschine auf einen vorgegebenen Sollwert geregelt wird. Andere Beispiele sind Regelsysteme zur Regelung des Luftdurchsatzes durch die Brennkraftmaschine, der Abgaszusammensetzung, des Drehmoments, etc. So zeigt die DE 30 39 435 A1 (US-Patent 4 441 471) ein Leerlaufdrehzahlregelsystem, bei dem zur Verbesserung der Regeleigenschaften vorgesehen ist, wenigstens einen Parameter des Reglers variabel auszugestalten. Im gezeigten Ausführungsbeispiel wird der Proportionalanteil des Reglers in Abhängigkeit der Größe der Regelabweichung angepasst. In modern control systems for internal combustion engines of vehicles control systems are widely used, which a Operating size of the internal combustion engine and / or the vehicle regulate to a predetermined setpoint. An example for such control systems are idle speed controllers, by which indicates the engine idle speed a predetermined setpoint is regulated. Other examples are control systems for regulating the air flow through the Internal combustion engine, the exhaust gas composition, the torque, etc. For example, DE 30 39 435 A1 (US patent 4,441,471) an idle speed control system in which to improve the control properties is provided, at least to design a variable parameter of the controller. In the shown Embodiment is the proportional portion of the Controller adjusted depending on the size of the control deviation.

Der Stand der Technik offenbart eine Umschaltung von der Betriebsart Beschleunigungs- zu Geschwindigkeitsregelung; (DE-C 44 43 219) mit einem P bzw. PDT1-Regler mit zumindest teilweise festen Reglerparametern bzw. zwischen Betriebsarten, gekennzeichnet durch die Benutzung von verschiedenen Drehzahlregelungen (EP-A-0936354) mit in jeder Reglerart variablen Reglerparametern, wobei in den unterschiedlichen Betriebsarten unterschiedliche Reglerparameter für den Betrieb einer Brennkraftmaschine benutzt werden. The prior art discloses a switchover from the acceleration mode to cruise control; (DE-C 44 43 219) with a P or PDT1 controller at least partially fixed controller parameters or between operating modes, characterized by the use of various speed controls (EP-A-0936354) with variable controller parameters in each controller type, whereby in the different operating modes different controller parameters for the operation of one Internal combustion engine can be used.

Bei Brennkraftmaschinen mit Benzindirekteinspritzung unterscheidet sich das dynamische Verhalten des Motors je nach aktueller Betriebsart, d.h. z.B. im Schichtladungsbetrieb, im Homogenmagerbetrieb oder im Homogenbetrieb. Der bekannte Regler ist an eine derartige Änderung des dynamischen Verhaltens der Regelstrecke nicht angepasst.Differentiates in internal combustion engines with gasoline direct injection the dynamic behavior of the engine depending on current operating mode, i.e. e.g. in stratified charge mode, in homogeneous lean operation or in homogeneous operation. The known Controller is thinking of such a change in dynamic behavior not adapted to the controlled system.

Vorteile der ErfindungAdvantages of the invention

Durch die Verwendung wenigstens eines betriebsartenabhängigen Parameters des Reglers wird eine verbesserte Anpassung des Reglers an die Regelstrecke und ihre Änderungen insbesondere im dynamischen Verhalten erreicht.By using at least one mode-dependent Parameters of the controller will be an improved adjustment of the controller to the controlled system and its changes in particular achieved in dynamic behavior.

Somit wird für jede Betriebsart einer Brennkraftmaschine mit Benzindirekteinspritzung eine jeweils auf diese Betriebsart angepasste optimale Regelgüte in Bezug auf Schnelligkeit und Stabilität der Regelung erreicht.Thus, an internal combustion engine is used for each operating mode Direct gasoline injection each on this operating mode adjusted optimal control quality in terms of speed and Control stability achieved.

Weitere Vorteile der Erfindung, die mit den Merkmalen gemäß Anspruch 1 definiert ist, ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen bzw. aus den abhängigen Patentansprüchen.Additional advantages of the invention with the features is defined according to claim 1, result from the following description from exemplary embodiments or from the dependent ones Claims.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen näher erläutert. Dabei zeigt Figur 1 ein Übersichtsschaltbild eines Reglers für eine Betriebsgröße einer Brennkraftmaschine am Beispiel eines Leerlaufdrehzahlreglers, während in Figur 2 ein Ablaufdiagramm dargestellt ist, welches ein bevorzugtes Ausführungsbeispiel eines Reglers darstellt, bei dem wenigstens ein Parameter abhängig von der aktuellen Betriebsart verändert wird.The invention is described below with reference to the drawing illustrated embodiments explained in more detail. It shows Figure 1 is an overview circuit diagram of a controller for an operating variable an internal combustion engine using the example of an idle speed controller, while in Figure 2 is a flow chart is shown, which is a preferred embodiment represents a controller in which at least one parameter is changed depending on the current operating mode.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

Figur 1 zeigt eine elektronische Steuereinheit 10 zur Steuerung einer Brennkraftmaschine, die eine nicht dargestellte Rechnereinheit aufweist, in welcher eine Regelung wenigstens einer Betriebsgröße implementiert ist. Im bevorzugten Ausführungsbeispiel handelt es sich bei der Regelung um einen Leerlaufdrehzahlregelung. In anderen Ausführungsbeispielen kann es sich um eine Luftdurchsatzregelung, eine Lastregelung, eine Drehmomentenregelung, eine Regelung der Abgaszusammensetzung, der Fahrgeschwindigkeit, etc. handeln, wobei die entsprechenden Soll- und Istgrößen sowie Ansteuersignale einzusetzen sind. In Figur 1 ist ein Sollwertbilder 12 dargestellt, welcher in Abhängigkeit von wenigstens einer über die Eingangsleitungen 14 bis 18 der Steuereinheit 10 zugeführten Betriebsgröße einen Sollwert SOLL für die zu regelnde Betriebsgröße bildet. Im bevorzugten Ausführungsbeispiel eines Leerlaufdrehzahlreglers handelt es sich bei den zur Sollwertbildung herangezogenen Größen um Motortemperatur, den Betriebsstatus von Nebenverbrauchern wie beispielsweise einer Klimaanlage, etc. Ferner wird der Steuereinheit 10 über die Eingangsleitung 20 ein Signal zugeführt, welches die Istgröße der zu regelnden Betriebsgröße darstellt. Soll- und Istgröße werden im Vergleicher 22 miteinander verglichen. Die Abweichung zwischen Soll- und Istgröße wird als Regelabweichung Δ Reglern 24 und 25 zugeführt. Zumindest einer dieser Regler 24 und 25 weist wenigstens einen veränderlichen Parameter auf. Im bevorzugten Ausführungsbeispiel besteht zumindest einer dieser Regler aus Proportional-, Differenzial- und Integralanteil, wobei je nach Ausführungsbeispiel jeder der Anteile oder nur ein oder mehrere Anteile veränderlich sind, sowohl in Abhängigkeit von Betriebsgrößen als auch im Sinne einer Umschaltung abhängig von der Betriebsart der Brennkraftmaschine. Figure 1 shows an electronic control unit 10 for control an internal combustion engine, the one not shown Computer unit, in which a regulation at least a company size is implemented. In the preferred embodiment the regulation is a Idle speed control. In other embodiments can it be an air flow control, a load control, torque regulation, regulation of the exhaust gas composition, the driving speed, etc. act where the corresponding target and actual values as well as control signals are to be used. A setpoint value image 12 is shown in FIG. 1, which depending on at least one over the input lines 14 to 18 fed to the control unit 10 Operating variable a setpoint SHOULD for the to be controlled Company size forms. In the preferred embodiment an idle speed controller is for Setpoint formation using the variables around motor temperature, the operating status of secondary consumers such as an air conditioning system, etc. Furthermore, the control unit 10 A signal is fed via the input line 20, which represents the actual size of the farm size to be controlled. Should- and actual size are compared in the comparator 22. The deviation between target and actual size is called Control deviation Δ supplied to controllers 24 and 25. At least one this controller 24 and 25 has at least one variable Parameters. In the preferred embodiment there is at least one of these controllers from proportional, differential and integral part, depending on the embodiment each of the shares or only one or more shares are variable, both depending on company sizes as well as in terms of switching depending on the operating mode the internal combustion engine.

Auf der Basis der implementierten Regelstrategie bildet der Regler 24 in Abhängigkeit der Regelabweichung Δ wenigstens ein Ausgangssignal τ1, welches wenigstens eine der Steuergrößen der Brennkraftmaschine beeinflusst, durch die eine schnelle Momentenänderung der Brennkraftmaschine bewirken. Diese Stellgrößen sind Zündwinkel und/oder Kraftstoffzufuhr, wobei im Homogenbetrieb eine Zündwinkelbeeinflussung, außerhalb davon eine Kraftstoffmengenbeeinflussung durchgeführt wird. Der zweite Regler 25 bildet ebenfalls in Abhängigkeit der Regelabweichung Δ nach Maßgabe der implementierten Regelstrategie (vorzugsweise PD-Struktur) wenigstens ein weiteres Ausgangssignal τ2, welches wenigstens eine Steuergröße beeinflusst, der zu einer vergleichsweise langsamen Verstellung des Drehmoments führt. Bei einer Brennkraftmaschine stellt diese Steuergröße die Luftzufuhr dar, so dass das Ansteuersignal τ2 ein Stellglied, beispielsweise eine Drosselklappe, zur Beeinflussung der Luftzufuhr zur Brennkraftmaschine ansteuert. Im dargestellten Beispiel bildet jeder Anteil des Reglers 24 bzw. des Reglers 25 ein Reglerausgangssignal, welche zusammengeführt (z. B. addiert) das Ausgangssignal τ1 bzw. τ2 bilden.Based on the implemented control strategy, the Controller 24 as a function of the control deviation Δ at least an output signal τ1, which at least one of the control variables the internal combustion engine influenced by one cause rapid torque change of the internal combustion engine. These manipulated variables are the ignition angle and / or fuel supply, whereby in homogeneous operation an ignition angle influence, outside of which a fuel quantity control was carried out becomes. The second controller 25 also forms depending the control deviation Δ in accordance with the implemented control strategy (preferably PD structure) at least one more Output signal τ2, which is at least one control variable influenced, which leads to a comparatively slow adjustment of the torque leads. With an internal combustion engine this control variable represents the air supply, so that the control signal τ2 an actuator, for example a throttle valve, to influence the air supply to the internal combustion engine controls. In the example shown, each part forms controller 24 or controller 25 a controller output signal, which merges (e.g. adds) the output signal Form τ1 or τ2.

Die verschiedenen Anteile des Reglers 24 und/oder die des Reglers 25 weisen Parameter, beispielsweise Verstärkungsfaktoren, auf, deren Wert je nach Ausführung gegebenenfalls veränderbar ist, d. h. zwischen wenigstens zwei Werten oder Kennlinien umschaltbar ist.The different proportions of the controller 24 and / or the Regulator 25 have parameters, for example gain factors, depending on the version, the value of which may be is changeable, d. H. between at least two values or Characteristic curves can be switched.

Im bevorzugten Ausführungsbeispiel einer Leerlaufregelung wird in der Regel ein Regler mit Proportional- , Integral- und Differenzialanteil eingesetzt. In der Betriebsart Homogenbetrieb, in der die Brennkraftmaschine mit stöchiometrischem Gemisch betrieben wird, sind zumindest Proportional- und Differenzialanteil doppelt ausgeführt. Ein Regler dient zur Verstellung des Zündwinkels, ein anderer zur Verstellung der Füllung (Luftzufuhr). Im Schichtladebetrieb oder im homogenen Magerbetrieb ist ein Verstellen des Motordrehmoments nur über die Kraftstoffmenge, nicht dagegen über die Luftmenge möglich. In diesen Betriebsarten unterscheidet sich daher das dynamische Verhalten der Brennkraftmaschine von dem im Homogenbetrieb. Der Zeitpunkt des drehmomentbestimmenden Eingriffs in Bezug auf den oberen Totpunkt des Zylinders liegt in diesen Betriebsarten anders. Dadurch ergibt sich eine andere Totzeit der Regelstrecke. Außerdem lässt sich durch Verändern der Kraftstoffmenge eine große Drehmomentenänderung wesentlich schneller realisieren als im Homogenbetrieb.In the preferred embodiment of an idle control is usually a controller with proportional, integral and differential component used. In the homogeneous mode, in which the internal combustion engine with stoichiometric Mixture is operated, are at least proportional and differential component duplicated. A controller is used to adjust the ignition angle, another to adjust the filling (air supply). In stratified charging or in homogeneous Lean operation is an adjustment of the engine torque only about the amount of fuel, not about the amount of air possible. It differs in these operating modes hence the dynamic behavior of the internal combustion engine from that in homogeneous operation. The time of the torque determining Intervention in relation to the top dead center of the cylinder is different in these operating modes. This gives another dead time of the controlled system. Also lets a large change in torque by changing the amount of fuel Realize much faster than in homogeneous operation.

Wenigstens ein Parameter des Reglers 24 und/oder 25 wird in Abhängigkeit von einem Betriebsartensignal zwischen verschiedenen Werten (Einzelwerte oder Kennlinien) umgeschaltet. Dieses wird je nach aktueller Betriebsart in 30 erzeugt und über die Leitung 32 bzw. 34 dem jeweiligen Regler zur Umschaltung zugeführt. Die Parameterwerte berücksichtigen dabei die optimale Anpassung des Reglers an die sich verändernde Streckendynamik. Insofern wird der Leerlaufregler unter Verwendung von betriebsartenabhängigen Parametersätzen besser an die Streckendynamik angepasst. Neben der Umschaltung der Parameterwerte in Abhängigkeit von der Betriebsart sind in einem Ausführungsbeispiel alle Parameterwerte zusätzlich Funktionen der Regelabweichung.At least one parameter of controller 24 and / or 25 is shown in Dependence on one mode signal between different Values (individual values or characteristic curves) switched. This is generated in 30 depending on the current operating mode and via line 32 or 34 to the respective controller Switching fed. Take the parameter values into account the optimal adaptation of the controller to the changing System dynamics. In this respect, the idle controller is under Use of operating mode dependent parameter sets better adapted to the route dynamics. In addition to switching the parameter values depending on the operating mode In one embodiment, all parameter values are additional Functions of the control deviation.

Findet eine Umschaltung der Betriebsart der Brennkraftmaschine vom Homogenbetrieb in eine der anderen Betriebsarten statt, so wird der Regler 25, welcher den Luftanteil darstellt, abgeschaltet, beispielsweise indem sein Reglerausgangssignal oder seine Parameterwerte auf den Wert 0 gesetzt wird. Ferner werden durch das Schaltsignal die Reglerparameterwerte des Reglers 24, dort im bevorzugten Ausführungsbeispiel des Proportional- , des Integral- und des Differenzialanteils, auf die für die neue Betriebsart abgestimmten Werte gesetzt. Zu berücksichtigen als Betriebsart sind vor allem Schichtbetrieb und Homogenmagerbetrieb. Entsprechend wird bei der Umschaltung zwischen Schichtbetrieb und Homogenmagerbetrieb verfahren. Auch hier wird eine Parameterwerteumschaltung im Regler 24 vorgenommen. Der Regler 25 für den langsamen Eingriff bleibt abgeschaltet. Bei der Umschaltung vom Homogenmager- bzw. vom Schichtbetrieb in den Homogenbetrieb erfolgt ebenfalls eine Parameterwerteumschaltung im Regler 24, während bei Vorliegen des entsprechenden Aktivierungssignals der Regler 25 für den langsamen Anteil im Homogenbetrieb aktiviert wird. Im bevorzugten Ausführungsbeispiel erfolgt die Aktivierung bzw. Abschaltung des Reglers 25 durch Setzen seines Ausgangssignals auf den Wert 0. Der Regler selbst arbeitet dann in dieser Ausführung auch in anderen Betriebsarten weiter, lediglich sein Ausgangssignal kommt nicht nach außen zur Wirkung.Finds a switchover of the operating mode of the internal combustion engine from homogeneous operation to one of the other operating modes instead, the controller 25, which represents the air fraction, switched off, for example by its controller output signal or its parameter values set to 0 becomes. Furthermore, the controller parameter values are determined by the switching signal of the controller 24, there in the preferred embodiment of the proportional, integral and differential components, matched to those for the new operating mode Values set. The following must be considered as the operating mode all shift operation and homogeneous lean operation. Corresponding is used when switching between shift operation and homogeneous lean operation method. Here too there is a parameter value switchover made in controller 24. The controller 25 for the slow intervention remains switched off. When switching from homogeneous lean or shift operation to homogeneous operation there is also a parameter value switchover in the controller 24, while the corresponding activation signal is present the controller 25 for the slow portion in Homogeneous operation is activated. In the preferred embodiment the controller is activated or deactivated 25 by setting its output signal to the value 0. The controller itself then also works in this version other operating modes, only its output signal does not come into effect externally.

Ein bevorzugtes Ausführungsbeispiel der beschriebenen Vorgehensweise ist anhand des Ablaufdiagramms der Figur 2 skizziert, welches ein Programm der Rechnereinheit der Steuereinheit 10 darstellt. Das Ablaufdiagramm zeigt spezielle Ausgestaltungen der Regler 24 und 25.A preferred embodiment of the procedure described is outlined using the flow diagram of FIG. 2, which is a program of the computer unit of the control unit 10. The flowchart shows special ones Refinements of the controllers 24 and 25.

Den Reglern zugeführt wird die Regelabweichung Δ als Abweichung zwischen Ist- und Sollwert (Ist- und Solldrehzahl). Im Regler 24 für den schnellen Eingriffspfad ist ein Integrator 100, eine Verstärkerstufe 102 sowie eine Differenzialstufe 104 vorgesehen, während im bevorzugten Ausführungsbeispiel im Regler 25 für den langsamen Pfad eine Verstärkerstufe 106 sowie eine Differenzialstufe 108 vorgesehen sind. In anderen Ausführungsbeispielen wird eine andere Ausgestaltung der Regler eingesetzt, so dass die dargestellte Regelstrategie jeweils nur ein bevorzugtes Ausführungsbeispiel darstellt. Die beschriebene Vorgehensweise der Umschaltung von Parameterwerten abhängig von der Betriebsart der Brennkraftmaschine wird auch bei anderen Reglerstrukturen mit den entsprechenden Vorteilen eingesetzt.The control deviation Δ is fed to the controllers as a deviation between actual and target value (actual and target speed). in the Fast intervention path controller 24 is an integrator 100, an amplifier stage 102 and a differential stage 104 provided while in the preferred embodiment an amplifier stage 106 in the controller 25 for the slow path and a differential stage 108 are provided. In other Another embodiment of the Controller used so that the control strategy shown each represents only a preferred embodiment. The described procedure for switching parameter values depending on the operating mode of the internal combustion engine is also used for other controller structures with the corresponding Advantages used.

Der in Figur 2 dargestellte Leerlaufregler wird unter Verwendung von betriebsartenabhängigen Parametersätzen besser an die Streckendynamik angepasst. Die Regelabweichung Δ wird vorzugsweise durch Subtraktion der Solldrehzahl SOLL von der Motoristdrehzahl IST berechnet. Das Ausgangssignal DMLLRI des Integralanteils 100 wird durch Integration der Regelabweichung Δ über die Zeit im Integrator 100 und anschließender Verstärkung (Multiplikation) in der Verstärkerstufe 110 gebildet. In der Verstärkerstufe 110 wird das Integratorausgangssignal mit einem Parameter KI multipliziert, welcher je nach aktueller Betriebsart unterschiedliche Werte annimmt. Zur Auswahl der Parameterwerte ist ein Schaltmittel 112 vorgesehen, welches in Abhängigkeit des über die Leitung 32 zugeführten Betriebsartensignal BDEMOD umgeschaltet wird. Das Signal BDEMOD enthält eine Information über die aktuelle Betriebsart der Brennkraftmaschine. Die Multiplikation im Schichtbetrieb findet mit einem Faktor KISCH, im Homogenmagerbetrieb mit einem Faktor KIHMM und im Homogenbetrieb mit einem Faktor KIHOM statt. Diese Faktoren sind speziell an das dynamische Verhalten der Regelstrecke in der jeweiligen Betriebsart angepasst. Dabei hat es sich gezeigt, dass im Schichtbetrieb in der Regel kleinere Werte vorzugeben sind als im Homogenbetrieb. Dies gilt entsprechend auch für die anderen Anteile des Reglers 24. Die genannten Werte sind je nach Ausführung entweder Festwerte oder aus Kennlinien betriebsgrößenabhängig vorgegebene Werte.The idle controller shown in Figure 2 is used of mode-dependent parameter sets better adapted to the route dynamics. The control deviation Δ becomes preferably by subtracting the target speed from the Actual engine speed IS calculated. The output signal DMLLRI of the integral part 100 is obtained by integrating the control deviation Δ over time in integrator 100 and subsequent Gain (multiplication) in amplifier stage 110 educated. In the amplifier stage 110 the integrator output signal multiplied by a parameter KI, which each assumes different values depending on the current operating mode. A switching means 112 is provided for selecting the parameter values, which depending on the supplied via line 32 Operating mode signal BDEMOD is switched. The Signal BDEMOD contains information about the current operating mode the internal combustion engine. The multiplication in Shift operation takes place with a factor KISCH, in homogeneous lean operation with a factor KIHMM and in homogeneous operation with a factor KIHOM instead. These factors are specific the dynamic behavior of the controlled system in the respective Operating mode adapted. It has been shown that in Shift work usually requires smaller values than in homogeneous operation. This also applies accordingly to the other parts of controller 24. The values given are each After execution either fixed values or from characteristic curves depending on the operating size given values.

Neben dem Integralanteil ist im bevorzugten Ausführungsbeispiel ein Proportionalanteil vorhanden. Dessen Ausgangssignal DMLLRP wird in der Verstärkerstufe 102 durch Verknüpfung (Multiplikation) der Regelabweichung Δ mit einem Proportionalverstärkungsfaktor KP gebildet. Auch dieser Faktor weist je nach Betriebsart unterschiedliche Werte auf. Diese Auswahl erfolgt mittels eines Schaltmittels 114 nach Maßgabe des Betriebsartensignals BDEMOD. Auch hier werden im Schichtbetrieb ein oder mehrere erster Parameterwerte KPSCH, im Homogenmagerbetrieb ein oder mehrere zweite Werte KPHMM und im Homogenbetrieb dritte Werte KPHOM ausgewählt.In addition to the integral component is in the preferred embodiment a proportional share exists. Its output signal DMLLRP is implemented in amplifier stage 102 by linking (Multiplication) of the control deviation Δ by a proportional gain factor KP formed. This factor too has different values depending on the operating mode. This Selection takes place by means of a switching means 114 as specified of the operating mode signal BDEMOD. Here too Shift operation one or more first parameter values KPSCH, in homogeneous lean operation one or more second values KPHMM and selected third values KPHOM in homogeneous operation.

Der Differenzialanteil des Reglers 24 wird gebildet durch zeitliche Differenziation der Regelabweichung Δ im Differenziator 104 und anschließender Verknüpfung (Multiplikation) des Ergebnisses der Differenziation in der Verstärkerstufe 116. Dort findet die Verknüpfung des Ergebnisses der Differenziationsstufe 104 mit einem vorgegebenen Parameter KD statt, welcher je nach aktueller Betriebsart unterschiedliche Werte annimmt. Auch hier erfolgt die Auswahl mittels eines Schaltmittels 118 in Abhängigkeit des oben genannten Betriebsartensignals BDEMOD. So wird im Schichtbetrieb ein Parameterwert KDSCH der Multiplikation zugeführt, im Homogenmagerbetrieb ein Wert KDHMM und im Homogenbetrieb ein Wert KDHOM. Das Ausgangssignal DMLLRD wird in einer Additionsstelle 120 mit dem Ausgangssignal DMLLRP des Proportional anteils zum Reglerausgangssignal DMLLR verknüpft. In der darauffolgenden Additionsstelle 122 wird diesem Reglerausgangssignal das Ausgangssignal DMLLRI des Integralanteils aufgeschaltet. Das Ausgangssignal der Stufe 122 bildet das Ansteuersignal τ1, durch welches im Homogenbetrieb eine Verstellung des Zündwinkels und in den Betriebsarten Schichtbetrieb und Homogenmagerbetrieb eine Verstellung der einzuspritzenden Kraftstoffmasse stattfindet. Das Ansteuersignal τ1 wirkt auf den sogenannten schnellen Pfad, da mit den dargestellten Eingriffsmöglichkeiten eine schnelle Änderung des Drehmoments der Brennkraftmaschine ermöglicht ist. The differential portion of the controller 24 is formed by temporal differentiation of the control deviation Δ in the differentiator 104 and subsequent linking (multiplication) the result of the differentiation in the amplifier stage 116. This is where the result of the differentiation level is linked 104 with a predetermined parameter KD instead, which differs depending on the current operating mode Assumes values. Here, too, the selection is made using a Switching means 118 as a function of the above-mentioned operating mode signal BDemod. So in shift operation it becomes a parameter value KDSCH fed to multiplication, in homogeneous lean operation a value KDHMM and a value in homogeneous operation KDHOM. The output signal DMLLRD is in an addition point 120 with the output signal DMLLRP of the proportional portion linked to the controller output signal DMLLR. In the following Addition point 122 becomes this controller output signal the output signal DMLLRI of the integral component is applied. The output signal of stage 122 forms the drive signal τ1, through which an adjustment in homogeneous operation the ignition angle and in the shift mode and homogeneous lean operation an adjustment of the injected Fuel mass takes place. The control signal τ1 acts on the so-called fast path, since with the represented Intervention options a quick change of Torque of the internal combustion engine is made possible.

Der Regler 25 bedient wie oben dargestellt den langsamen Pfad, den Eingriff auf die zugeführte Luftmenge. Dieser Pfad wird nur im Homogenbetrieb zum Einstellen des Drehmoments verwendet, während man in den Magerbetriebsarten wie Schichtbetrieb oder Homogenmagerbetrieb vom Verbrauchsvorteil durch Entdrosselung der Brennkraftmaschine profitiert. Daher ist ein Schaltelement 124 vorgesehen, welches von der gezeigten Stellung in seine zweite Stellung umschaltet und damit den Regler 25 nach außen wirksam schaltet, wenn die Betriebsart Homogenbetrieb eingestellt ist. Ein entsprechendes Schaltsignal wird über die Leitung 34 zugeführt. In allen anderen Betriebsarten nimmt das Schaltelement 124 die gezeigte Stellung ein, so dass als Ausgangssignal τ2 des Reglers 25 der Wert 0 vorliegt. Die Bildung des Reglerausgangssignals DMLLRL bzw. τ2 des Reglers 25 erfolgt in der Verstärkerstufe 106 durch Multiplikation der Regelabweichung Δ mit einem Faktor KPLHOM für den Homogenbetrieb. Entsprechend wird die Regelabweichung Δ in der Differenziationsstufe 108 differenziert und daraufhin in der Multiplikationsstufe 126 mit dem Faktor KDLHOM multipliziert. Die Ausgangssignale des Proportional- und Differenzialanteils werden in der Verknüpfungsstelle 128 zum Reglerausgangssignal DMLLRL zusammengeführt, welches in der Additionsstelle 130 mit dem Ausgangssignal DMLLRI des Integralanteils 100, 110 beaufschlagt wird. Das Ausgangssignal der Verknüpfungsstelle 130 bildet das Ausgangssignal τ2 des Reglers 25, welches wie oben gesagt nur in der Betriebsart Homogenbetrieb nach außen wirkt.The controller 25 operates the slow one as shown above Path, the intervention on the amount of air supplied. This path is only used in homogeneous operation to set the torque used while in lean modes like Shift operation or homogeneous lean operation from the consumption advantage benefits from dethrottling the internal combustion engine. Therefore, a switching element 124 is provided, which of the shown position switches to its second position and so that the controller 25 switches to the outside when the The homogeneous mode is set. A corresponding one Switching signal is supplied via line 34. In all other operating modes, the switching element 124 takes shown position, so that as the output signal τ2 of Regulator 25 has the value 0. The formation of the controller output signal DMLLRL or τ2 of the controller 25 takes place in the Amplifier stage 106 by multiplying the system deviation Δ with a factor KPLHOM for homogeneous operation. Corresponding becomes the control deviation Δ in the differentiation stage 108 differentiated and then in the multiplication level 126 multiplied by the factor KDLHOM. The output signals of the proportional and differential parts are in the link 128 to the controller output signal DMLLRL merged, which in the addition point 130 with the Output signal DMLLRI of the integral component 100, 110 is applied becomes. The output of node 130 forms the output signal τ2 of the controller 25, which like said above only in the operating mode homogeneous operation to the outside acts.

Die einzelnen Parameterwerte für die einzelnen Betriebsarten werden an die konkreten Anforderungen der jeweiligen Regelstrecke angepasst. Die Erfahrung hat gezeigt, dass in vielen Fällen im Schichtbetrieb kleinere Werte vorzugeben sind als in den anderen Betriebsarten. The individual parameter values for the individual operating modes are tailored to the specific requirements of the respective controlled system customized. Experience has shown that in many In shifts, smaller values must be specified than in the other modes.

Anstelle der in Figur 2 dargestellten konkreten Ausgestaltung der Regler wird in anderen Ausführungsbeispielen eine andere Regelstrategie eingesetzt, z.B. kann je nach Ausführungsbeispiel auf die Differenzialanteile verzichtet werden.Instead of the specific embodiment shown in FIG. 2 the controller becomes a in other embodiments other control strategy used, e.g. can depending on the embodiment the differential parts are dispensed with.

Claims (9)

  1. Method for regulating an operating variable of an internal combustion engine, which is switched over between at least two operating modes during its operation, at least one regulator output signal being formed, as a function of the difference between a setpoint value and an actual value for the operating variable, in accordance with at least one variable parameter of the regulator by means of which the operating variable which is to be regulated is influenced, the value of the at least one parameter being switched over when there is a change in the method of operation of the internal combustion engine, characterized in that the internal combustion engine is an internal combustion engine with direct petrol injection, in which switching over is performed between the operating modes comprising stratified operating mode, homogeneous lean operating mode and homogeneous operating mode with throttling.
  2. Method according to one of the preceding claims, characterized in that the regulator output signal influences the ignition angle in the homogeneous operating mode, and the fuel supply in the throttled operating modes.
  3. Method according to one of the preceding claims, characterized in that the regulator comprises an integral component and/or a proportional component and/or a differential component.
  4. Method according to Claim 3, characterized in that the value of the at least one parameter is switched over, as a function of a signal which represents the current operating mode, to values which are adapted to the control path behaviour in the specific operating mode.
  5. Method according to one of the preceding claims, characterized in that, in the throttled operating mode, the output signal influences the air supply to the internal combustion engine, the output signal being shifted to a deactivated mode outside the throttled operating mode of the internal combustion engine.
  6. Method according to one of the preceding claims, characterized in that the at least one parameter is also dependent on the control error.
  7. Method according to one of the preceding claims, characterized in that the values of the at least one parameter are fixed values which are dependent on the operating mode, or operating-variable-dependent values which are formed from characteristic curves which are selected in accordance with the operating mode.
  8. Method according to one of the preceding claims, characterized in that the regulator is an idling rotational speed regulator or a driving speed regulator.
  9. Device for regulating an operating variable of an internal combustion engine, which is switched over between at least two operating modes during its operation, having a regulator which forms, as a function of the difference between a setpoint value and an actual value for the operating variable, at least one regulator output signal in accordance with at least one variable parameter of the regulator, the output signal influencing the operating variable, the regulator also receiving a signal which characterizes the current operating mode and the value of the at least one parameter being switched over as a function of this signal, characterized in that the internal combustion engine is an internal combustion engine with direct petrol injection, in which switching over is performed between the operating modes comprising stratified operating mode, homogeneous lean operating mode and homogeneous operating mode with throttling.
EP01956349A 2000-08-10 2001-07-20 Method and device for regulating an operating variable of an internal combustion engine Expired - Lifetime EP1309784B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10038991A DE10038991A1 (en) 2000-08-10 2000-08-10 Method and device for controlling an operating variable of an internal combustion engine
DE10038991 2000-08-10
PCT/DE2001/002745 WO2002012700A1 (en) 2000-08-10 2001-07-20 Method and device for regulating an operating variable of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1309784A1 EP1309784A1 (en) 2003-05-14
EP1309784B1 true EP1309784B1 (en) 2004-12-08

Family

ID=7651929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956349A Expired - Lifetime EP1309784B1 (en) 2000-08-10 2001-07-20 Method and device for regulating an operating variable of an internal combustion engine

Country Status (7)

Country Link
US (1) US20030168036A1 (en)
EP (1) EP1309784B1 (en)
JP (1) JP2004506122A (en)
KR (1) KR20030036680A (en)
CN (1) CN1436280A (en)
DE (2) DE10038991A1 (en)
WO (1) WO2002012700A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046751B4 (en) * 2005-09-29 2009-04-16 Continental Automotive Gmbh Method and device for controlling an internal combustion engine
JP4496162B2 (en) * 2005-12-19 2010-07-07 日立オートモティブシステムズ株式会社 Apparatus and method for controlling ignition timing of internal combustion engine
DE102007011812B4 (en) * 2007-03-12 2011-04-14 Continental Automotive Gmbh Method and device for operating a drive system
US20100288225A1 (en) * 2009-05-14 2010-11-18 Pfefferle William C Clean air reciprocating internal combustion engine
US11085393B2 (en) * 2017-05-24 2021-08-10 Nissan Motor Co., Ltd. Control method and control device for internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152106B2 (en) * 1995-05-16 2001-04-03 三菱自動車工業株式会社 Control device for in-cylinder injection spark ignition internal combustion engine
JP3211677B2 (en) * 1996-08-28 2001-09-25 三菱自動車工業株式会社 Ignition timing control system for in-cylinder injection internal combustion engine
JP3500021B2 (en) * 1996-12-12 2004-02-23 トヨタ自動車株式会社 Idle speed control device for stratified combustion internal combustion engine
DE69841026D1 (en) * 1997-06-03 2009-09-10 Nissan Motor Machine with torque control
DE19727385C2 (en) * 1997-06-27 2002-10-10 Bosch Gmbh Robert System for operating an internal combustion engine with direct injection, in particular a motor vehicle
US6161530A (en) * 1997-07-04 2000-12-19 Nissan Motor Co., Ltd. Control system for internal combustion engine
US5975048A (en) * 1997-10-16 1999-11-02 Ford Global Technologies, Inc. Idle speed control system for direct injection spark ignition engines
JP3971004B2 (en) * 1997-12-19 2007-09-05 株式会社日立製作所 Combustion switching control device for internal combustion engine
DE19851974B4 (en) * 1998-11-03 2011-04-28 Robert Bosch Gmbh Method and device for controlling operations in a vehicle
JP2000220504A (en) * 1999-01-27 2000-08-08 Mazda Motor Corp Idle speed control device for cylinder fuel injection engine
DE19931826B4 (en) * 1999-07-08 2004-09-02 Robert Bosch Gmbh Method for controlling an internal combustion engine
US6321714B1 (en) * 2000-01-13 2001-11-27 Ford Global Technologies, Inc. Hybrid operating mode for DISI engines

Also Published As

Publication number Publication date
WO2002012700A1 (en) 2002-02-14
EP1309784A1 (en) 2003-05-14
CN1436280A (en) 2003-08-13
KR20030036680A (en) 2003-05-09
US20030168036A1 (en) 2003-09-11
DE10038991A1 (en) 2002-02-21
JP2004506122A (en) 2004-02-26
DE50104772D1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
DE3333392C2 (en)
EP0191923B1 (en) Method and device for the controlling of and regulation method for the operating parameters of a combustion engine
DE3416369C2 (en) Vehicle speed control device
DE69831840T2 (en) Control device and control method for internal combustion engines
EP0853723B1 (en) Process and device for controlling an internal combustion engine
EP0760056B1 (en) Process and device for controlling an internal combustion engine
DE19622637B4 (en) Method and control system for a variable speed engine speed
DE19756053B4 (en) Throttle control device
DE10313503B4 (en) Method and device for exhaust gas recirculation control in internal combustion engines
DE19619320A1 (en) Method and device for controlling an internal combustion engine
DE3311029C2 (en) Method and device for regulating the idling speed of an internal combustion engine
DE10129314B4 (en) Engine Speed Control
EP0629775A1 (en) Method and device for controlling the smooth running of an internal combustion engine
EP1309784B1 (en) Method and device for regulating an operating variable of an internal combustion engine
EP1478986B1 (en) Method and device for controlling the speed of an internal combustion engine
WO1989008777A1 (en) Process and system for adjusting the lambda value
DE19920498A1 (en) Electronic control system for internal combustion engine
DE19924862C1 (en) Method for adjusting a preset target speed in a vehicle with a steady rate of fuel operates one branch for full operating of fuel with all cylinders firing and another branch for partial cut-out with a portion of cylinders firing
DE4322270B4 (en) Method and device for controlling an internal combustion engine
EP1003960B1 (en) Method for operating an internal combustion engine
WO1999010644A1 (en) Method for controlling exhaust gas recirculation in an internal combustion engine
EP1309780B1 (en) Method and device for regulating an operating variable of a drive unit
DE102007007945A1 (en) Internal combustion engine's recirculated exhaust gas rate adjusting method, involves producing feed forward control signal based on data contained in characteristic field, where data depends on act of fluid physics
EP0415048A1 (en) Control method for an engine/transmission assembly
EP1269011A2 (en) Method and device for controlling the idle operation of a drive unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030310

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOEHLER, CHRISTIAN

Inventor name: KUSTOSCH, MARIO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104772

Country of ref document: DE

Date of ref document: 20050113

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140724

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140724

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150720

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160927

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50104772

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201