EP1517132A1 - Kontaktlose Messung der Oberflächentemperatur von natürlich oder künstlich bewitterten Proben - Google Patents
Kontaktlose Messung der Oberflächentemperatur von natürlich oder künstlich bewitterten Proben Download PDFInfo
- Publication number
- EP1517132A1 EP1517132A1 EP04019632A EP04019632A EP1517132A1 EP 1517132 A1 EP1517132 A1 EP 1517132A1 EP 04019632 A EP04019632 A EP 04019632A EP 04019632 A EP04019632 A EP 04019632A EP 1517132 A1 EP1517132 A1 EP 1517132A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sample
- radiation
- weathering
- samples
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title claims description 6
- 239000000523 sample Substances 0.000 title description 44
- 230000005855 radiation Effects 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 24
- 230000032683 aging Effects 0.000 claims abstract description 9
- 230000005457 Black-body radiation Effects 0.000 claims description 25
- 230000033001 locomotion Effects 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 14
- 229910052724 xenon Inorganic materials 0.000 description 8
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 8
- 230000001419 dependent effect Effects 0.000 description 7
- 238000009529 body temperature measurement Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
Definitions
- the present invention relates to a method for evaluation the weather-related aging behavior of a sample, in which the sample is a natural or an artificial one Weathering is exposed. Likewise, the invention relates to a device for artificial weathering of Rehearse.
- the Room temperature and / or the sample temperature kept constant. Keeping constant and knowing the temperatures are necessary because of the temperature dependence of aging, to the results of different weathering runs among each other to be able to compare.
- temperature sensors are used in weathering equipment, their measured temperature as a measure of the sample temperature is used.
- a blackboard sensor be used as such a temperature sensor.
- the document EP 0 320 209 A2 describes a weathering device described, which has a weathering chamber, in a xenon lamp as a light source for emitting light with a predetermined intensity is provided. Within the Weathering chamber is a cylindrically symmetrical Sample holder frame, which is rotatable about the light source. From This sample holder frame are both to be examined Material samples as well as black panel sensors worn.
- the Material samples and black panel sensors are thus under same conditions the radiation field of the light source and the rest, set within the weathering chamber Exposed to conditions.
- the air flow leads one Part of the heat of the material samples and black panel sensors from. This can be exploited for temperature control, by the temperature measured by the blackboard sensors as a control signal for the strength of the weathering in the chamber introduced air flow is used.
- the blackboard sensors used as temperature sensors, Black standard sensors and white standard sensors are all built so that they have a metal plate with an im Operation of the light source facing painted surface and a thermally coupled to the metal plate on the back Have temperature-dependent electrical component.
- the electrical component is usually by a temperature-dependent resistor such as a platinum resistor (commercial designation Pt100 or Pt1000) is formed and is connected to an electrical transmitter circuit connected.
- a black standard sensor has a one-sided black lacquered stainless steel plate (thickness 1 mm), one at the uncoated rear thermally coupled Pt100 or Pt1000 resistor, one applied to the back and the platinum resistance enclosing plastic plate made of PVDF (Polyvinylidene fluoride) and a finishing plate made of stainless steel on.
- a white standard sensor is constructed in a corresponding manner, with the difference that in the operation of the light source facing surface is painted white.
- a blackboard sensor is different from the black standard sensor from a metal plate blackened on both sides without PVDF insulation. The temperature-dependent resistance is without surrounding Insulation applied to the back.
- black standard or blackboard sensors used to suit everyone Weathering process to specify a black standard temperature can.
- the black standard temperature is an upper limit for the area of surface temperature in question
- a white standard sensor used, whose temperature measurement is a lower Provides border of this area.
- the sample temperature be limited and it may if necessary as a first approximation for the sample temperature of the arithmetic Mean value of the measured temperatures are assumed.
- the inventive method for assessing the weather-related The aging behavior of a sample relates both on natural as well as on artificial weathering methods.
- One essential idea of the present invention is the surface temperature of the sample during weathering to measure directly. This is done by a contactless temperature measuring method allows.
- the surface temperature of the sample is no longer like so far by aids such as black or white standard sensors limited but determined by measurement on the sample itself there is the possibility of the surface temperature to determine more precisely during weathering.
- the inventive method of contactless temperature measurement can by detecting the black body radiation of the Sample surface and determining the surface temperature from the intensity and / or the spectral distribution of the detected Black body radiation can be achieved.
- This can with take a commercial pyrometer, which at least in the temperature range of interest Measuring range is calibrated. With the pyrometer can under a certain angle to the sample a spot on the sample surface fixed and the from this measuring spot in the corresponding solid angle emitted blackbody radiation recorded and from this the surface temperature can be determined.
- the emissivity values of the samples to be exposed and workpieces can on the one hand in a cost effective manner
- Experience values e.g. Table values of the literature are used become.
- the Emissivities of the samples before the actual weathering determined by a suitable method. Since here the actual emissivity values of the samples are determined, this allows a fairly accurate determination of the surface temperature from the detected blackbody radiation.
- a detector for detecting blackbody radiation such as a pyrometer
- a detector for detecting blackbody radiation can be arranged in it so that it is a stationary one Measurement spot fixed by the samples during their circular motion is going through.
- an emissivity value stored so that from the emitted from her Blackbody radiation and its emissivity the surface temperature can be determined. It can be provided that the current angular position of the support frame for it is used, the blackbody radiation detected by the pyrometer attributable to a particular sample. The one to this Sample stored emissivity value can then be used become the surface temperature from the detected blackbody radiation to determine.
- An inventive device for artificial weathering of samples has a weathering chamber, in which a Radiation source and mounting means for the mounting of to be exposed to weathering, and a non-contact Temperature sensor on.
- the contactless temperature sensor is in particular by a black radiation detector such given a (calibrated) pyrometer.
- the support means may in a conventional manner formed an annular closed support frame be, which is arranged concentrically around a radiation source is, and in a rotational movement about the radiation source is displaceable.
- the contactless temperature sensor is then preferably fixed spatially and in its orientation, so that it is aligned to a fixed space area.
- One or more of the supported in the support frame to weathering samples undergo during the rotational movement of the support frame around the radiation source the stationary space area periodically and every time you go through the contactless temperature sensor detected.
- a Black radiation detector is used each time through a Probe through the fixed space blackbody radiation the sample emitted in the direction of the black radiation detector and captured by this.
- the temperature sensor by a black radiation detector If the temperature sensor by a black radiation detector is given, so can in a connected to this Evaluation circuit Values for the radiation emissivity of the Samples can be stored. Every time the black radiation a certain sample has been detected, then its intensity and / or spectral distribution with the associated Emissivity value offset to the surface temperature of the sample.
- FIGS. 1a, 1b show a weathering test device according to the invention in a longitudinal section (Fig. 1a) and in a plan view (1b).
- a weathering chamber 1 In a weathering chamber 1 is an annular closed Support frame 2 rotatably mounted, on the inner wall Samples 3 or workpieces can be held.
- the support frame 2 is circular in particular in cross section.
- an elongated xenon radiation source 4 On the cylinder and rotation axis of the support frame 2 is positioned an elongated xenon radiation source 4, which is fixed to an inner wall of the weathering chamber 1 is.
- the xenon radiation source 4 serves a To give off radiation comparable to natural solar radiation and to apply to the samples 3.
- the xenon radiation source 4 is surrounded by a tubular filter 5, which is adapted to the respective weathering test.
- the weathering chamber can further in a conventional manner Equipment for artificial weathering such as Moisture generator or the like, which play no essential role in the present invention and should therefore not be discussed further. It can also be an air flow introduced into the weathering chamber 1 be in the vertical direction past the sample 3 sweeps.
- Equipment for artificial weathering such as Moisture generator or the like, which play no essential role in the present invention and should therefore not be discussed further. It can also be an air flow introduced into the weathering chamber 1 be in the vertical direction past the sample 3 sweeps.
- the support frame 2 is preferably rotatably mounted such that the axis of rotation with the axis of the xenon radiation source 4 coincides so that the samples 3 are essentially on a circular path with a constant distance from the xenon radiation source 4 to move around this.
- the weathering chamber 1 formed an opening in the outside a pyrometer 6 can be used.
- the pyrometer completely within the weathering chamber 1 is arranged at a suitable position becomes.
- FIG. 1a also shows that the pyrometer 6 in a fixed position on a Sample 3 is aligned and emitted by this Blackbody radiation detected. The black body radiation is thus always at an oblique angle to the horizontal detected by the pyrometer 6.
- the pyrometer 6 is thus on a stationary space area fixed, the samples 3 periodically in their circular motion run through. From the plan view of FIG. 1b it becomes clear that is, emitted from a sample 3 by the pyrometer 6 Blackbody radiation within time periods can be detected, whose length is determined by the rotational speed of the support frame 2 and the width of the sample 3 is determined. After completion of such a period of time can from the detected blackbody radiation under Use of the emissivity stored for the respective sample 3 the surface temperature in one of the pyrometer. 6 connected evaluation circuit are calculated. In the Evaluation circuit, the emissivity values of the Support frame 2 attached samples 3 can be stored. After detecting the blackbody radiation must first the Sample 3 are identified to the stored to this sample 3 To receive emissivity value.
- the angular position of the support frame 2 in a suitable Way it can be determined in advance in a table are determined at which measured angular positions of the support frame 2 which samples 3 just in the fixed measuring range of the pyrometer 6 are located. After this thus the sample 3 has been identified, which within the temporal measurement window which emits blackbody radiation has, the sample 3 corresponding emissivity value with the intensity and / or the spectral distribution of Blackbody radiation is used to calculate the surface temperature to obtain the sample 3.
- the pyrometer 6 is preferably for a measuring range between 8 microns and 14 microns in the temperature range of 20 - 120 ° C calibrated.
- the surface temperature of each sample 3 is preferably continuously recorded during the weathering run.
- the inventive method is in principle also on natural Weathering method applicable.
- samples or work pieces on a support frame be fixed and on a closed track passing a temperature sensor like a pyrometer, so that eliminates the need for the pyrometer constantly changing its focus on the different ones Samples must be aligned.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
Claims (15)
- Verfahren zur Bewertung des witterungsbedingten Alterungsverhaltens einer Probe, bei welchemdie Probe einer natürlichen oder einer künstlichen Bewitterung ausgesetzt wird, unddie Oberflächentemperatur der Probe während der Bewitterung kontaktlos gemessen wird.
- Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dassdie Schwarzkörperstrahlung der Probenoberfläche erfasst und aus dieser unter Berücksichtung eines angenommenen oder experimentell ermittelten Wertes für die Strahlungsemissivität der Probe die Oberflächentemperatur bestimmt wird. - Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dassdie Messung der Schwarzkörperstrahlung mit einem kalibrierten Pyrometer durchgeführt wird. - Verfahren nach Anspruch 2 oder 3,
dadurch gekennzeichnet, dassdie innerhalb eines definierten Raumwinkels von der Oberfläche emittierte Schwarzkörperstrahlung gemessen wird. - Verfahren nach einem der Ansprüche 2 bis 4,
dadurch gekennzeichnet, dassdie Probe während der Bewitterung durch den Raum bewegt wird,die Schwarzkörperstrahlung von einem ortsfesten Raumbereich erfasst wird, unddie Probe derart bewegt wird, dass ihre Probenoberfläche periodisch den ortsfesten Raumbereich durchläuft. - Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dassdie Probe bei einer künstlichen Bewitterung auf einer geschlossenen Bahn um eine Strahlungsquelle bewegt wird. - Verfahren nach Anspruch 5 oder 6,
dadurch gekennzeichnet, dasseine Anzahl von Proben gleichzeitig bewittert wird, welche an einem ringförmig geschlossenen Halterungsrahmen befestigt sind. - Verfahren nach Anspruch 7,
dadurch gekennzeichnet, dassvor der Bewitterung Strahlungsemissivitätswerte für die Proben gespeichert werden, undanhand der Winkelposition des Halterungsrahmens die aktuell in dem ortsfesten Raumbereich befindliche Probe identifiziert wird, undfür die Temperaturberechnung die erfasste Schwarzkörperstrahlung und der für die Probe gespeicherte Strahlungsemissivitätswert herangezogen wird. - Vorrichtung zur künstlichen Bewitterung von Proben, miteiner Bewitterungskammer (1), in welcher eine Strahlungsquelle (4) und Halterungsmittel (2) für die Halterung von zu bewitternden Proben (3) enthalten sind, undeinem kontaktlosen Temperatursensor (6) .
- Vorrichtung nach Anspruch 9,
dadurch gekennzeichnet, dassder kontaktlose Temperatursensor (6) ein Schwarzstrahlungsdetektor (6), insbesondere ein Pyrometer (6), ist. - Vorrichtung nach Anspruch 9 oder 10,
dadurch gekennzeichnet, dassdie Halterungsmittel (2) durch einen ringförmig geschlossenen Halterungsrahmen (2) gebildet sind, welcher konzentrisch um die Strahlungsquelle (4) angeordnet ist und in eine Drehbewegung um die Strahlungsquelle (4) versetzbar ist. - Vorrichtung nach Anspruch 11,
dadurch gekennzeichnet, dassder Temperatursensor (6) auf einen ortsfesten Raumbereich ausgerichtet ist, undder Halterungsrahmen (2) so gebildet ist, dass eine oder mehrere in ihm gehalterte Proben (3) bei der Drehbewegung den ortsfesten Raumbereich periodisch durchlaufen. - Vorrichtung nach einem der Ansprüche 10 bis 12,
dadurch gekennzeichnet, dassin einer an den Schwarzstrahlungsdetektor (6) angeschlossenen Auswerteschaltung Werte für die Strahlungsemissivität der Proben (3) speicherbar sind. - Vorrichtung nach einem der Ansprüche 11 bis 13,
dadurch gekennzeichnet, dassaus der Winkelposition des Halterungsrahmens (2) die aktuell in dem ortsfesten Raumbereich befindliche Probe (3) identifizierbar ist. - Verfahren nach einem der Ansprüche 9 bis 14,
dadurch gekennzeichnet, dassder Temperatursensor (6) stets in einem schrägen Winkel zur Horizontalen zu der oder den Proben (3) ausgerichtet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10343280 | 2003-09-18 | ||
DE10343280A DE10343280B4 (de) | 2003-09-18 | 2003-09-18 | Kontaktlose Messung der Oberflächentemperatur von natürlich oder künstlich bewitterten Proben |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1517132A1 true EP1517132A1 (de) | 2005-03-23 |
EP1517132B1 EP1517132B1 (de) | 2012-05-30 |
Family
ID=34177820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04019632A Expired - Lifetime EP1517132B1 (de) | 2003-09-18 | 2004-08-18 | Kontaktlose Messung der Oberflächentemperatur von künstlich bewitterten Proben |
Country Status (5)
Country | Link |
---|---|
US (1) | US7353722B2 (de) |
EP (1) | EP1517132B1 (de) |
JP (1) | JP4049771B2 (de) |
CN (1) | CN100403009C (de) |
DE (1) | DE10343280B4 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007047776A1 (de) | 2007-10-05 | 2009-04-09 | Bayerische Motoren Werke Aktiengesellschaft | Infrarot-Prüfvorrichtung und Verfahren zum Betreiben der Infrarot-Prüfvorrichtung |
EP3486635A1 (de) * | 2017-11-16 | 2019-05-22 | Atlas Material Testing Technology GmbH | Sensoreinrichtung mit einem luftmassensensor für eine bewitterungsvorrichtung |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060254372A1 (en) * | 2005-05-16 | 2006-11-16 | Kurt Scott | Non-contact temperature sensor for a weathering test device |
CN100439900C (zh) * | 2005-12-14 | 2008-12-03 | 中国科学院金属研究所 | 一种材料黑度系数的测试方法 |
US20100005911A1 (en) * | 2008-07-11 | 2010-01-14 | Atlas Material Testing Technology, Llc | Weathering Test Apparatus With Real-Time Color Measurement |
WO2010039500A2 (en) * | 2008-09-23 | 2010-04-08 | Applied Materials, Inc. | Light soaking system and test method for solar cells |
CN102147352B (zh) * | 2010-12-29 | 2013-11-27 | 常州亿晶光电科技有限公司 | 双面紫外老化试验用同步装夹组件试验架 |
CN103163062A (zh) * | 2011-12-09 | 2013-06-19 | 海洋王照明科技股份有限公司 | 灯具材料老化测试电路、装置及方法 |
CN102593249A (zh) * | 2012-02-23 | 2012-07-18 | 常州天合光能有限公司 | 组件固化及功率稳定装置及其方法 |
CN102621055A (zh) * | 2012-03-13 | 2012-08-01 | 广州合成材料研究院有限公司 | 一种多氙灯光辐照系统 |
CN103674260B (zh) * | 2012-09-26 | 2016-03-02 | 中国科学院地理科学与资源研究所 | 双黑体箱调温水浴比辐射率测定仪及其测定方法 |
JP5495216B1 (ja) * | 2013-07-26 | 2014-05-21 | スガ試験機株式会社 | 耐候性試験機および固体発光素子システム |
EP2846146B1 (de) * | 2013-09-06 | 2020-01-08 | Atlas Material Testing Technology GmbH | Bewitterungsprüfung mit mehreren unabhängig voneinander ansteuerbaren Strahlungsquellen |
CN104155234B (zh) * | 2014-08-27 | 2017-03-22 | 哈尔滨工业大学 | 高分子材料紫外线老化设备 |
CN104614303A (zh) * | 2015-01-15 | 2015-05-13 | 中国电器科学研究院有限公司 | 一种利用太阳跟踪聚光加速暴露试验评价汽车内饰部件耐候性的方法 |
CN104913997B (zh) * | 2015-07-07 | 2017-08-04 | 河南理工大学 | 一种带有温度测试系统的旋转式冲蚀磨损试验装置 |
KR102603059B1 (ko) * | 2018-09-21 | 2023-11-16 | 현대자동차주식회사 | 차량의 실내온도 측정장치 및 측정방법 |
CN109613413B (zh) * | 2018-12-26 | 2021-05-14 | 山东阅芯电子科技有限公司 | 增加高温环境老化试验测试样品数量的方法及系统 |
US11460393B2 (en) * | 2019-06-27 | 2022-10-04 | The Insulating Glass Certification Council | System and method for accelerated weathering testing of insulating glass units |
CN111141393B (zh) * | 2019-12-31 | 2021-05-04 | 航天新气象科技有限公司 | 一种用于模拟气象环境的黑体辐射装置 |
CN111208057B (zh) * | 2020-01-20 | 2023-04-07 | 大族激光科技产业集团股份有限公司 | 耐光性检测方法 |
EP4030464A1 (de) * | 2021-01-19 | 2022-07-20 | Atlas Material Testing Technology GmbH | Plasmalampe als strahlungsquelle in einer vorrichtung zur künstlichen bewitterung |
WO2022230083A1 (ja) * | 2021-04-28 | 2022-11-03 | 日本電信電話株式会社 | 試験装置および方法 |
US11868108B2 (en) * | 2021-06-29 | 2024-01-09 | Volvo Car Corporation | Artificial weathering of a multi-dimensional object |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361935A (ja) * | 1986-09-03 | 1988-03-18 | Nissan Motor Co Ltd | 促進耐候性試験機の温度調節方法 |
EP0320209A2 (de) | 1987-12-10 | 1989-06-14 | Atlas Electric Devices Co. | Wetterechtheitsprüfgerät |
US4874952A (en) | 1987-04-28 | 1989-10-17 | Universite De Clermont Ii, Laboratoire De Photochimie | Device for accelerated photo-aging of materials containing polymers |
JPH09166542A (ja) * | 1995-12-13 | 1997-06-24 | Toyota Central Res & Dev Lab Inc | 耐候劣化検出方法およびその装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3709026A (en) * | 1968-11-12 | 1973-01-09 | Kms Ind Inc | Apparatus and method for simulating spacecraft erosion |
FR2430609A1 (fr) * | 1978-07-07 | 1980-02-01 | Telecommunications Sa | Dispositif de photovieillissement accelere des polymeres |
GB2071316B (en) * | 1979-09-12 | 1983-11-09 | Raytek Inc | Hand-held digital temperature measuring instrument |
EP0129150B1 (de) * | 1983-06-16 | 1989-04-26 | Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. | Verfahren zur berührungslosen, emissionsgradunabhängigen Strahlungsmessung der Temperatur eines Objekts und Vorrichtung zur Durchführung der Verfahren |
JPS61105444A (ja) | 1984-10-30 | 1986-05-23 | Suga Shikenki Kk | 試料の表面温度を均一にした耐光試験機 |
JPS61292040A (ja) * | 1985-06-19 | 1986-12-22 | Suga Shikenki Kk | 空気混合調節装置付促進耐光・候試験機 |
JPS62237343A (ja) * | 1986-04-07 | 1987-10-17 | Suga Shikenki Kk | 強力促進耐候・光試験機 |
US4957011A (en) * | 1987-12-10 | 1990-09-18 | Atlas Electric Devices Co. | Weathering testing system |
JPH0652234B2 (ja) * | 1989-08-17 | 1994-07-06 | スガ試験機株式会社 | 促進耐光試験方法 |
US5219226A (en) * | 1991-10-25 | 1993-06-15 | Quadtek, Inc. | Imaging and temperature monitoring system |
US5305634A (en) * | 1992-11-25 | 1994-04-26 | Suga Test Instruments Co. Ltd. | Weathering test method and sample holder used therein |
WO1997041417A1 (en) * | 1996-05-02 | 1997-11-06 | The United States Of America, Represented By The Secretary Of Commerce | Method and apparatus for artificial weathering |
JP3293470B2 (ja) | 1996-06-06 | 2002-06-17 | 三菱電機株式会社 | 放射温度計 |
US6423949B1 (en) * | 1999-05-19 | 2002-07-23 | Applied Materials, Inc. | Multi-zone resistive heater |
FR2802301B1 (fr) * | 1999-12-13 | 2002-08-02 | Michel Beraud | Dispositif d'exposition a des rayonnements electromagnetiques pour tester le vieillissement d'echantillons |
CN1253707C (zh) * | 2000-09-15 | 2006-04-26 | Q试板实验室产品公司 | 控制试验腔中空气和黑色镶板温度的方法及加速风化装置 |
CN1120983C (zh) * | 2001-02-28 | 2003-09-10 | 武汉理工大学 | 光纤高温传感测量方法及装置 |
US6720562B2 (en) * | 2001-04-02 | 2004-04-13 | Atlas Material Testing Technology, L.L.C. | Accelerated weathering apparatus |
-
2003
- 2003-09-18 DE DE10343280A patent/DE10343280B4/de not_active Expired - Lifetime
-
2004
- 2004-08-18 EP EP04019632A patent/EP1517132B1/de not_active Expired - Lifetime
- 2004-09-17 CN CNB2004100781483A patent/CN100403009C/zh not_active Expired - Lifetime
- 2004-09-17 JP JP2004271237A patent/JP4049771B2/ja not_active Expired - Lifetime
- 2004-09-17 US US10/943,142 patent/US7353722B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361935A (ja) * | 1986-09-03 | 1988-03-18 | Nissan Motor Co Ltd | 促進耐候性試験機の温度調節方法 |
US4874952A (en) | 1987-04-28 | 1989-10-17 | Universite De Clermont Ii, Laboratoire De Photochimie | Device for accelerated photo-aging of materials containing polymers |
EP0320209A2 (de) | 1987-12-10 | 1989-06-14 | Atlas Electric Devices Co. | Wetterechtheitsprüfgerät |
JPH09166542A (ja) * | 1995-12-13 | 1997-06-24 | Toyota Central Res & Dev Lab Inc | 耐候劣化検出方法およびその装置 |
Non-Patent Citations (3)
Title |
---|
"Quantification and Prediction for Aging of Printing and Writing Papers Exposed to Light", August 2000, pages: 1 - 151 |
PATENT ABSTRACTS OF JAPAN vol. 0122, no. 84 (P - 740) 4 August 1988 (1988-08-04) * |
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10 31 October 1997 (1997-10-31) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007047776A1 (de) | 2007-10-05 | 2009-04-09 | Bayerische Motoren Werke Aktiengesellschaft | Infrarot-Prüfvorrichtung und Verfahren zum Betreiben der Infrarot-Prüfvorrichtung |
EP3486635A1 (de) * | 2017-11-16 | 2019-05-22 | Atlas Material Testing Technology GmbH | Sensoreinrichtung mit einem luftmassensensor für eine bewitterungsvorrichtung |
US10962468B2 (en) | 2017-11-16 | 2021-03-30 | Atlas Material Testing Technology Gmbh | Sensor device with an air mass sensor for a weathering device |
Also Published As
Publication number | Publication date |
---|---|
JP2005091366A (ja) | 2005-04-07 |
DE10343280B4 (de) | 2005-09-22 |
DE10343280A1 (de) | 2005-04-14 |
CN1598536A (zh) | 2005-03-23 |
US7353722B2 (en) | 2008-04-08 |
EP1517132B1 (de) | 2012-05-30 |
CN100403009C (zh) | 2008-07-16 |
US20050092114A1 (en) | 2005-05-05 |
JP4049771B2 (ja) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1517132B1 (de) | Kontaktlose Messung der Oberflächentemperatur von künstlich bewitterten Proben | |
DE10333774B4 (de) | Kalibrierung von Temperatursensoren von Bewitterungsgeräten durch kontaktlose Temperaturmessung | |
EP3165910B1 (de) | Verfahren und vorrichtung zur photothermischen untersuchung einer probe | |
EP1624297B1 (de) | Bewitterungsvorrichtung mit UV-Strahlungsquellen und Strahlungssensoren enthaltend einen zweifach kalibrierten UV-Sensor | |
EP0527987B1 (de) | Verfahren zur bestimmung von chemischen und/oder physikalischen eigenschaften einer gasatmosphäre | |
DE19628050C2 (de) | Infrarotmeßgerät und Verfahren der Erfassung eines menschlichen Körpers durch dieses | |
WO1996001075A1 (de) | Verfahren und vorrichtung zur erfassung von wärmeübertragung zwischen einem lebenden körper und einem sensor | |
DE10032015A1 (de) | Testelement-Analysegerät | |
DE102010038329B4 (de) | IR-Spektrometer mit berührungsloser Temperaturmessung | |
DE102014002077B4 (de) | Gassensor, Verfahren zur Detektion von Gasen und Herstellungsverfahren eines Gassensors | |
DE102012110699B4 (de) | Verfahren und Kit zur aktiven Thermografie | |
DE3902096A1 (de) | Verfahren und vorrichtung zum bestimmen der dicke eines ueberzuges auf einem metallsubstrat | |
DE19610911A1 (de) | Gassensor | |
EP2171434A1 (de) | Messgerät und verfahren zur bestimmung optischer kenngrössen zum nachweis photo- und elektrochemischer abbaureaktionen | |
DE102022126635A1 (de) | Verfahren und Vorrichtung zur berührungslosen Temperaturbestimmung eines Fördergutstroms sowie Granuliereinrichtung mit einer solchen berührungslosen Temperaturbestimmungsvorrichtung | |
DE10243411B4 (de) | Verfahren zur Kalibrierung von Messgeräten zur quantitativen Infrarotstrahlungsmessung | |
DE102007043470B4 (de) | Vorrichtung zur langzeitstabilen Strahlungsmessung und Verfahren zu deren Funktionsprüfung | |
EP0421100A1 (de) | Verfahren und Vorrichtung zum Erkennen von Gefahrenzuständen in einem Raum | |
EP2982962A1 (de) | Sensoreinrichtung mit mehreren Sensoren für eine Bewitterungsvorrichtung | |
DE3425561C2 (de) | Vorrichtung zur Messung von wärmetechnischen Kenngrössen einer Stoffprobe | |
DE3707819C2 (de) | ||
EP3486635A1 (de) | Sensoreinrichtung mit einem luftmassensensor für eine bewitterungsvorrichtung | |
DE19739338A1 (de) | Vorrichtung und Verfahren zur Bestimmung der thermischen Emissivität | |
EP3244186A1 (de) | Prüfkammer und verfahren zur temperaturmessung von prüfgut in einer prüfkammer | |
EP4421465A1 (de) | Verfahren zur bestimmung von wärmedurchgangskoeffizienten und wärmekapazitäten einer gebäudehülle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20041202 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
AKX | Designation fees paid | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17Q | First examination report despatched |
Effective date: 20071008 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: CONTACTLESS MEASUREMENT OF THE SURFACE TEMPERATURE OF A PROBE EXPOSED TO ARTIFICIAL WEATHERING |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004013532 Country of ref document: DE Effective date: 20120726 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130301 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004013532 Country of ref document: DE Effective date: 20130301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20200817 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200831 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230824 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230821 Year of fee payment: 20 Ref country code: DE Payment date: 20230512 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004013532 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20240817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240817 |