EP1504458B1 - Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit - Google Patents
Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit Download PDFInfo
- Publication number
- EP1504458B1 EP1504458B1 EP03752654A EP03752654A EP1504458B1 EP 1504458 B1 EP1504458 B1 EP 1504458B1 EP 03752654 A EP03752654 A EP 03752654A EP 03752654 A EP03752654 A EP 03752654A EP 1504458 B1 EP1504458 B1 EP 1504458B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- superconducting
- winding
- cooling
- pipeline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002887 superconductor Substances 0.000 title claims description 8
- 238000001816 cooling Methods 0.000 title description 27
- 238000005516 engineering process Methods 0.000 title description 2
- 239000003507 refrigerant Substances 0.000 claims description 47
- 238000004804 winding Methods 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 15
- 238000005057 refrigeration Methods 0.000 claims description 15
- 238000009833 condensation Methods 0.000 claims description 8
- 230000005494 condensation Effects 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 3
- 201000009240 nasopharyngitis Diseases 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000002595 magnetic resonance imaging Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 239000001307 helium Substances 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B23/00—Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
- F25B23/006—Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
Definitions
- cooling units in the form of so-called cryocoolers with closed helium compressed gas circulation are preferably used in said temperature range.
- cryocoolers are in particular of the Gifford-McMahon or Stirling type or are designed as so-called pulse tube coolers.
- Corresponding refrigeration units also have the advantage that the cooling capacity is virtually available at the push of a button and the user is spared the handling of cryogenic liquids.
- a superconducting magnetic coil winding is indirectly cooled only by heat conduction to a cold head of a refrigerator, so it is free of refrigerant.
- Corresponding devices of the superconducting technique go, for example, " Proc. 16th Int. Cryog. Engng. Conf. [ICEC 16] ", Kitakyushu, JP, 20-24 / 05/1996, Elsevier Science, 1997, pages 1109-1132 out.
- refrigerator cooling has already been realized using good heat-conducting connections, for example in the form of possibly also flexibly designed Cu tubes, between a cold head of a corresponding refrigeration unit and the superconducting winding of the magnet (cf. Reference from ICEC 16, in particular pages 1113 to 1116 ).
- good heat-conducting connections for example in the form of possibly also flexibly designed Cu tubes, between a cold head of a corresponding refrigeration unit and the superconducting winding of the magnet (cf. Reference from ICEC 16, in particular pages 1113 to 1116 ).
- the large cross sections required for good thermal coupling lead to a considerable increase in cold mass.
- this is due to the extended cooling times of disadvantage.
- thermal coupling of the at least one winding to the at least one cold head via thermally conductive solids may also be provided a conduit system in which a He gas stream circulates (see, eg US 5,485,730 ).
- Object of the present invention is to provide a device of the superconducting technique with the features mentioned, in which the cost of cooling a superconducting winding is reduced.
- the refrigeration unit should have at least one cold head and should the at least one pipeline with a refrigerant receiving cross-section be completed by less than 10 cm 2 at its end.
- a cold head means any cold surface of a refrigeration unit via which the refrigerating capacity is discharged directly or indirectly to the refrigerant.
- a corresponding line system has at least one closed pipe which runs between the cold head and the superconducting winding with a gradient.
- the gradient is at least in some parts of the pipeline generally more than 0.5 °, preferably more than 1 ° relative to the horizontal.
- the refrigerant present in this pipeline recondenses on a cold surface of the refrigeration unit or the cold head and from there into the region of the superconducting winding, where it heats up and generally evaporates.
- the refrigerant thus evaporated then flows within the pipe back into the area of the cold surface of the cold head.
- the piping system thus represents a so-called single-tube thermosyphon, in which the circulation of the refrigerant takes place due to the so-called "thermosiphon effect". It is assumed that even with small pipe cross-sections of less than 10 cm 2, such a circulation is possible.
- thermosiphon for transmitting the cooling capacity to the winding, the required circulating amount of cryogenic refrigerant is significantly reduced compared to a bath cooling, for example, by a factor of about 100. Furthermore, since the liquid only in pipelines with relatively small diameters, the are generally on the order of a few centimeters, circulates, the pressure build-up in a quench case without problems is technically manageable. Besides the safety aspects, reducing the amount of liquid refrigerant in the system, especially when using helium or neon as a refrigerant, is also a significant cost advantage. Compared to cooling with heat-conducting connection bodies, a thermosiphon also offers the advantage of a good thermal coupling regardless of the spatial distance between the cold head and the object to be cooled.
- the piping system may in particular comprise two or more pipes which are filled with different refrigerants having different condensation temperatures.
- the subsystems can either to a common cold head or be thermally coupled to separate cold heads of a refrigeration unit.
- the superconducting magnet of the device may include a winding which has superconducting HTS material and in particular is also to be kept at a temperature below 77 K.
- a device according to the invention of superconducting technology should also be designed for LTS magnets.
- this system includes an unspecified, preferably superconducting magnet 3 with an upper, lying in a horizontal plane superconducting winding 4a and a parallel arranged lower superconducting winding 4b.
- windings may in particular be made with conductors of high-T c superconducting material such as (Bi, Pb) 2 Sr 2 Ca 2 CU 3 O x , which, for the sake of a high current carrying capacity can be maintained at an operating temperature below 77 K.
- the windings have a ring shape. They are each housed in a corresponding vacuum housing, not shown.
- the cooling capacity for cooling the windings 4a and 4b is provided by a refrigeration unit, not shown in detail, with at least one cold head 6 located at its cold end.
- This cold head has a cold surface 7 to be held at a predetermined temperature level or is thermally connected thereto.
- the interior of a condenser chamber 8 is thermally coupled to this cold surface;
- the cold surface 7 forms a wall of this space.
- the interior of this condenser chamber 8 is divided into two subspaces 9a and 9b. To the (first) subspace 9a, a pipe 10a of a piping system 10 is connected.
- This pipeline first leads from the subspace 9a into the region of the superconducting winding 4a, where it is in good heat-conducting contact with the winding.
- the tubing 10a spirals along the inside of the coil.
- the attachment on the inside is not mandatory; It is only important that the pipeline with a permanent gradient reaches the entire circumference of the winding and is thermally coupled there well to the parts or conductors of the winding to be cooled.
- the pipe 10a includes, at least with its most substantial parts with the horizontal h, a gradient (or inclination) angle ⁇ of more than 0.5 °, preferably more than 1 °.
- the angle of inclination ⁇ in the region of the winding 4a is about 3 °.
- the pipe 10a then leads into the region of the lower winding 4b, where it is arranged in a corresponding manner. It is completed at its end 11.
- the refrigerant k1 receiving cross-section q of the pipe 10a can be advantageously kept small and in particular below 10 cm 2 . In the illustrated embodiment, q is about 2 cm 2 .
- a first refrigerant k1 for example neon (Ne).
- the refrigerant k1 circulates in the pipeline 10a including the associated subspace 9a due to a known thermosiphon effect.
- the refrigerant condenses in the subspace 9a on the cold surface 7 and reaches the area of the superconducting windings in liquid form.
- the refrigerant is heated, for example under at least partial evaporation, and flows in the pipe 10a back into the subspace 9a, where it is recondensed.
- the piping system 10 comprises a second pipeline 10b, which leads parallel to the first pipeline 10a and is filled with a further refrigerant k2.
- This refrigerant is different from the first refrigerant k1, that is, it has another, preferably higher, condensation temperature.
- nitrogen (N 2 ) is selected for the refrigerant k2.
- the pipeline 10b is connected to the (second) subspace 9b of the condenser chamber 8.
- the second refrigerant k2 also circulates due to a thermosiphon effect in the closed pipe 10b and the subspace 9b.
- the second refrigerant k2 is then condensed first, wherein the windings can be pre-cooled to about 70 to 80 K, for example in the case of using N 2 as the refrigerant k2.
- the cold surface 7 With further cooling of the cold surface 7 then condenses the first, located in the pipe 10a refrigerant k1 with the comparatively lower condensation temperature and thus leads to a further cooling to the intended operating temperature of, for example 20 K (when using Ne as the first refrigerant k1).
- the second refrigerant k2 may be frozen out at this operating temperature in the region of the subspace 9b.
- the device 2 of the superconducting technique according to the invention may of course also have only one line system with only a single pipe. If one considers a larger number of pipelines, several pipelines can also be thermally coupled to separate cold heads or to stages of a refrigeration unit lying at different temperature levels. In two-stage refrigeration units or cold heads, as they are planned in particular for the cooling of thermal shields, one would for a faster pre-cooling with another thermosiphon pipe, which is filled for example with N 2 or Ar, the magnet windings - in addition to the thermal connection to the second stage - also connect to the first (warmer) stage.
- thermosiphon cooling is also applicable to magnets having vertically arranged windings.
- An embodiment of a device according to the invention with corresponding windings is indicated in Figure 2.
- the gradient angle ⁇ is in large parts of the generally designated 20 line system about 90 °.
- a condenser chamber 18 and a cold head are generally placed above the windings so as to ensure the required slope.
- Per winding at least one pipe 15i is required because, in contrast to horizontally arranged windings not a pipe can reach all windings while maintaining the slope.
- each pipe 15i receives sufficient recondensed refrigerant k1
- the entire pipe system 20 formed from the pipes 15i must either be designed as a system of communicating pipes and be completely flooded with the liquid refrigerant in the area of the windings 14j. This is indicated in the figure 2 by a blackening coloring of the refrigerant k1, while the evaporated refrigerant is colored lighter and designated k1 '.
- each pipe 15i must have a separate condenser (part) chamber on the cold head.
- an inventive device of the superconducting technique may comprise a conduit system with at least one pipe, in which there is also a mixture of two refrigerants with different condensation temperatures. Then, with a gradual cooling, the gas with the highest condensation temperature can condense and then form a closed circuit for heat transfer to a winding to be cooled. After a pre-cooling of this winding to the triple point temperature of this gas, this will then freeze in the region of the condenser chamber, whereupon the other gas mixture component with the lower condensation temperature ensures further cooling to the operating temperature.
- the gases He, H 2 , Ne, O 2 , N 2 , Ar and various hydrocarbons come as a refrigerant depending on the desired operating temperature in question.
- the selection of the respective cold gas is carried out so that at the intended operating temperature the refrigerant is simultaneously gaseous and liquid. In this way, a circulation is to be ensured by utilizing a thermosiphon effect.
- warm and / or cold reservoirs can be provided on the line system.
- refrigerant also depends on the superconductor material used. If an LTS material such as Nb 3 Sn is provided, only He as a refrigerant in question.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10221639A DE10221639B4 (de) | 2002-05-15 | 2002-05-15 | Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit |
DE10221639 | 2002-05-15 | ||
PCT/DE2003/001378 WO2003098645A1 (de) | 2002-05-15 | 2003-04-29 | Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1504458A1 EP1504458A1 (de) | 2005-02-09 |
EP1504458B1 true EP1504458B1 (de) | 2007-07-18 |
Family
ID=29285434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03752654A Expired - Lifetime EP1504458B1 (de) | 2002-05-15 | 2003-04-29 | Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit |
Country Status (6)
Country | Link |
---|---|
US (1) | US7260941B2 (zh) |
EP (1) | EP1504458B1 (zh) |
JP (1) | JP4417247B2 (zh) |
CN (1) | CN100354992C (zh) |
DE (2) | DE10221639B4 (zh) |
WO (1) | WO2003098645A1 (zh) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004057204B4 (de) * | 2004-11-26 | 2012-06-14 | Siemens Ag | Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter |
DE102004058006B3 (de) | 2004-12-01 | 2006-06-08 | Siemens Ag | Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter |
DE102005028414B4 (de) | 2005-06-20 | 2011-12-08 | Siemens Aktiengesellschaft | Einrichtung zur Erzeugung eines gepulsten Magnetfelds |
US7053740B1 (en) * | 2005-07-15 | 2006-05-30 | General Electric Company | Low field loss cold mass structure for superconducting magnets |
US7626477B2 (en) * | 2005-11-28 | 2009-12-01 | General Electric Company | Cold mass cryogenic cooling circuit inlet path avoidance of direct conductive thermal engagement with substantially conductive coupler for superconducting magnet |
CN101236239B (zh) * | 2007-01-30 | 2012-01-25 | 西门子(中国)有限公司 | 磁共振系统的超导磁体的电流引线 |
US20080209919A1 (en) * | 2007-03-01 | 2008-09-04 | Philips Medical Systems Mr, Inc. | System including a heat exchanger with different cryogenic fluids therein and method of using the same |
CN101299060B (zh) * | 2007-04-30 | 2011-04-06 | 西门子(中国)有限公司 | 一种磁共振成像系统的通风方法及通风系统 |
US7449889B1 (en) * | 2007-06-25 | 2008-11-11 | General Electric Company | Heat pipe cooled superconducting magnets with ceramic coil forms |
US7477055B1 (en) * | 2007-08-21 | 2009-01-13 | General Electric Company | Apparatus and method for coupling coils in a superconducting magnet |
US7728592B2 (en) * | 2008-09-17 | 2010-06-01 | Time Medical Holdings Company Limited | Integrated superconductor MRI imaging system |
US7772842B2 (en) * | 2008-09-17 | 2010-08-10 | Time Medical Holdings Company Limited | Dedicated superconductor MRI imaging system |
US20100242502A1 (en) * | 2009-03-31 | 2010-09-30 | General Electric Company | Apparatus and method of superconducting magnet cooling |
US8238988B2 (en) * | 2009-03-31 | 2012-08-07 | General Electric Company | Apparatus and method for cooling a superconducting magnetic assembly |
JP5450224B2 (ja) * | 2009-05-29 | 2014-03-26 | 株式会社東芝 | 磁気共鳴イメージング装置 |
CN102054554B (zh) * | 2009-10-30 | 2015-07-08 | 通用电气公司 | 超导磁体的制冷系统和制冷方法 |
US8676282B2 (en) | 2010-10-29 | 2014-03-18 | General Electric Company | Superconducting magnet coil support with cooling and method for coil-cooling |
US8332004B2 (en) * | 2010-12-23 | 2012-12-11 | General Electric Company | System and method for magnetization of rare-earth permanent magnets |
CN102110510B (zh) * | 2010-12-24 | 2012-07-04 | 中国科学院深圳先进技术研究院 | 磁共振成像系统的线圈、线圈的冷却装置及方法 |
DE102011005685A1 (de) * | 2011-03-17 | 2012-09-20 | Siemens Aktiengesellschaft | Vorrichtung zur Kühlung eines Bulk-Supraleiters oder einer supraleitenden Spule einer Magnetresonanzeinrichtung, Magnetresonanzeinrichtung und Magnetlager |
JP5852425B2 (ja) * | 2011-12-01 | 2016-02-03 | 株式会社日立製作所 | 超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置 |
US9570220B2 (en) * | 2012-10-08 | 2017-02-14 | General Electric Company | Remote actuated cryocooler for superconducting generator and method of assembling the same |
US10224799B2 (en) * | 2012-10-08 | 2019-03-05 | General Electric Company | Cooling assembly for electrical machines and methods of assembling the same |
DE102014224363A1 (de) * | 2014-11-28 | 2016-06-02 | Siemens Aktiengesellschaft | Vorrichtung der Supraleitungstechnik mitSpuleneinrichtungen und Kühlvorrichtung sowie damitausgestattetes Fahrzeug |
US20160262284A1 (en) * | 2015-03-03 | 2016-09-08 | Asia Vital Components (China) Co., Ltd. | Cold plate structure |
CN107991635B (zh) * | 2017-11-24 | 2021-03-19 | 上海联影医疗科技股份有限公司 | 一种用于磁共振系统的冷却组件及磁共振系统 |
US11187381B2 (en) | 2017-09-29 | 2021-11-30 | Shanghai United Imaging Healthcare Co., Ltd. | Cryostat devices for magnetic resonance imaging and methods for making |
WO2019198266A1 (ja) * | 2018-04-09 | 2019-10-17 | 三菱電機株式会社 | 超電導磁石装置 |
JP6556414B1 (ja) * | 2018-04-09 | 2019-08-07 | 三菱電機株式会社 | 超電導磁石装置 |
JP2020180728A (ja) * | 2019-04-24 | 2020-11-05 | 株式会社デンソー | 機器温調装置 |
CN110600220A (zh) * | 2019-09-04 | 2019-12-20 | 中国科学院合肥物质科学研究院 | 一种用于超导磁体的双回路低温系统 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146998A (en) * | 1977-02-16 | 1979-04-03 | Teco, Inc. | Position responsive valve for controlling the retraction rate of a lower boom in an articulated boom assembly |
DE3015682A1 (de) * | 1980-04-23 | 1981-10-29 | Siemens AG, 1000 Berlin und 8000 München | Anordnung zur kuehlung einer supraleitenden magnetwicklung |
JPS5862055U (ja) | 1981-10-21 | 1983-04-26 | 松下電器産業株式会社 | 太陽熱集熱器のヒ−トパイプ |
JPS6171608A (ja) * | 1984-09-17 | 1986-04-12 | Toshiba Corp | 超電導装置 |
FR2578638B1 (fr) * | 1985-03-08 | 1989-08-18 | Inst Francais Du Petrole | Procede de transfert de chaleur d'un fluide chaud a un fluide froid utilisant un fluide mixte comme agent caloporteur |
JPS62166473A (ja) | 1986-01-20 | 1987-07-22 | Hitachi Ltd | 陰影図形発生装置 |
JPS63129280A (ja) * | 1986-11-18 | 1988-06-01 | 株式会社東芝 | ヘリウム冷却装置 |
US4995450A (en) * | 1989-08-18 | 1991-02-26 | G.P. Industries, Inc. | Heat pipe |
US5070702A (en) * | 1990-05-07 | 1991-12-10 | Jackson Henry W | Continuously operating 3 HE evaporation refrigerator for space flight |
US5193349A (en) * | 1991-08-05 | 1993-03-16 | Chicago Bridge & Iron Technical Services Company | Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures |
EP0616230B1 (de) | 1993-03-15 | 1998-08-05 | Siemens Aktiengesellschaft | Homogenfeldmagnet mit über Korrekturluftspalte beabstandeten Polplatteneinrichtungen seiner Polschuhe |
JPH06342721A (ja) * | 1993-05-31 | 1994-12-13 | Tokin Corp | 超電導マグネット装置 |
US5485730A (en) * | 1994-08-10 | 1996-01-23 | General Electric Company | Remote cooling system for a superconducting magnet |
JP3423514B2 (ja) * | 1995-11-30 | 2003-07-07 | アネスト岩田株式会社 | スクロール流体機械 |
DE19813211C2 (de) * | 1998-03-25 | 2000-05-18 | Siemens Ag | Supraleitende Einrichtung mit Leitern aus Hoch-T¶c¶-Supraleitermaterial |
US6376943B1 (en) * | 1998-08-26 | 2002-04-23 | American Superconductor Corporation | Superconductor rotor cooling system |
US6181228B1 (en) * | 1999-11-09 | 2001-01-30 | General Electric Company | Superconductive magnet including a cryocooler coldhead |
DE10018169C5 (de) * | 2000-04-12 | 2005-07-21 | Siemens Ag | Vorrichtung zur Kühlung mindestens eines elektrischen Betriebselements in mindestens einem Kryostaten |
DE10039964A1 (de) * | 2000-08-16 | 2002-03-07 | Siemens Ag | Supraleitungseinrichtung mit einer Kälteeinheit zur Kühlung einer rotierenden, supraleitenden Wicklung |
DE10057664A1 (de) * | 2000-11-21 | 2002-05-29 | Siemens Ag | Supraleitungseinrichtung mit einem thermisch an eine rotierende,supraleitende Wicklung angekoppelten Kaltkopf einer Kälteeinheit |
US6783059B2 (en) * | 2002-12-23 | 2004-08-31 | General Electric Company | Conduction cooled passively-shielded MRI magnet |
-
2002
- 2002-05-15 DE DE10221639A patent/DE10221639B4/de not_active Expired - Fee Related
-
2003
- 2003-04-29 CN CNB038106493A patent/CN100354992C/zh not_active Expired - Fee Related
- 2003-04-29 DE DE50307708T patent/DE50307708D1/de not_active Expired - Fee Related
- 2003-04-29 EP EP03752654A patent/EP1504458B1/de not_active Expired - Lifetime
- 2003-04-29 JP JP2004506048A patent/JP4417247B2/ja not_active Expired - Fee Related
- 2003-04-29 WO PCT/DE2003/001378 patent/WO2003098645A1/de active IP Right Grant
- 2003-04-29 US US10/514,428 patent/US7260941B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20050252219A1 (en) | 2005-11-17 |
CN100354992C (zh) | 2007-12-12 |
JP4417247B2 (ja) | 2010-02-17 |
WO2003098645A1 (de) | 2003-11-27 |
US7260941B2 (en) | 2007-08-28 |
DE10221639A1 (de) | 2003-11-27 |
DE50307708D1 (de) | 2007-08-30 |
CN1653564A (zh) | 2005-08-10 |
DE10221639B4 (de) | 2004-06-03 |
EP1504458A1 (de) | 2005-02-09 |
JP2005530976A (ja) | 2005-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1504458B1 (de) | Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit | |
DE69838866T2 (de) | Verbesserungen in oder mit Bezug auf Kryostatsystemen | |
DE19648253C2 (de) | Pulsröhrenkühler und Verwendung desselben | |
EP1655616B1 (de) | NMR-Spektrometer mit Refrigeratorkühlung | |
DE102004060832B3 (de) | NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat | |
DE102004061869B4 (de) | Einrichtung der Supraleitungstechnik und Magnetresonanzgerät | |
DE102005028414B4 (de) | Einrichtung zur Erzeugung eines gepulsten Magnetfelds | |
DE102004053972B3 (de) | NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat | |
DE102005041383B4 (de) | NMR-Apparatur mit gemeinsam gekühltem Probenkopf und Kryobehälter und Verfahren zum Betrieb derselben | |
WO2008040609A1 (de) | Kälteanlage mit einem warmen und einem kalten verbindungselement und einem mit den verbindungselementen verbundenen wärmerohr | |
DE102011078608B4 (de) | Kryostatanordnung | |
DE112011100875T5 (de) | Verfahren und Vorrichtung zum Regeln der Temperatur in einem auf tiefe Temperaturen gekühlten Kyrostaten unter Verwendung von stehendem und sich bewegendem Gas | |
EP3282270B1 (de) | Nmr-apparatur mit supraleitender magnetanordnung sowie gekühlten probenkopfkomponentten | |
EP1336236A1 (de) | Supraleitungseinrichtung mit einem thermisch an eine rotierende, supraleitende wicklung angekoppelten kaltkopf einer kälteeinheit | |
DE19938986B4 (de) | Supraleitungseinrichtung mit einer Kälteeinheit für eine rotierende, supraleitende Wicklung | |
EP1504516B1 (de) | Supraleitungseinrichtung mit thermisch an eine rotierende supraleitende wicklung angekoppeltem kaltkopf einer kälteeinheit | |
EP0463481B1 (de) | Einrichtung zur Kühlung einer SQUID-Messvorrichtung | |
DE19704485C2 (de) | Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung | |
DE102004058006B3 (de) | Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter | |
EP3244137B1 (de) | Kryostatanordnung | |
DE10211568B4 (de) | Kälteanlage für zu kühlende Teile einer Einrichtung | |
DE102005002361B3 (de) | Kälteanlage eines Gerätes der Supraleitungstechnik mit mehreren Kaltköpfen | |
EP3467852B1 (de) | Magnetanordnung mit kryostat und magnetspulensystem, mit kältespeichern an den stromzuführungen | |
DE102015202638A1 (de) | Stromzuführung für eine supraleitende Spuleneinrichtung | |
DE102006035093B3 (de) | Kühlvorrichtung eines Systems aus mindestens zwei Magneten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20041021 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FI FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FI FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070718 |
|
REF | Corresponds to: |
Ref document number: 50307708 Country of ref document: DE Date of ref document: 20070830 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20090407 Year of fee payment: 7 Ref country code: FR Payment date: 20090424 Year of fee payment: 7 Ref country code: IT Payment date: 20090428 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190402 Year of fee payment: 17 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200429 |