DE10221639A1 - Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit - Google Patents

Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit

Info

Publication number
DE10221639A1
DE10221639A1 DE10221639A DE10221639A DE10221639A1 DE 10221639 A1 DE10221639 A1 DE 10221639A1 DE 10221639 A DE10221639 A DE 10221639A DE 10221639 A DE10221639 A DE 10221639A DE 10221639 A1 DE10221639 A1 DE 10221639A1
Authority
DE
Germany
Prior art keywords
refrigerant
superconducting
pipeline
winding
line system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10221639A
Other languages
English (en)
Other versions
DE10221639B4 (de
Inventor
Peter Van Haselt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE10221639A priority Critical patent/DE10221639B4/de
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE50307708T priority patent/DE50307708D1/de
Priority to JP2004506048A priority patent/JP4417247B2/ja
Priority to EP03752654A priority patent/EP1504458B1/de
Priority to PCT/DE2003/001378 priority patent/WO2003098645A1/de
Priority to US10/514,428 priority patent/US7260941B2/en
Priority to CNB038106493A priority patent/CN100354992C/zh
Publication of DE10221639A1 publication Critical patent/DE10221639A1/de
Application granted granted Critical
Publication of DE10221639B4 publication Critical patent/DE10221639B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Die Einrichtung (2) enthält einen supraleitenden Magneten (3) mit mindestens einer kältemittelfreien supraleitenden Wicklung (4a, 4b) und eine Kälteeinheit mit mindestens einem Kaltkopf (6). Zur thermischen Ankopplung der Wicklung (4a, 4b) an den Kaltkopf (6) dient ein Leitungssystem (10) mit wenigstens einer Rohrleitung (10a, 10b) für ein darin nach einem Thermosyphon-Effekt zirkulierendes Kältemittel (k1, k2).

Description

  • Die Erfindung bezieht sich auf eine Einrichtung der Supraleitungstechnik
    • - mit einem Magneten, der mindestens eine supraleitfähige, kältemittelfreie Wicklung enthält,
    • - mit einer Kälteeinheit, die mindestens einen Kaltkopf aufweist,
    und
    • - mit Mitteln zur thermischen Ankopplung der mindestens einen Wicklung an den mindestens einen Kaltkopf.
  • Entsprechende Einrichtungen der Supraleitungstechnik gehen z. B. aus "Proc. 16th Int. Cryog. Engng. Conf. [ICEC 16]", Kitakyushu, JP, 20. 24.05.1996, Verlag Elsevier Science, 1997, Seiten 1109 bis 1132 hervor.
  • Neben den seit langem bekannten metallischen Supraleitermaterialien wie z. B. NbTi oder Nb3Sn, die sehr niedrige Sprungtemperaturen Tc besitzen und deshalb auch als Niedrig(Low)- Tc-Supraleitermaterialien oder LTS-Materialien bezeichnet werden, kennt man seit 1987 metalloxidische Supraleitermaterialien mit Sprungtemperaturen Tc von über 77K. Letztere Materialien werden auch als Hoch(High)-Tc -Supraleitermaterialien oder HTS-Materialien bezeichnet.
  • Mit Leitern unter Verwendung solcher HTS-Materialien versucht man auch, supraleitende Magnetwicklungen zu erstellen. Wegen ihrer bislang noch verhältnismäßig geringen Stromtragfähigkeit in Magnetfeldern, insbesondere mit Induktionen im Tesla- Bereich, werden vielfach die Leiter solcher Wicklungen trotz der an sich hohen Sprungtemperaturen Tc der verwendeten Materialien dennoch auf einem unterhalb von 77K liegenden Temperaturniveau, beispielsweise zwischen 10 und 50K gehalten, um so bei höheren Feldstärken wie z. B. von einigen Tesla nennenswerte Ströme tragen zu können.
  • Zur Kühlung von Wicklungen mit HTS-Leitern kommen in dem genannten Temperaturbereich bevorzugt Kälteeinheiten in Form von sogenannten Kryokühlern mit geschlossenem Helium-Druckgaskreislauf zum Einsatz. Solche Kryokühler sind insbesondere vom Typ Gifford-McMahon oder Stirling oder sind als sogenannte Pulsröhrenkühler ausgebildet. Entsprechende Kälteeinheiten haben zudem den Vorteil, dass die Kälteleistung quasi auf Knopfdruck zur Verfügung steht und dem Anwender die Handhabung von tiefkalten Flüssigkeiten erspart wird. Bei einer Verwendung solcher Kälteeinheiten wird z. B. eine supraleitende Magnetspulenwicklung nur durch Wärmeleitung zu einem Kaltkopf eines Refrigerators indirekt gekühlt, ist also kältemittelfrei (vgl. auch die genannte Textstelle aus ICEC 16).
  • Die Kühlung supraleitender Magnetsysteme insbesondere von MRI(Magnetresonance Imaging)-Anlagen ist derzeit bei heliumgekühlten Magneten in der Regel als Badkühlung ausgeführt (vgl. US 6,246,308 B1). Hierfür ist als Vorrat eine vergleichsweise große Menge an flüssigem Helium erforderlich, beispielsweise einige 100 Liter. Dieser Vorrat führt in einem Quenchfall des Magneten, d. h. bei einem Übergang von zunächst supraleitenden Teilen seiner Wicklung in den normalleitenden Zustand, zu einem unerwünschten Druckaufbau in einem erforderlichen Kryostaten.
  • Bei LTS-Magneten wurden bereits Refrigerator-Kühlungen unter Verwendung von gut-wärmeleitenden Verbindungen wie z. B. in Form von gegebenenfalls auch flexibel ausgeführten Cu-Rohren zwischen einem Kaltkopf einer entsprechenden Kälteeinheit und der supraleitenden Wicklung des Magneten realisiert (vgl. die genannte Literaturstelle aus ICEC 16, insbesondere Seiten 1113 bis 1116). Je nach Abstand zwischen dem Kaltkopf und dem zu kühlenden Objekt führen dann aber die für eine gute thermische Ankopplung erforderlichen großen Querschnitte zu einer beträchtlichen Vergrößerung der Kaltmasse. Insbesondere bei den in MRI-Anwendungen üblichen, räumlich ausgedehnten Magnetsystemen ist dies auf Grund der verlängerten Abkühlzeiten von Nachteil.
  • Statt einer solchen thermischen Ankopplung der mindestens einen Wicklung an den mindestens einen Kaltkopf über wärmeleitende Festkörper kann auch ein Leitungssystem vorgesehen sein, in dem ein He-Gasstrom zirkuliert (vgl. z. B. US 5,485,730).
  • Aufgabe der vorliegenden Erfindung ist es, eine Einrichtung der Supraleitungstechnik mit den eingangs genannten Merkmalen anzugeben, bei dem der Aufwand zur Kühlung einer supraleitenden Wicklung verringert ist.
  • Diese Aufgabe wird erfindungsgemäß mit den in Anspruch 1 angegebenen Maßnahmen gelöst. Demgemäss sollen die thermischen Ankopplungsmittel zwischen der mindestens einen Wicklung und dem mindestens einen Kaltkopf als ein Leitungssystem mit wenigstens einer Rohrleitung für ein darin nach einem Thermosyphon-Effekt zirkulierendes Kältemittel ausgebildet sein. Unter einem Kaltkopf sei hierbei jede beliebige Kaltfläche einer Kälteeinheit verstanden, über die die Kälteleistung an das Kältemittel direkt oder indirekt abgegeben wird.
  • Ein derartiges Leitungssystem weist wenigstens eine geschlossene Rohrleitung auf, die zwischen dem Kaltkopf und der supraleitenden Wicklung mit einem Gefälle verläuft. Das Gefälle beträgt dabei zumindest in einigen Teilen der Rohrleitung im Allgemeinen mehr als 0,5°, vorzugsweise mehr als 1° gegenüber der Horizontalen. Das in dieser Rohrleitung befindliche Kältemittel rekondensiert an einer Kaltfläche der Kälteeinheit bzw. des Kaltkopfes und gelangt von dort in den Bereich der supraleitenden Wicklung, wo es sich erwärmt und dabei im Allgemeinen verdampft. Das so verdampfte Kältemittel strömt dann innerhalb der Rohrleitung wieder zurück in den Bereich der Kaltfläche des Kaltkopfes. Die entsprechende Zirkulation des Kältemittels erfolgt demnach auf Grund eines sogenannten "Thermosyphon-Effektes".
  • Durch die Verwendung eines solchen Thermosyphons (wie ein entsprechendes Leitungssystem auch bezeichnet wird) zur Übertragung der Kälteleistung an die Wicklung wird die erforderliche umlaufende Menge des kryogenen Kältemittels im Vergleich zu einer Badkühlung erheblich reduziert, beispielsweise um einen Faktor von etwa 100. Da außerdem die Flüssigkeit nur in Rohrleitungen mit vergleichsweise kleinen Durchmessern, die im Allgemeinen in der Größenordnung von wenigen Zentimetern liegen, zirkuliert, ist der Druckaufbau in einem Quenchfall ohne Probleme technisch beherrschbar. Neben den Sicherheitsaspekten ist die Verringerung der Menge an flüssigem Kältemittel im System, insbesondere bei einer Verwendung von Helium oder Neon als Kältemittel, außerdem ein deutlicher Kostenvorteil. Im Vergleich zu einer Kühlung mit wärmeleitenden Verbindungskörpern bietet ein Thermosyphon außerdem den Vorteil einer guten thermischen Ankopplung unabhängig von der räumlichen Entfernung zwischen dem Kaltkopf und dem zu kühlenden Objekt.
  • Vorteilhafte Ausgestaltungen der Einrichtung der Supraleitungstechnik nach der Erfindung gehen aus den abhängigen Ansprüchen hervor.
  • So kann das Leitungssystem insbesondere zwei oder mehr Rohrleitungen aufweisen, die mit verschiedenen Kältemitteln mit unterschiedlicher Kondensationstemperatur gefüllt sind. Damit sind je nach Anforderung der Anwendung entsprechend abgestufte Arbeitstemperaturen, z. B. für eine Vorkühlung, eine quasi kontinuierliche thermische Ankopplung oder eine quasi kontinuierliche thermische Ankopplung durch überlappende Arbeitstemperaturbereiche der Kältemittel möglich. Die Teilsysteme können dabei entweder an einen gemeinsamen Kaltkopf oder auch an getrennte Kaltköpfe einer Kälteeinheit thermisch angekoppelt sein.
  • Besonders vorteilhaft kann der supraleitende Magnet der Einrichtung eine Wicklung enthalten, die supraleitendes HTS- Material aufweist und insbesondere auch auf einer Temperatur unter 77K zu halten ist. Selbstverständlich ist aber eine erfindungsgemäße Einrichtung der Supraleitungstechnik auch für LTS-Magnete auszulegen.
  • Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Einrichtung gehen aus den vorstehend nicht angesprochenen abhängigen Ansprüchen hervor.
  • Nachfolgend werden bevorzugte Ausführungsbeispiele von Einrichtungen der Supraleitungstechnik nach der Erfindung an Hand der Zeichnung noch weiter erläutert. Dabei zeigen jeweils schematisch im Schnitt
  • deren Fig. 1 die Kühlung eines MRI-Magneten mit zwei Wicklungen und
  • deren Fig. 2 die Kühlung eines anderen MRI-Magneten mit vier Wicklungen.
  • Bei der in der Fig. 1 allgemein mit 2 bezeichneten und nur in ihren für die Erfindung wesentlichen Details ausgeführten Einrichtung der Supraleitungstechnik kann es sich insbesondere um einen Teil einer MRI-Magnetanlage handeln. Dabei wird von an sich bekannten Ausführungsformen mit einem sogenannten C-Magneten ausgegangen (vgl. z. B. DE 198 13 211 C2 oder EP 0 616 230 A1). Diese Anlage enthält deshalb einen nicht näher ausgeführten, vorzugsweise supraleitenden Magneten 3 mit einer oberen, in einer horizontalen Ebene liegenden supraleitenden Wicklung 4a und einer dazu parallel angeordneten, unteren supraleitenden Wicklung 4b. Diese Wicklungen können insbesondere mit Leitern aus Hoch-Tc-Supraleitermaterial wie z. B. (Bi,Pb)2Sr2Ca2Cu3Ox erstellt sein, das aus Gründen einer hohen Stromtragfähigkeit auf einer Betriebstemperatur unter 77K gehalten werden kann. Die Wicklungen weisen eine Ring- Form auf. Sie sind jeweils in einem entsprechenden, nicht dargestellten Vakuumgehäuse untergebracht.
  • Die Kälteleistung zur Kühlung der Wicklungen 4a und 4b wird von einer nicht näher dargestellten Kälteeinheit mit wenigstens einem an ihrem kalten Ende befindlichen Kaltkopf 6 bereit gestellt. Dieser Kaltkopf weist eine auf einem vorbestimmten Temperaturniveau zu haltende Kaltfläche 7 auf oder ist mit dieser thermisch verbunden. An diese Kaltfläche ist thermisch der Innenraum einer Kondensorkammer 8 angekoppelt; beispielsweise bildet die Kaltfläche 7 eine Wand dieses Raumes. Gemäß dem dargestellten Ausführungsbeispiel ist der Innenraum dieser Kondensorkammer 8 in zwei Teilräume 9a und 9b unterteilt. An den (ersten) Teilraum 9a ist eine Rohrleitung 10a eines Rohrleitungssystems 10 angeschlossen. Diese Rohrleitung führt zunächst von dem Teilraum 9a in den Bereich der supraleitenden Wicklung 4a, wo sie mit der Wicklung in gut wärmeleitendem Kontakt steht. Beispielsweise führt die Rohrleitung 10a in spiralförmigen Windungen an der Innenseite der Wicklung entlang. Die Anbringung auf der Innenseite ist nicht zwingend; wichtig ist nur, dass die Rohrleitung mit permanentem Gefälle den gesamten Umfang der Wicklung erreicht und dort thermisch gut an die zu kühlenden Teile bzw. Leiter der Wicklung angekoppelt ist. Die Rohrleitung 10a schließt zumindest mit ihren wesentlichsten Teilen mit der Horizontalen h einen Gefälle-(oder Neigungs-)Winkel α von mehr als 0,5°, vorzugsweise mehr als 1° ein. So beträgt z. B. der Gefällwinkel α im Bereich der Wicklung 4a etwa 3°. Die Rohrleitung 10a führt dann in den Bereich der unteren Wicklung 4b, wo sie in entsprechender Weise angeordnet ist. Sie ist an ihrem Ende 11 abgeschlossen. Der das Kältemittel k1 aufnehmende Querschnitt q der Rohrleitung 10a kann vorteilhaft klein gehalten werden und insbesondere unter 10 cm2 liegen. Bei dem dargestellten Ausführungsbeispiel beträgt q etwa 2 cm2.
  • In der mit dem Gefälle verlegten Rohrleitung 10a befindet sich ein erstes Kältemittel k1, beispielsweise Neon (Ne). Das Kältemittel k1 zirkuliert dabei in der Rohrleitung 10a einschließlich dem damit verbundenen Teilraum 9a auf Grund eines an sich bekannten Thermosyphon-Effektes. Hierbei kondensiert das Kältemittel in dem Teilraum 9a an der Kaltfläche 7 und gelangt in flüssiger Form in den Bereich der supraleitenden Wicklungen. Dort erwärmt sich das Kältemittel, beispielsweise unter zumindest teilweiser Verdampfung, und strömt in der Rohrleitung 10a zurück in den Teilraum 9a, wo es rekondensiert wird.
  • Gemäß dem dargestellten Ausführungsbeispiel umfasst das Leitungssystem 10 eine zweite Rohrleitung 10b, die parallel zu der ersten Rohrleitung 10a führt und mit einem weiteren Kältemittel k2 gefüllt ist. Dieses Kältemittel ist von dem ersten Kältemittel k1 verschieden, d. h., es hat eine andere, vorzugsweise höhere Kondensationstemperatur. Beispielsweise wird für das Kältemittel k2 Stickstoff (N2) gewählt. Die Rohrleitung 10b ist dabei an den (zweiten) Teilraum 9b der Kondensorkammer 8 angeschlossen. Das zweite Kältemittel k2 zirkuliert dabei ebenfalls auf Grund eines Thermosyphon- Effektes in der geschlossenen Rohrleitung 10b und dem Teilraum 9b. Bei einer Abkühlung der Magnetwicklungen wird dann zuerst das zweite Kältemittels k2 kondensiert, wobei die Wicklungen z. B. im Falle einer Verwendung von N2 als Kältemittel k2 auf etwa 70 bis 80K vorgekühlt werden können. Mit weiterer Abkühlung der Kaltfläche 7 kondensiert dann das erste, in der Rohrleitung 10a befindliche Kältemittel k1 mit der vergleichsweise niedrigeren Kondensationstemperatur und führt so zu einer weiteren Abkühlung auf die vorgesehene Betriebstemperatur von beispielsweise 20K (bei Verwendung von Ne als erstem Kältemittel k1). Das zweite Kältemittel k2 kann bei dieser Betriebstemperatur im Bereich des Teilraums 9b ausgefroren sein.
  • Abweichend von dem in Fig. 1 dargestellten Ausführungsbeispiel kann die erfindungsgemäße Einrichtung 2 der Supraleitungstechnik selbstverständlich auch nur ein Leitungssystem mit nur einer einzigen Rohrleitung aufweisen. Sieht man eine größere Anzahl von Rohrleitungen vor, so können mehrere Rohrleitungen thermisch auch an separate Kaltköpfe oder an auf verschieden Temperaturniveaus liegende Stufen einer Kälteeinheit angekoppelt sein. Bei zweistufigen Kälteeinheiten bzw. Kaltköpfen, wie sie insbesondere zur Kühlung von thermischen Schilden eingeplant werden, würde man zu einer schnelleren Vorkühlung mit einer weiteren Thermosyphon-Rohrleitung, die beispielsweise mit N2 oder Ar gefüllt ist, die Magnetwicklungen - neben der thermischen Anbindung an die zweite Stufe - auch an die erste (wärmere) Stufe ankoppeln.
  • Selbstverständlich ist die vorbeschriebene Thermosyphon- Kühlung auch für Magnete anwendbar, die vertikal angeordnete Wicklungen aufweisen. Ein Ausführungsbeispiel einer Einrichtung nach der Erfindung mit entsprechenden Wicklungen ist in Fig. 2 angedeutet. Die allgemein mit 12 bezeichneten Einrichtung enthält einen solenoidförmigen Supraleitungsmagneten 13, der z. B. vier in Achsrichtung hintereinander liegende supraleitende Wicklungen 14j (mit j = 1. . .4) aufweist. Die einzelnen Wicklungen werden dabei z. B. jeweils an beiden Stirnseiten über zumindest im wesentlichen vertikal verlaufende Rohrleitungen 15i (mit i = 1. . .8) gekühlt, die z. B. mit einem Kältemittel k1 gefüllt sind. Hier kann also auf eine Spiralform wie im Falle des Ausführungsbeispiels nach Fig. 1 verzichtet werden und der Gefällewinkel α beträgt in großen Teilen des allgemein mit 20 bezeichneten Leitungssystems etwa 90°. Eine Kondensorkammer 18 und ein Kaltkopf werden im Allgemeinen oberhalb der Wicklungen angeordnet, um so das erforderliche Gefälle zu gewährleisten. Pro Wicklung ist mindestens eine Rohrleitung 15i erforderlich, da im Gegensatz zu horizontal angeordneten Wicklungen nicht eine Rohrleitung alle Wicklungen unter Beibehaltung des Gefälles erreichen kann.
  • Um sicherzustellen, dass jede Rohrleitung 15i genügend rekondensiertes Kältemittel k1 erhält, muss das gesamte, aus den Rohrleitungen 15i gebildete Rohrleitungssystem 20 entweder als ein System kommunizierender Röhren ausgeführt sei und im Bereich der Wicklungen 14j komplett mit dem flüssigen Kältemittel geflutet sein. Dies ist in der Fig. 2 durch eine schwärzere Einfärbung des Kältemittels k1 angedeutet, während das verdampfte Kältemittel heller eingefärbt und mit k1' bezeichnet ist. Oder aber jede Rohrleitung 15i muss eine separate Kondensor(teil)kammer an dem Kaltkopf erhalten.
  • Selbstverständlich kann für die in Fig. 2 angedeutete Ausführungsform einer Einrichtung 12 nach der Erfindung auch ein Leitungssystem mit parallel verlaufenden, mit unterschiedlichen Kältemitteln (k1 bzw. k2) gefüllten Rohrleitungen vorgesehen werden.
  • Abweichend von den dargestellten Ausführungsbeispielen kann eine erfindungsgemäße Einrichtung der Supraleitungstechnik ein Leitungssystem mit mindestens einer Rohrleitung aufweisen, in der auch in Gemisch aus zwei Kältemitteln mit unterschiedlichen Kondensationstemperaturen vorhanden ist. Dann kann folglich bei einer allmählichen Abkühlung zunächst das Gas mit der höchsten Kondensationstemperatur kondensieren und einen geschlossenen Kreislauf zur Wärmeübertragung an eine zu kühlende Wicklung ausbilden. Nach einer Vorkühlung dieser Wicklung bis zur Tripelpunkttemperatur dieses Gases wird dieses dann im Bereich der Kondensorkammer ausfrieren, worauf die andere Gasgemischkomponente mit der niedrigeren Kondensationstemperatur die weitere Abkühlung auf die Betriebstemperatur gewährleistet.
  • In der Praxis kommen als Kältemittel je nach gewünschter Arbeitstemperatur die Gase He, H2, Ne, O2, N2, Ar sowie verschiedene Kohlenwasserstoffe in Frage. Die Auswahl des jeweiligen Kaltgases erfolgt so, dass bei der vorgesehenen Betriebstemperatur das Kältemittel gleichzeitig gasförmig und flüssig vorliegt. Auf diese Weise ist eine Zirkulation unter Ausnutzung eines Thermosyphon-Effektes zu gewährleisten. Zur gezielten Einstellung der Füllmenge bei gleichzeitiger Begrenzung des Systemdrucks können warme und/oder kalte Ausgleichsbehälter an dem Leitungssystem vorgesehen werden.
  • Selbstverständlich hängt die Wahl des Kältemittels auch von dem verwendeten Supraleitermaterial ab. Wird ein LTS-Material wie Nb3Sn vorgesehen, kommt nur He als Kältemittel in Frage.

Claims (10)

1. Einrichtung der Supraleitungstechnik
- mit einem Magneten, der mindestens eine supraleitfähige, kältemittelfreie Wicklung enthält,
- mit einer Kälteeinheit, die mindestens einen Kaltkopf aufweist,
und
- mit Mitteln zur thermischen Ankopplung der mindestens einen Wicklung an den mindestens einen Kaltkopf,
dadurch gekennzeichnet, dass die thermischen Ankopplungsmittel als ein Leitungssystem (10) mit wenigstens einer Rohrleitung (10a, 10b; 15i) für ein darin nach einem Thermosyphon-Effekt zirkulierendes Kältemittel (k1, k1'; k2) ausgebildet sind.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Leitungssystem (10) zwei Rohrleitungen (10a, 10b) aufweist, die mit verschiedenen Kältemitteln (k1 bzw. k2) mit unterschiedlichen Kondensationstemperaturen gefüllt sind.
3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Rohrleitungen (10a, 10b) an einen gemeinsamen Kaltkopf (6) thermisch angekoppelt sind.
4. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Rohrleitungen an getrennte Kaltköpfe thermisch angekoppelt sind.
5. Einrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest Teile der mindestens einen Rohrleitung (10a, 10b) ein Gefälle gegenüber der Horizontalen (h) von mehr als 0,5°, vorzugsweise mehr als 1°, aufweisen.
6. Einrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Querschnitt (q) der das Kältemittel (k1, k1'; k2) führenden zumindest einen Rohrleitung (10a, 10b) unter 10 cm2 liegt.
7. Einrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die supraleitende Wicklung (4a, 4b; 14j) Hoch-Tc-Supraleitermaterial enthält.
8. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das Supraleitermaterial auf einer Temperatur unter 77K zu halten ist.
9. Einrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass als Kältemittel (k1 bzw. k2) ein Gemisch aus mehreren Kältemittelkomponenten mit unterschiedlichen Kondensationstemperaturen vorgesehen ist.
10. Einrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der supraleitende Magnet (3, 13) Teil einer MRI-Anlage ist.
DE10221639A 2002-05-15 2002-05-15 Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit Expired - Fee Related DE10221639B4 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE10221639A DE10221639B4 (de) 2002-05-15 2002-05-15 Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit
JP2004506048A JP4417247B2 (ja) 2002-05-15 2003-04-29 超伝導磁石と冷凍ユニットとを備えたmri装置
EP03752654A EP1504458B1 (de) 2002-05-15 2003-04-29 Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit
PCT/DE2003/001378 WO2003098645A1 (de) 2002-05-15 2003-04-29 Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit
DE50307708T DE50307708D1 (de) 2002-05-15 2003-04-29 Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit
US10/514,428 US7260941B2 (en) 2002-05-15 2003-04-29 Superconductor device having superconductive magnet and refrigeration unit
CNB038106493A CN100354992C (zh) 2002-05-15 2003-04-29 具有一超导磁铁和一制冷单元的超导装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10221639A DE10221639B4 (de) 2002-05-15 2002-05-15 Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit

Publications (2)

Publication Number Publication Date
DE10221639A1 true DE10221639A1 (de) 2003-11-27
DE10221639B4 DE10221639B4 (de) 2004-06-03

Family

ID=29285434

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10221639A Expired - Fee Related DE10221639B4 (de) 2002-05-15 2002-05-15 Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit
DE50307708T Expired - Fee Related DE50307708D1 (de) 2002-05-15 2003-04-29 Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50307708T Expired - Fee Related DE50307708D1 (de) 2002-05-15 2003-04-29 Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit

Country Status (6)

Country Link
US (1) US7260941B2 (de)
EP (1) EP1504458B1 (de)
JP (1) JP4417247B2 (de)
CN (1) CN100354992C (de)
DE (2) DE10221639B4 (de)
WO (1) WO2003098645A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005028414A1 (de) * 2005-06-20 2006-12-28 Siemens Ag Einrichtung zur Erzeugung eines gepulsten Magnetfelds
CN100424906C (zh) * 2004-11-26 2008-10-08 西门子公司 具有低温系统和超导开关的超导装置
DE102011005685A1 (de) * 2011-03-17 2012-09-20 Siemens Aktiengesellschaft Vorrichtung zur Kühlung eines Bulk-Supraleiters oder einer supraleitenden Spule einer Magnetresonanzeinrichtung, Magnetresonanzeinrichtung und Magnetlager

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004058006B3 (de) 2004-12-01 2006-06-08 Siemens Ag Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
US7053740B1 (en) * 2005-07-15 2006-05-30 General Electric Company Low field loss cold mass structure for superconducting magnets
US7626477B2 (en) * 2005-11-28 2009-12-01 General Electric Company Cold mass cryogenic cooling circuit inlet path avoidance of direct conductive thermal engagement with substantially conductive coupler for superconducting magnet
CN101236239B (zh) * 2007-01-30 2012-01-25 西门子(中国)有限公司 磁共振系统的超导磁体的电流引线
US20080209919A1 (en) * 2007-03-01 2008-09-04 Philips Medical Systems Mr, Inc. System including a heat exchanger with different cryogenic fluids therein and method of using the same
CN101299060B (zh) * 2007-04-30 2011-04-06 西门子(中国)有限公司 一种磁共振成像系统的通风方法及通风系统
US7449889B1 (en) * 2007-06-25 2008-11-11 General Electric Company Heat pipe cooled superconducting magnets with ceramic coil forms
US7477055B1 (en) * 2007-08-21 2009-01-13 General Electric Company Apparatus and method for coupling coils in a superconducting magnet
US7772842B2 (en) * 2008-09-17 2010-08-10 Time Medical Holdings Company Limited Dedicated superconductor MRI imaging system
US7728592B2 (en) * 2008-09-17 2010-06-01 Time Medical Holdings Company Limited Integrated superconductor MRI imaging system
US8238988B2 (en) * 2009-03-31 2012-08-07 General Electric Company Apparatus and method for cooling a superconducting magnetic assembly
US20100242502A1 (en) * 2009-03-31 2010-09-30 General Electric Company Apparatus and method of superconducting magnet cooling
JP5450224B2 (ja) * 2009-05-29 2014-03-26 株式会社東芝 磁気共鳴イメージング装置
CN102054554B (zh) * 2009-10-30 2015-07-08 通用电气公司 超导磁体的制冷系统和制冷方法
US8676282B2 (en) * 2010-10-29 2014-03-18 General Electric Company Superconducting magnet coil support with cooling and method for coil-cooling
US8332004B2 (en) * 2010-12-23 2012-12-11 General Electric Company System and method for magnetization of rare-earth permanent magnets
CN102110510B (zh) * 2010-12-24 2012-07-04 中国科学院深圳先进技术研究院 磁共振成像系统的线圈、线圈的冷却装置及方法
JP5852425B2 (ja) 2011-12-01 2016-02-03 株式会社日立製作所 超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置
US10224799B2 (en) * 2012-10-08 2019-03-05 General Electric Company Cooling assembly for electrical machines and methods of assembling the same
US9570220B2 (en) * 2012-10-08 2017-02-14 General Electric Company Remote actuated cryocooler for superconducting generator and method of assembling the same
DE102014224363A1 (de) * 2014-11-28 2016-06-02 Siemens Aktiengesellschaft Vorrichtung der Supraleitungstechnik mitSpuleneinrichtungen und Kühlvorrichtung sowie damitausgestattetes Fahrzeug
US20160262284A1 (en) * 2015-03-03 2016-09-08 Asia Vital Components (China) Co., Ltd. Cold plate structure
CN107991635B (zh) * 2017-11-24 2021-03-19 上海联影医疗科技股份有限公司 一种用于磁共振系统的冷却组件及磁共振系统
US11187381B2 (en) 2017-09-29 2021-11-30 Shanghai United Imaging Healthcare Co., Ltd. Cryostat devices for magnetic resonance imaging and methods for making
CN111902893B (zh) * 2018-04-09 2022-03-04 三菱电机株式会社 超导磁铁装置
WO2019198266A1 (ja) * 2018-04-09 2019-10-17 三菱電機株式会社 超電導磁石装置
JP2020180728A (ja) * 2019-04-24 2020-11-05 株式会社デンソー 機器温調装置
CN110600220A (zh) * 2019-09-04 2019-12-20 中国科学院合肥物质科学研究院 一种用于超导磁体的双回路低温系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3739070A1 (de) * 1986-11-18 1988-05-26 Toshiba Kawasaki Kk Heliumkuehlgeraet
DE10018169A1 (de) * 2000-04-12 2001-10-18 Siemens Ag Vorrichtung für in einem Kryostaten zu betreibendes elektrisches Betriebselement mit Stromzuleitungen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146998A (en) * 1977-02-16 1979-04-03 Teco, Inc. Position responsive valve for controlling the retraction rate of a lower boom in an articulated boom assembly
DE3015682A1 (de) * 1980-04-23 1981-10-29 Siemens AG, 1000 Berlin und 8000 München Anordnung zur kuehlung einer supraleitenden magnetwicklung
JPS5862055U (ja) 1981-10-21 1983-04-26 松下電器産業株式会社 太陽熱集熱器のヒ−トパイプ
JPS6171608A (ja) * 1984-09-17 1986-04-12 Toshiba Corp 超電導装置
FR2578638B1 (fr) * 1985-03-08 1989-08-18 Inst Francais Du Petrole Procede de transfert de chaleur d'un fluide chaud a un fluide froid utilisant un fluide mixte comme agent caloporteur
JPS62166473A (ja) 1986-01-20 1987-07-22 Hitachi Ltd 陰影図形発生装置
US4995450A (en) * 1989-08-18 1991-02-26 G.P. Industries, Inc. Heat pipe
US5070702A (en) * 1990-05-07 1991-12-10 Jackson Henry W Continuously operating 3 HE evaporation refrigerator for space flight
US5193349A (en) * 1991-08-05 1993-03-16 Chicago Bridge & Iron Technical Services Company Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures
DE59406586D1 (de) * 1993-03-15 1998-09-10 Siemens Ag Homogenfeldmagnet mit über Korrekturluftspalte beabstandeten Polplatteneinrichtungen seiner Polschuhe
JPH06342721A (ja) * 1993-05-31 1994-12-13 Tokin Corp 超電導マグネット装置
US5485730A (en) * 1994-08-10 1996-01-23 General Electric Company Remote cooling system for a superconducting magnet
JP3423514B2 (ja) * 1995-11-30 2003-07-07 アネスト岩田株式会社 スクロール流体機械
DE19813211C2 (de) 1998-03-25 2000-05-18 Siemens Ag Supraleitende Einrichtung mit Leitern aus Hoch-T¶c¶-Supraleitermaterial
US6376943B1 (en) * 1998-08-26 2002-04-23 American Superconductor Corporation Superconductor rotor cooling system
US6181228B1 (en) * 1999-11-09 2001-01-30 General Electric Company Superconductive magnet including a cryocooler coldhead
DE10039964A1 (de) * 2000-08-16 2002-03-07 Siemens Ag Supraleitungseinrichtung mit einer Kälteeinheit zur Kühlung einer rotierenden, supraleitenden Wicklung
DE10057664A1 (de) * 2000-11-21 2002-05-29 Siemens Ag Supraleitungseinrichtung mit einem thermisch an eine rotierende,supraleitende Wicklung angekoppelten Kaltkopf einer Kälteeinheit
US6783059B2 (en) * 2002-12-23 2004-08-31 General Electric Company Conduction cooled passively-shielded MRI magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3739070A1 (de) * 1986-11-18 1988-05-26 Toshiba Kawasaki Kk Heliumkuehlgeraet
DE10018169A1 (de) * 2000-04-12 2001-10-18 Siemens Ag Vorrichtung für in einem Kryostaten zu betreibendes elektrisches Betriebselement mit Stromzuleitungen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424906C (zh) * 2004-11-26 2008-10-08 西门子公司 具有低温系统和超导开关的超导装置
DE102005028414A1 (de) * 2005-06-20 2006-12-28 Siemens Ag Einrichtung zur Erzeugung eines gepulsten Magnetfelds
DE102005028414B4 (de) * 2005-06-20 2011-12-08 Siemens Aktiengesellschaft Einrichtung zur Erzeugung eines gepulsten Magnetfelds
CN1885448B (zh) * 2005-06-20 2012-02-01 西门子公司 产生脉冲磁场的设备
US8162037B2 (en) 2005-06-20 2012-04-24 Siemens Plc Device for generating a pulsed magnetic field
DE102011005685A1 (de) * 2011-03-17 2012-09-20 Siemens Aktiengesellschaft Vorrichtung zur Kühlung eines Bulk-Supraleiters oder einer supraleitenden Spule einer Magnetresonanzeinrichtung, Magnetresonanzeinrichtung und Magnetlager

Also Published As

Publication number Publication date
EP1504458A1 (de) 2005-02-09
DE50307708D1 (de) 2007-08-30
JP2005530976A (ja) 2005-10-13
US20050252219A1 (en) 2005-11-17
US7260941B2 (en) 2007-08-28
CN1653564A (zh) 2005-08-10
JP4417247B2 (ja) 2010-02-17
DE10221639B4 (de) 2004-06-03
WO2003098645A1 (de) 2003-11-27
EP1504458B1 (de) 2007-07-18
CN100354992C (zh) 2007-12-12

Similar Documents

Publication Publication Date Title
DE10221639B4 (de) Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit
DE102005028414B4 (de) Einrichtung zur Erzeugung eines gepulsten Magnetfelds
DE19648253C2 (de) Pulsröhrenkühler und Verwendung desselben
DE69838866T2 (de) Verbesserungen in oder mit Bezug auf Kryostatsystemen
EP1655616B1 (de) NMR-Spektrometer mit Refrigeratorkühlung
DE102005041383B4 (de) NMR-Apparatur mit gemeinsam gekühltem Probenkopf und Kryobehälter und Verfahren zum Betrieb derselben
DE102004053972B3 (de) NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
DE102004061869B4 (de) Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
DE102004060832B3 (de) NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
WO2008040609A1 (de) Kälteanlage mit einem warmen und einem kalten verbindungselement und einem mit den verbindungselementen verbundenen wärmerohr
DE102011078608B4 (de) Kryostatanordnung
EP3282270B1 (de) Nmr-apparatur mit supraleitender magnetanordnung sowie gekühlten probenkopfkomponentten
DE10057664A1 (de) Supraleitungseinrichtung mit einem thermisch an eine rotierende,supraleitende Wicklung angekoppelten Kaltkopf einer Kälteeinheit
DE112011100875T5 (de) Verfahren und Vorrichtung zum Regeln der Temperatur in einem auf tiefe Temperaturen gekühlten Kyrostaten unter Verwendung von stehendem und sich bewegendem Gas
EP1504516B1 (de) Supraleitungseinrichtung mit thermisch an eine rotierende supraleitende wicklung angekoppeltem kaltkopf einer kälteeinheit
DE19704485C2 (de) Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung
DE102006059139A1 (de) Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
DE102004058006B3 (de) Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
DE10211568B4 (de) Kälteanlage für zu kühlende Teile einer Einrichtung
EP0789368B1 (de) Anlage der Supraleitungstechnik mit einer indirekt zu kühlenden supraleitenden Einrichtung und einer Stromzuführungsvorrichtung
DE102005002361B3 (de) Kälteanlage eines Gerätes der Supraleitungstechnik mit mehreren Kaltköpfen
EP3467852A1 (de) Magnetanordnung mit kryostat und magnetspulensystem, mit kältespeichern an den stromzuführungen
DE19813211C2 (de) Supraleitende Einrichtung mit Leitern aus Hoch-T¶c¶-Supraleitermaterial
DE4223145C2 (de) Stromzuführungsvorrichtung für eine auf Tieftemperatur zu haltende, insbesondere supraleitende Einrichtung
DE102015202638A1 (de) Stromzuführung für eine supraleitende Spuleneinrichtung

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
R081 Change of applicant/patentee

Owner name: SIEMENS HEALTHCARE GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee