EP0789368B1 - Anlage der Supraleitungstechnik mit einer indirekt zu kühlenden supraleitenden Einrichtung und einer Stromzuführungsvorrichtung - Google Patents

Anlage der Supraleitungstechnik mit einer indirekt zu kühlenden supraleitenden Einrichtung und einer Stromzuführungsvorrichtung Download PDF

Info

Publication number
EP0789368B1
EP0789368B1 EP97101229A EP97101229A EP0789368B1 EP 0789368 B1 EP0789368 B1 EP 0789368B1 EP 97101229 A EP97101229 A EP 97101229A EP 97101229 A EP97101229 A EP 97101229A EP 0789368 B1 EP0789368 B1 EP 0789368B1
Authority
EP
European Patent Office
Prior art keywords
superconducting
temperature
low
temperature side
vacuum housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97101229A
Other languages
English (en)
French (fr)
Other versions
EP0789368A1 (de
Inventor
Florian Dr. Steinmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0789368A1 publication Critical patent/EP0789368A1/de
Application granted granted Critical
Publication of EP0789368B1 publication Critical patent/EP0789368B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints

Definitions

  • Indirect cooling of superconducting devices is permitted the construction of relatively small-volume, refrigerant-free Cryostat without a coolant tank and also does that Users regardless of the replenishment of a cryogenic liquid.
  • the cooling capacity required can be of a general Apply multi-stage chiller, e.g. from a cryocooler, often based on the so-called Gifford-McMahon principle is working. With an appropriate cryocooler can typically use a first stage at around 60K 30 W and a second stage at 10 K with 1 W thermal Performance will be charged. A special refrigerant reservoir is not available.
  • the cold thermal mass of the cryostat is essentially that of the superconducting to be cooled Established facility whose heat capacity only then forms a buffer against temporarily increased heat losses, if you have a decrease in the critical magnetic field of the used superconductor material.
  • Such indirect cooling can be particularly advantageous for provide superconducting magnetic devices, such as those in particular in the field of medical diagnostics for magnetic resonance imaging (also called “Nuclear Magnetic Resonance” or “Magnetic Resonance Imaging”) are used. Appropriate cooling technology can also be used for others superconducting devices are provided.
  • conventional power supply devices with optimized metallic conductors for a working current of 200 A as is typical for magnetic devices Magnetic resonance imaging is, solely by introducing heat without the added Joule losses the first stage of a well-known two-stage cryocooler with approx. 8 W, while the second stage is still loaded with 0.9 W. becomes.
  • the heat leak of this second stage can be reduced by one Order of magnitude can be reduced if in a manner known per se e.g. according to the above-mentioned US-A document, the power supply device has at least two line sections, the low-temperature side portion of parts a metal oxide superconductor material with a high Jump temperature, so-called HTS material.
  • an electrical isolating switch can be provided, which, when open, introduces heat into the Low temperature range during the corresponding cooling phase allowed to decrease.
  • Such a circuit breaker is particularly advantageous if a superconducting magnetic device in case of operation by means of a continuous current switch can be short-circuited. Then you can also the introduction of heat via the power supply device reduce accordingly during this operating phase.
  • Power supply device is a with line sections a power supply device permanently connected Contact piece of a thermal circuit breaker in the evacuated Interior of the vacuum housing of a cryostat between a line section on the room temperature side and one low-temperature line section.
  • This thermal Contact piece can be placed on an intermediate temperature level be that from the first cold stage of a chiller about 60 K is held. This means that even when open this circuit breaker still has significant amounts of heat the room temperature-side line section of the power supply device introduced into the interior of the vacuum housing, so that a corresponding cooling capacity for discharge this amount of heat is required.
  • the power supply device contains a plate-shaped line section on the room temperature side, that protrudes into a vacuum space. Another plate-shaped, low-temperature line section this power supply device is said to be from this vacuum space into a low-temperature range enclosed by him lead the field effect transistor. Between the two plate-shaped Line sections is in the area of the vacuum space permanent galvanic isolation is provided, this two sections are to form a vacuum capacitor.
  • the object of the present invention is the installation of superconductivity technology with the characteristics mentioned above to design that the introduction of heat into the interior of the vacuum housing is further reduced.
  • the Power supply device an electrical circuit breaker has in the interior of the vacuum housing that with its connectable contact pieces in the area of the room temperature side End of the power supply device is located.
  • System of superconductivity technology contains a vacuum housing or vessel 3, in its evacuated Interior 4 is a superconducting device to be cooled 5 is located.
  • a superconducting device to be cooled 5 is located.
  • any superconducting technology equipment should be provided, which has superconducting material to be cooled.
  • your superconducting material can be a so-called "Classic" (metallic) superconductor material with transition temperatures below 20 K or around oxide ceramic superconductor material with comparatively higher transition temperatures, for example over 77 K, act.
  • Examples of corresponding superconducting Devices are electrical or magnetic Apparatus or devices for short-circuit current limitation, to a current transport or a voltage transformation.
  • the magnetic device 5 can preferably be in the superconducting operating state known manner using a continuous current switch (cf. e.g. DE 27 07 589 C) be short-circuited.
  • the magnetic device 5 is indirectly from a refrigeration machine 6 chilled.
  • the chiller shown 6 can have several cooling stages, for example two cooling stages 7 and have 8.
  • the chiller is advantageous 6 around a so-called Gifford-McMahon type cryocooler.
  • Other, single or multi-stage chiller types are also available applicable.
  • the refrigerator 6 exposes itself one located in a room temperature range RT, thus room temperature side machine section 6a and a die two cold levels 7 and 8, up to one Low-temperature range TT, thus low-temperature side Machine section 6b together.
  • the low temperature side Section 6b projects through an opening in a vacuum-tight manner 10 of the vacuum housing 3 in which to a residual pressure p an interior vacuum 4 evacuated.
  • a residual pressure p an interior vacuum 4 evacuated.
  • the Section 6b thermally to the magnetic device 5 to be cooled coupled.
  • Appendix 2 also includes an inventive, Power supply device generally designated 12. Parts of this device which are not described in detail are in themselves known so that it can be omitted.
  • the device 12 has in the evacuated interior 4 of the vacuum housing 3 advantageously a line section on the room temperature side 12a and a low-temperature line section 12b. Of course there can also be a subdivision the power supply is provided in further line sections his.
  • a connector (13) for electrical connection these two line sections can advantageously be thermal to the first one, for example, located at about 60 K.
  • Cold stage 7 of the refrigerator 6 can be coupled. To a galvanic isolation of this connector 13 compared the electrical potential of the cold stage 7 is between these Parts of electrical insulation 14 are provided, which at least largely allows heat exchange.
  • the low-temperature side pipe section 12b of the power supply device 12 can in the event that the magnetic device has classic superconductor material that is on a Keeping the temperature below 20 K is advantageous for parts have a metal oxide superconductor material, whose crack temperature, in particular at least 77 K or is higher.
  • Corresponding HTS materials are, for example special bi- or y-cuprates.
  • This line section ends in the space between the radiation shield and the room temperature located wall of the vacuum housing 3 in a first Contact piece 17a of a circuit breaker 17.
  • the switch can, for example, be flat contact pieces which e.g. can be joined together using a spring force are and of which a contact piece is stationary and the other contact piece is designed to be movable.
  • first contact piece 17a is therefore designed as a contact pin, a second to close the disconnector Contact piece 17b in the form of a contact socket or a contact shoe is plugged on.
  • first is Contact piece fixed and isolated on a bracket 18 attached to the wall of the vacuum housing 3, it being inside of the vacuum housing.
  • the second contact piece 17b is then designed to be movable, with the directions of movement are indicated by a double arrow b.
  • the second contact piece extends through an opening 19 of the Vacuum housing 3.
  • a bellows 20 is provided, which at its Opening 19 opposite end with a cover part 21 is completed.
  • a cover part 21 is completed.
  • the second contact piece 17b connected to the second contact piece 17b
  • connector 12c Power supply device passed.
  • the potential of the vacuum housing for example the cover part 21 or the bellows 20 at least partially insulating executed.
  • the connector 12c is one in the Figure not shown external power supply device 22 connected.
  • the opening of the disconnector 17 inevitably takes place in the warm State instead.
  • it may be its colder contact piece connected to the line section 12a 17a heated by means of a special heating device be so even before touching the warmer Contact piece 17b at least at its temperature level about to be raised.
  • Disconnector 17 also other known embodiments of Switches can be used. This is made possible in particular by that electrical isolation of the power lines is practical takes place at room temperature, i.e. above the extending through the colder areas of the vacuum space 4 Line sections of the power supply. This allows not only shorten the cooling time; but it can also be the operating current of the superconducting device due to a increase the lower end temperature or a higher safety margin to reach. This is with regard to an im After a long period of operation of a refrigerating machine, it ends Cooling capacity is a particularly important point. About that In addition, systems with two chillers can be repaired a device can be switched off and removed without the operation must be interrupted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

Die Erfindung bezieht sich auf eine Anlage der Supraleitungstechnik mit
  • a) einer supraleitenden Einrichtung, die sich in einem evakuierbaren Innenraum eines Vakuumgehäuses befindet,
  • b) eine die supraleitende Einrichtung indirekt kühlende Kältemaschine, die in den Innenraum des Vakuumgehäuses hineinragt und mit ihrem tieftemperaturseitigen Ende gut wärmeleitend mit der supraleitenden Einrichtung verbunden ist,
  • sowie
       c) einer zwischen Raumtemperatur und Tieftemperatur verlaufenden Stromzuführungsvorrichtung zur elektrischen Verbindung der supraleitenden Einrichtung mit einer externen Stromversorgungseinrichtung.
    Eine entsprechende Anlage geht aus der US 5 317 296 A hervor.
    Eine indirekte Kühlung von supraleitenden Einrichtungen erlaubt den Bau verhältnismäßig kleinvolumiger, kältemittelfreier Kryostate ohne Kühlmittelbehälter und macht zudem den Anwender unabhängig vom Nachschub einer Kryoflüssigkeit. Die erforderliche Kälteleistung läßt sich von einer im allgemeinen mehrstufig ausgebildeten Kältemaschine aufbringen, z.B. von einem Kryokühler, der häufig nach dem sogenannten Gifford-McMahon-Prinzip arbeitet. Bei einem entsprechenden Kryokühler können eine erste Stufe bei ca. 60 K mit typischerweise 30 W und eine zweite Stufe bei 10 K mit 1 W thermischer Leistung belastet werden. Ein besonderes Kältemittelreservoir steht dabei nicht zur Verfügung. Die kalte thermische Masse des Kryostaten wird im wesentlichen von der zu kühlenden supraleitenden Einrichtung gebildet, deren Wärmekapazität nur dann einen Puffer gegen zeitweise erhöhte Wärmeverluste bildet, wenn man eine Verminderung des kritischen Magnetfeldes des verwendeten Supraleitermaterials in Kauf nimmt. Eine solche indirekte Kühlung läßt sich vorteilhaft insbesondere für supraleitende Magneteinrichtungen vorsehen, wie sie insbesondere auf dem Gebiet der medizinischen Diagnostik zur Kernspintomographie (auch als "Nuclear Magnetic Resonance" oder "Magnetic Resonance Imaging" bezeichnet) eingesetzt werden. Eine entsprechende Kühltechnik kann jedoch auch für andere supraleitende Einrichtungen vorgesehen werden.
    Für eine Stromeinspeisung in eine supraleitende Einrichtung mit ihren tiefgekühlten Supraleitern werden Stromzuführungsvorrichtungen benötigt, über die ein elektrischer Strom diesen Leitern von einer auf einem höheren Temperaturniveau, beispielsweise auf Raumtemperatur, befindlichen Stromversorgungseinheit zugeführt wird. Die Stromzuführungsvorrichtung weist deshalb elektrische Leiterteile, die zwischen einem Raumtemperatur-Bereich und den von der Kältemaschine auf einer Tieftemperatur unterhalb der Sprungtemperatur des supraleitenden Materials gehaltenen Supraleitern der supraleitenden Einrichtung verlaufen. Über diese auch thermisch gut leitenden Leiterteile der Stromzuführungsvorrichtung ist eine erhebliche Wärmeeinleitung in den Tieftemperaturbereich möglich. Die entsprechenden Wärmelecks machen einen wesentlichen Anteil der von der Kältemaschine aufzubringenden Kälteleistung erforderlich. So belasten z.B. herkömmliche Stromzuführungsvorrichtungen mit optimierten metallischen Leitern für einen Arbeitsstrom von 200 A, wie er typisch für Magneteinrichtungen der Kernspintomographie ist, allein durch Wärmeeinleitung ohne die noch hinzukommenden Joule'schen Verluste die erste Stufe eines bekannten zweistufigen Kryokühlers mit ca. 8 W, während die zweite Stufe noch mit 0,9 W belastet wird. Das Wärmeleck dieser zweiten Stufe kann noch um eine Größenordnung gesenkt werden, wenn in an sich bekannter Weise z.B. gemäß der eingangs genannten US-A-Schrift die Stromzuführungsvorrichtung mindestens zwei Leitungsabschnitte besitzt, wobei der tieftemperaturseitige Abschnitt Teile aus einem metalloxidischen Supraleitermaterial mit einer hohen Sprungtemperatur, sogenanntes HTS-Material aufweist.
    Da eine entsprechende Stromzuführungsvorrichtung während der Abkühlphase einer supraleitenden Einrichtung nicht erforderlich ist, kann ein elektrischer Trennschalter vorgesehen werden, der im geöffneten Zustand eine Wärmeeinleitung in den Tieftemperaturbereich während der entsprechenden Abkühlphase zu vermindern gestattet. Ein derartiger Trennschalter ist insbesondere dann von Vorteil, wenn eine supraleitende Magneteinrichtung im Betriebsfalle mittels eines Dauerstromschalters kurzgeschlossen werden kann. Dann läßt sich nämlich auch die Wärmeeinleitung über die Stromzuführungsvorrichtung während dieser Betriebsphase entsprechend vermindern.
    Bei der aus der eingangs genannten US-A-Schrift zu entnehmenden Stromzuführungsvorrichtung liegt ein mit Leitungsabschnitten einer Stromzuführungsvorrichtung permanent verbundenes Kontaktstück eines thermischen Trennschalters im evakuierten Innenraum des Vakuumgehäuses eines Kryostaten zwischen einem raumtemperaturseitigen Leitungsabschnitt und einem tieftemperaturseitigen Leitungsabschnitt. Dieses thermische Kontaktstück kann auf ein Zwischentemperaturniveau gelegt werden, das von der ersten Kältestufe einer Kältemaschine auf etwa 60 K gehalten wird. Damit werden auch im geöffneten Zustand dieses Trennschalters noch erhebliche Wärmemengen über den raumtemperaturseitigen Leitungsabschnitt der Stromzuführungsvorrichtung in den Innenraum des Vakuumgehäuses eingeleitet, so daß eine entsprechende Kälteleistung zur Abführung dieser Wärmemengen erforderlich ist.
    Aus der US 3 644 803 geht eine Stromzuführungsvorrichtung für eine tiefzukühlende Einrichtung, insbesondere einen Feldeffekttransistor hervor. Die Stromzuführungsvorrichtung enthält dabei einen raumtemperaturseitigen, plattenförmigen Leitungsabschnitt, der in einen Vakuumraum hineinragt. Ein weiterer plattenförmiger, tieftemperaturseitiger Leitungsabschnitt dieser Stromzuführungsvorrichtung soll von diesem Vakummraum aus in einen von ihm umschlossenen Tieftemperaturbereich mit dem Feldeffekttransistor führen. Zwischen den beiden plattenförmigen Leitungsabschnitten ist im Bereich des Vakuumraums eine permanente galvanische Trennung vorgesehen, wobei diese beiden Abschnitte einen Vakuumkondensator bilden sollen.
    Aufgabe der vorliegenden Erfindung ist es, die Anlage der Supraleitungstechnik mit den eingangs genannten Merkmalen dahingehend auszugestalten, daß die Wärmeeinleitung in den Innenraum des Vakuumgehäuses weiter vermindert ist.
    Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Stromzuführungsvorrichtung einen elektrischen Trennschalter in dem Innenraum des Vakuumgehäuses aufweist, der sich mit seinen aneinanderfügbaren Kontaktstücken im Bereich des raumtemperaturseitigen Endes der Stromzuführungsvorrichtung befindet.
    Mit dieser Ausgestaltung der Stromzuführung der erfindungsgemäßen Anlage der Supraleitungstechnik ergeben sich die folgenden Vorteile:
    • Der Trennschalter muß weder elektrisch noch thermisch optimiert sein: Bei einer richtig dimensionierten Stromzuführungsvorrichtung muß praktisch keine Wärmeleistung über den Schaltkontakt transportiert werden; ohmsche Verluste an den Kontaktwiderständen fallen bei Raumtemperatur an und belasten damit die Kältemaschine praktisch nicht.
    • Der Schaltvorgang kann im Warmen stattfinden. Der Schaltkontakt ist deshalb einfacher, zuverlässiger und verschleißarmer zu realisieren als ein auf einem Zwischentemperaturniveau von beispielsweise 60 K befindlicher Schaltkontakt.
    • Es können herkömmliche, kommerziell vertriebene Trennschalter zum Einsatz kommen.
    • Der abgetrennte Leitungsabschnitt der Stromzuführungsvorrichtung wird kalt im Gegensatz zu der bekannten Ausführungsform. Dadurch ergibt sich beim Einschalten des Trennschalters ein kleinerer "Wärmeschock" auf die Kältemaschine und das Kryosystem, wodurch bei verhältnismäßig knappen Kühlmittelreserven die supraleitende Einrichtung thermisch weniger belastet wird.
    • Der Schaltmechanismus des Trennschalters erfordert keine besondere, sich in den kalten Bereich erstreckende Mechanik, die im geschlossenen Zustand des Schalters dauerhaft unter Last steht. Das damit verbundene Wärmeleck ist deshalb entsprechend verringert.
    Besonders vorteilhaft ist es, wenn als supraleitende Einrichtung eine Magneteinrichtung vorgesehen ist, welche insbesondere im supraleitenden Betriebszustand kurzgeschlossen ist. Dann läßt sich auch in diesem Betriebszustand eine Wärmezufuhr in den Tieftemperaturbereich weitgehend unterbinden.
    Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Anlage gehen aus den übrigen Unteransprüchen hervor.
    Zur weiteren Erläuterung der Erfindung wird nachfolgend auf die Zeichnung Bezug genommen, in deren Figur schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Anlage der Supraleitungstechnik veranschaulicht ist.
    Die in der Figur im Schnitt angedeutete, allgemein mit 2 bezeichnete, erfindungsgemäße Anlage der Supraleitungstechnik enthält ein Vakuumgehäuse- oder Gefäß 3, in dessen evakuiertem Innenraum 4 sich eine zu kühlende supraleitende Einrichtung 5 befindet. Prinzipiell kann als supraleitende Einrichtung jede Apparatur der Supraleitungstechnik vorgesehen sein, die zu kühlendes supraleitendes Material aufweist. Bei ihrem supraleitenden Material kann es sich um sogenanntes "klassisches" (metallisches) Supraleitermaterial mit Sprungtemperaturen unter 20 K oder um oxidkeramisches Supraleitermaterial mit vergleichsweise höheren Sprungtemperaturen, beispielsweise über 77 K, handeln. Beispiele entsprechender supraleitender Einrichtungen sind elektrische oder magnetische Apparaturen oder Einrichtungen zu einer Kurzschlußstrombegrenzung, zu einem Stromtransport oder zu einer Spannungstransformation. Bei einer entsprechenden Magneteinrichtung kann es sich insbesondere um mindestens eine supraleitende Spule einer Diagnostikanlage zur Kernspintomographie handeln. Eine derartige Magneteinrichtung ist nachfolgend für das Ausführungsbeispiel zugrundegelegt. Die Magneteinrichtung 5 kann vorzugsweise im supraleitenden Betriebszustand in an sich bekannter Weise mittels eines Dauerstromschalters (vgl. z.B. DE 27 07 589 C) kurzgeschlossen sein.
    Die Magneteinrichtung 5 wird indirekt von einer Kältemaschine 6 gekühlt. Bei dieser Kühlungsart erfolgt im Gegensatz zu einer Badkühlung oder einer forcierten Kühlung kein direkter Wärmeaustausch zwischen einem Kühlmittel und den supraleitenden Teilen der Magneteinrichtung. Die gezeigte Kältemaschine 6 kann mehrere Kältestufen, beispielsweise zwei Kältestufen 7 und 8 aufweisen. Vorteilhaft handelt es sich bei der Kältemaschine 6 um einen sogenannten Kryokühler vom Gifford-McMahon-Typ. Ebenso sind auch andere, ein- oder mehrstufige Kältemaschinentypen einsetzbar. Die Kältemaschine 6 setzt sich aus einem in einem Raumtemperaturbereich RT befindlichen, somit raumtemperaturseitigen Maschinenabschnitt 6a und einem die beiden Kältestufen 7 und 8 umfassenden, sich bis in einem Tieftemperaturbereich TT erstreckenden, somit tieftemperaturseitigen Maschinenabschnitt 6b zusammen. Der tieftemperaturseitige Abschnitt 6b ragt dabei vakuumdicht durch eine Öffnung 10 des Vakuumgehäuses 3 in dessen auf einen Restdruck p eines Isoliervakuums evakuierten Innenraum 4 hinein. An dem tieftemperaturseitigen Ende der zweiten Kältestufe 8 ist der Abschnitt 6b thermisch an die zu kühlende Magneteinrichtung 5 angekoppelt.
    Die Anlage 2 umfaßt ferner eine erfindungsgemäß gestaltete, allgemein mit 12 bezeichnete Stromzuführungsvorrichtung. Nicht näher ausgeführte Teile dieser Vorrichtung sind an sich bekannt, so daß auf ihre Darstellung verzichtet werden kann. Die Vorrichtung 12 weist im evakuierten Innenraum 4 des Vakuumgehäuses 3 vorteilhaft einen raumtemperaturseitigen Leitungsabschnitt 12a und einen tieftemperaturseitigen Leitungsabschnitt 12b auf. Selbstverständlich kann noch eine Unterteilung der Stromzuführung in weitere Leitungsabschnitte vorgesehen sein. Ein Verbindungsglied (13) zur elektrischen Verbindung dieser beiden Leitungsabschnitte kann vorteilhaft thermisch an die beispielsweise auf etwa 60 K befindliche erste Kältestufe 7 der Kältemaschine 6 angekoppelt sein. Zu einer galvanischen Trennung dieses Verbindungsgliedes 13 gegenüber dem elektrischen Potential der Kältestufe 7 ist zwischen diesen Teile eine elektrische Isolation 14 vorgesehen, welche einen Wärmeaustausch zumindest weitgehend zuläßt.
    Der tieftemperaturseitige Leitungsabschnitt 12b der Stromzuführungsvorrichtung 12 kann im Falle, daß die Magneteinrichtung klassisches Supraleitermaterial besitzt, das auf einer Temperatur unterhalb von 20 K zu halten ist, vorteilhaft Teile aus einem metalloxidischen Supraleitermaterial aufweisen, dessen Sprungtemperatur insbesondere bei mindestens 77 K oder höher liegt. Entsprechende HTS-Materialien sind beispielsweise spezielle Bi- oder Y-Cuprate.
    Der raumtemperaturseitige Leitungsabschnitt 12a der Stromzuführungsvorrichtung 12, der zweckmäßig hinsichtlich der thermischen Verluste in an sich bekannter Weise optimiert ist, ist durch eine Öffnung 15 eines Strahlungsschildes 16 hindurchgeführt, der thermisch mit der ersten Kältestufe 7 der Kältemaschine 6 verbunden ist. Dieser Leitungsabschnitt endet im Raum zwischen dem Strahlungsschild und der auf Raumtemperatur befindlichen Wand des Vakuumgehäuses 3 in einem ersten Kontaktstück 17a eines Trennschalters 17. Bei dem in der Figur im geöffneten Zustand gezeigten Trennschalter kann es sich um eine gebräuchliche Ausführungsform eines Schalters handeln. Der Schalter kann beispielsweise flache Kontaktstükke aufweisen, die z.B. unter Anwendung einer Federkraft aneinanderfügbar sind und von denen ein Kontaktstück ortsfest und das andere Kontaktstück beweglich ausgebildet ist. Vorteilhaft kann dabei das bewegliche Kontaktstück auf der immer wärmeren, nach außen führenden Seite der Stromzuführungsvorrichtung angeordnet sein. Dem gezeigten Ausführungsbeispiel ist ein Trennschalter 17 mit Steckkontakten zugrundegelegt. Sein erstes Kontaktstück 17a ist deshalb als Kontaktstift gestaltet, auf den zum Schließen des Trennschalters ein zweites Kontaktstück 17b in Form einer Kontaktbuchse oder eines Kontaktschuhs aufgesteckt wird. Beispielsweise ist das erste Kontaktstück ortsfest und isoliert über eine Halterung 18 an der Wand des Vakuumgehäuses 3 befestigt, wobei es sich innerhalb des Vakuumgehäuses befinden kann. Das zweite Kontaktstück 17b ist dann beweglich ausgeführt, wobei die Bewegungsrichtungen durch einen Doppelpfeil b angedeutet sind. Das zweite Kontaktstück erstreckt sich durch eine Öffnung 19 des Vakuumgehäuses 3. Zur Abdichtung des Vakuumgehäuses an dieser Öffnung ist ein Dehnungsbalg 20 vorgesehen, der an seinem der Öffnung 19 gegenüberliegenden Ende mit einem Deckelteil 21 abgeschlossen ist. Durch diesen Deckelteil ist ein mit dem zweiten Kontaktstück 17b verbundener Anschlußteil 12c der Stromzuführungsvorrichtung hindurchgeführt. Zur galvanischen Trennung des zweiten Kontaktstückes und des Anschlußteils gegenüber dem Potential des Vakuumgehäuses ist beispielsweise der Deckelteil 21 oder der Balg 20 zumindest teilweise isolierend ausgeführt. Mit dem Anschlußteil 12c ist eine in der Figur nicht näher ausgeführte externe Stromversorgungseinrichtung 22 verbunden.
    Das Öffnen des Trennschalters 17 findet zwangsläufig im warmen Zustand statt. Bei seinem Schließen kann gegebenenfalls sein kälteres, mit dem Leitungsabschnitt 12a verbundenes Kontaktstück 17a mittels einer besonderen Heizvorrichtung erwärmt werden, um so bereits vor der Berührung mit dem wärmeren Kontaktstück 17b auf dessen Temperaturniveau zumindest annähernd angehoben zu werden.
    Selbstverständlich sind statt des in der Figur gezeigten Trennschalters 17 auch andere bekannte Ausführungsformen von Schaltern einsetzbar. Dies ist insbesondere dadurch ermöglicht, daß eine elektrische Trennung der Stromleitungen praktisch bei Raumtemperatur erfolgt, also oberhalb der sich durch die kälteren Bereiche des Vakuumraumes 4 erstreckenden Leitungsabschnitte der Stromzuführung. Dadurch läßt sich nicht nur die Abkühlzeit verkürzen; sondern es läßt sich auch der Betriebsstrom der supraleitenden Einrichtung aufgrund einer niedrigeren Endtemperatur erhöhen bzw. eine höhere Sicherheitsmarge erreichen. Dies ist im Hinblick auf eine im Laufe einer längeren Betriebszeit einer Kältemaschine nachlassende Kälteleistung ein besonders wichtiger Punkt. Darüber hinaus kann bei Systemen mit zwei Kältemaschinen im Reparaturfall ein Gerät abgeschaltet und ausgebaut werden, ohne daß der Betrieb unterbrochen werden muß.

    Claims (14)

    1. Anlage (2) der Supraleitungstechnik mit
      a) einer supraleitenden Einrichtung (5), die sich in einem evakuierbaren Innenraum (4) eines Vakuumgehäuses (3) befindet,
      b) einer die supraleitende Einrichtung (5) indirekt kühlenden Kältemaschine (6), die in den Innenraum (4) des Vakuumgehäuses (3) hineinragt und mit ihrem tieftemperaturseitigen Ende (8) gut wärmeleitend mit der supraleitenden Einrichtung (5) verbunden ist,
      sowie
         c) einer zwischen Raumtemperatur (RT) und Tieftemperatur (TT) verlaufenden Stromzuführungsvorrichtung (12) zur elektrischen Verbindung der supraleitenden Einrichtung (5) mit einer externen Stromversorgungseinrichtung (22),
      dadurch gekennzeichnet, daß die Stromzuführungsvorrichtung (12) einen elektrischen Trennschalter (17) in dem Innenraum (4) des Vakuumgehäuses (3) aufweist, der sich mit seinen aneinanderfügbaren Kontaktstükken (17a, 17b) im Bereich des raumtemperaturseitigen Endes der Stromzuführungsvorrichtung (12) befindet.
    2. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß die supraleitende Einrichtung (5) zu einer Magnetfelderzeugung oder zu einer Kurzschlußstrombegrenzung oder zu einer Spannungstransformation oder zu einer Stromübertragung vorgesehen ist.
    3. Anlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die supraleitende Einrichtung eine Magneteinrichtung (5) ist, die im supraleitenden Betriebszustand kurzgeschlossen ist.
    4. Anlage nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß ihre supraleitende Magneteinrichtung (5) Teil eines Gerätesystems zur Kernspintomographie ist.
    5. Anlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , daß die Kontaktstücke des Trennschalters (17) als ein raumtemperaturseitiges und ein tieftemperaturseitiges Kontaktstück (17b bzw. 17a) gestaltet sind, die über jeweilige Haltevorrichtungen (18 bzw. 20) von dem Vakuumgehäuse (3) gehalten sind.
    6. Anlage nach Anspruch 5, dadurch gekennzeichnet ,daß eines der Kontaktstücke (17b) des Trennschalters (17) beweglich ausgeführt ist und die zugeordnete Haltevorrichtung als Dehnungsbalg (20) gestaltet ist.
    7. Anlage nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß das tieftemperaturseitige Kontaktstück (17a) mit einer Heizvorrichtung versehen ist.
    8. Anlage nach einem der Ansprüche 1 bis 7,dadurch gekennzeichnet , daß der Trennschalter (17) als Steckvorrichtung gestaltet ist.
    9. Anlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet , daß die Stromzuführungsvorrichtung (12) in dem Innenraum (4) des Vakuumgehäuses (3) mindestens einen raumtemperaturseitigen und einen tieftemperaturseitigen Leitungsabschnitt (12a, 12b) besitzt, wobei der tieftemperaturseitige Leitungsabschnitt (12b) an die als eine Magneteinrichtung (5) gestaltete supraleitende Einrichtung angeschlossen ist.
    10. Anlage nach Anspruch 9, dadurch gekennzeichnet , daß ein elektrisches Verbindungsglied (13) zwischen den beiden Leitungsabschnitten (12a, 12b) der Stromzuführungsvorrichtung (12) von der Kältemaschine (6) auf einem Zwischentemperaturniveau zwischen Raumtemperatur (RT) und Tieftemperatur (TT) gehalten ist.
    11. Anlage nach Anspruch 10, dadurch gekennzeichnet , daß das elektrische Verbindungsglied (13) thermisch an eine Kältestufe (7) der Kältemaschine (6) angekoppelt ist, die sich auf dem Zwischentemperaturniveau befindet.
    12. Anlage nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet , daß der tieftemperaturseitige Leitungsabschnitt (12b) der Stromzuführungsvorrichtung (12) Teile aus einem metalloxidischen Supraleitermaterial mit einer Sprungtemperatur von mindestens 77 K enthält.
    13. Anlage nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet , daß die Kältemaschine (6) mehrstufig gestaltet ist, wobei eine der Kältestufen (7) thermisch mit einem Strahlungsschild (16) verbunden ist, der sich im Innenraum (4) des Vakuumgehäuses (3) zwischen einer raumtemperaturseitigen Vakuumgehäusewand und der als eine Magneteinrichtung (5) gestalteten supraleitenden Einrichtung befindet.
    14. Anlage nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet , daß die Kältemaschine (6) ein Kryokühler vom Gifford-McMahon-Typ ist.
    EP97101229A 1996-02-09 1997-01-27 Anlage der Supraleitungstechnik mit einer indirekt zu kühlenden supraleitenden Einrichtung und einer Stromzuführungsvorrichtung Expired - Lifetime EP0789368B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19604805A DE19604805C2 (de) 1996-02-09 1996-02-09 Anlage der Supraleitungstechnik mit einer indirekt zu kühlenden supraleitenden Einrichtung und einer Stromzuführungsvorrichtung
    DE19604805 1996-02-09

    Publications (2)

    Publication Number Publication Date
    EP0789368A1 EP0789368A1 (de) 1997-08-13
    EP0789368B1 true EP0789368B1 (de) 2000-05-17

    Family

    ID=7784992

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97101229A Expired - Lifetime EP0789368B1 (de) 1996-02-09 1997-01-27 Anlage der Supraleitungstechnik mit einer indirekt zu kühlenden supraleitenden Einrichtung und einer Stromzuführungsvorrichtung

    Country Status (3)

    Country Link
    EP (1) EP0789368B1 (de)
    JP (1) JPH09223621A (de)
    DE (2) DE19604805C2 (de)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH11288809A (ja) * 1998-03-31 1999-10-19 Toshiba Corp 超電導マグネット装置
    EP1063482A1 (de) * 1999-06-24 2000-12-27 CSP Cryogenic Spectrometers GmbH Kühlvorrichtung
    WO2001001048A1 (de) * 1999-06-24 2001-01-04 Csp Cryogenic Spectrometers Gmbh Kühlvorrichtung
    DE19947410A1 (de) * 1999-10-01 2001-04-12 Abb Research Ltd Tieftemperaturvorrichtung
    DE10039964A1 (de) 2000-08-16 2002-03-07 Siemens Ag Supraleitungseinrichtung mit einer Kälteeinheit zur Kühlung einer rotierenden, supraleitenden Wicklung
    EP1217708A1 (de) 2000-12-21 2002-06-26 Abb Research Ltd. Vorrichtung der Supraleitungstechnik
    DE10117847C1 (de) * 2001-04-04 2003-02-06 Siemens Ag Transformator mit forcierter Flüssigkeitskühlung
    DE10131235C1 (de) * 2001-06-28 2003-01-30 Siemens Ag Stromzuführungsvorrichtung für eine zu kühlende elektrische Gerätschaft mit elektrischer Trenneinrichtung sowie Verwendung der Vorrichtung
    DE10324500B3 (de) * 2003-05-26 2004-11-18 Siemens Ag Geregelte kryogene Stromzuführung
    JP6546782B2 (ja) * 2015-05-19 2019-07-17 株式会社日立製作所 交流損失測定装置
    LU101151B1 (de) 2019-02-25 2020-08-26 Vision Electric Super Conductors Gmbh Übergangsstück, das einen Normalstromleiter mit einem Supraleiter elektrisch leitend verbindet

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3644803A (en) * 1969-03-18 1972-02-22 Us Air Force Electrical connections to low temperatures
    FR2166440A5 (de) * 1971-11-05 1973-08-17 Comp Generale Electricite
    DE2611266C2 (de) * 1976-03-17 1982-10-21 Siemens AG, 1000 Berlin und 8000 München Supraleitende Magneteinrichtung mit verzögerter Magnetfeldabnahme beim Normalleitendwerden
    DE2707589C3 (de) * 1977-02-22 1980-02-21 Siemens Ag, 1000 Berlin Und 8000 Muenchen Dauerstromschalter zum Kurzschließen eines supraleitenden Magneten
    US4543794A (en) * 1983-07-26 1985-10-01 Kabushiki Kaisha Toshiba Superconducting magnet device
    JPS60216592A (ja) * 1984-04-12 1985-10-30 Toshiba Corp 超電導コイルの口出装置
    JPS63237509A (ja) * 1987-03-26 1988-10-04 Sumitomo Electric Ind Ltd 超電導マグネツト
    US5317296A (en) * 1991-09-13 1994-05-31 General Electric Company Demountable conduction cooled current leads for refrigerated superconducting magnets
    US5302928A (en) * 1992-08-03 1994-04-12 General Electric Company Superconducting current leads for a cryogenless superconducting magnetic energy storage device
    US5410286A (en) * 1994-02-25 1995-04-25 General Electric Company Quench-protected, refrigerated superconducting magnet

    Also Published As

    Publication number Publication date
    JPH09223621A (ja) 1997-08-26
    DE19604805C2 (de) 2001-03-08
    DE59701680D1 (de) 2000-06-21
    DE19604805A1 (de) 1997-08-14
    EP0789368A1 (de) 1997-08-13

    Similar Documents

    Publication Publication Date Title
    DE69732443T2 (de) Tiefstemperaturkühlgerät und Verfahren zum Abkühlen eines Objektes auf sehr tiefe Temperaturen
    DE102016218000B3 (de) Kryostatenanordnung mit einem Vakuumbehälter und einem zu kühlenden Objekt, mit evakuierbarem Hohlraum
    EP2066991B1 (de) Kälteanlage mit einem warmen und einem kalten verbindungselement und einem mit den verbindungselementen verbundenen wärmerohr
    EP1504458B1 (de) Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit
    EP0789368B1 (de) Anlage der Supraleitungstechnik mit einer indirekt zu kühlenden supraleitenden Einrichtung und einer Stromzuführungsvorrichtung
    DE102006012509B3 (de) Kryostat mit einem Magnetspulensystem, das eine LTS- und eine im Vakuumteil angeordnete HTS-Sektion umfasst
    DE102015215919B4 (de) Verfahren und Vorrichtung zur Vorkühlung eines Kryostaten
    DE19533555A1 (de) Vorrichtung zur indirekten Kühlung einer elektrischen Einrichtung
    DE102016214728B3 (de) NMR-Apparatur mit durch eine Vakuumschleuse in den Kryostaten einer supraleitenden Magnetanordnung einführbaren gekühlten Probenkopfkomponenten sowie Verfahren zu deren Ein- und Ausbau
    DE102006012508B3 (de) Kryostat mit einem Magnetspulensystem, das eine LTS- und eine gekapselte HTS-Sektion umfasst
    WO2003098786A1 (de) Supraleitungseinrichtung mit thermisch an eine rotierende supraleitende wicklung angekoppeltem kaltkopf einer kälteeinheit
    DE102004058006B3 (de) Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
    DE102006059139A1 (de) Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
    DE10211568B4 (de) Kälteanlage für zu kühlende Teile einer Einrichtung
    DE102004057204B4 (de) Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
    EP1089031B1 (de) Tieftemperaturvorrichtung
    EP3467852A1 (de) Magnetanordnung mit kryostat und magnetspulensystem, mit kältespeichern an den stromzuführungen
    DE102014217250A1 (de) Supraleitende Spuleneinrichtung mit schaltbarem Leiterabschnitt sowie Verfahren zum Umschalten
    DE19813211C2 (de) Supraleitende Einrichtung mit Leitern aus Hoch-T¶c¶-Supraleitermaterial
    DE4223145C2 (de) Stromzuführungsvorrichtung für eine auf Tieftemperatur zu haltende, insbesondere supraleitende Einrichtung
    DE10131235C1 (de) Stromzuführungsvorrichtung für eine zu kühlende elektrische Gerätschaft mit elektrischer Trenneinrichtung sowie Verwendung der Vorrichtung
    DE102006012506A1 (de) Kryostat mit einem Magnetspulensystem, das eine LTS- und eine beheizbare HTS-Sektion umfasst
    DE4430408A1 (de) Wärmelast-reduzierte Stromzuführung mit einem keramischen Supraleiter
    EP3503329B1 (de) Verfahren zum kühlen eines supraleitfähigen kabelsystems
    DE10032368A1 (de) Supraleitungseinrichtung mit einer resistiven Strombegrenzereinheit unter Verwendung von Hoch-T¶c¶-Supraleitermaterial

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    17P Request for examination filed

    Effective date: 19970918

    17Q First examination report despatched

    Effective date: 19980115

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REF Corresponds to:

    Ref document number: 59701680

    Country of ref document: DE

    Date of ref document: 20000621

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000605

    ET Fr: translation filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20010109

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20010112

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20010319

    Year of fee payment: 5

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020127

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020801

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20020127

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020930

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST