EP1504107A1 - Rekombinantes fowlpox-virus - Google Patents

Rekombinantes fowlpox-virus

Info

Publication number
EP1504107A1
EP1504107A1 EP03722604A EP03722604A EP1504107A1 EP 1504107 A1 EP1504107 A1 EP 1504107A1 EP 03722604 A EP03722604 A EP 03722604A EP 03722604 A EP03722604 A EP 03722604A EP 1504107 A1 EP1504107 A1 EP 1504107A1
Authority
EP
European Patent Office
Prior art keywords
recombinant
virus
viruses
gene
fwpv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03722604A
Other languages
English (en)
French (fr)
Inventor
Robert Baier
Denise Cancer Research UK Oncology Unit BOULANGER
Volker Erlfe
Gerd Sutter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Original Assignee
Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH filed Critical Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Publication of EP1504107A1 publication Critical patent/EP1504107A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00119Melanoma antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24041Use of virus, viral particle or viral elements as a vector
    • C12N2710/24043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to a recombinant fowlpox virus (FWPN) and a D ⁇ A nector, which contains gene sequences for such a recombinant fowlpox virus.
  • the invention further relates to a pharmaceutical composition which comprises the recombinant fowlpox virus or a D ⁇ A nector, the use of the recombinant fowlpox virus for the treatment of infectious diseases or tumor diseases and a method for producing the recombinant fowlpox virus or D ⁇ A vector ,
  • the present invention relates to eukaryotic cells or prokaryotic cells which contain the recombinant D ⁇ A nector or the recombinant fowlpox virus.
  • Smallpox viruses of various types have already been established as recombinant vaccine vectors (Moss, 1996; Paoletti, 1996).
  • Bird pox viruses including fowlpox viruses (Fowlpox-Niren or FWPN) as a prototypical member, are known to replicate only in bird cells. In mammalian cells, virus replication is blocked at different times in the replication cycle depending on the cell type, but there is virus-specific gene expression (Taylor et al., 1988; Somogyi et al., 1993).
  • Shotgun insertion strategies have been used to identify several insertion sites in the FWPV genome (Taylor et al., 1988; Jenkins et al., 1991).
  • the first strategy is the frequently used transient dominant selection method described by Falkner and Moss (1990), in which the selection marker is present in the plasmid sequence outside the insertion cassette.
  • Recombinant viruses which are generated by a simple crossover event and which contain the entire plasmid sequence are obtained in the presence of selection medium. These recombinant viruses are unstable due to the presence of the repeated sequences of the flanking regions.
  • the marker gene lying between these repeats is deleted after a second recombination, which either leads to the production of the wild-type (wt) virus or a stable recombinant virus. The latter must be isolated again after the plaque procedure and then identified by PCR or Southern blotting.
  • a second method is based on the observation that in the case of recombinant FWPV which expressed the target protein and ⁇ -galactosidase under the control of the P7.5 promoter in a directly repeated orientation, a homologous recombination took place between the promoter repeats, whereby the lacZ gene is deleted (Spehner et al., 1990). Therefore, white plaques were formed from recombinant viruses that had lost the marker gene.
  • a similar strategy has been developed to produce recombinant MVA viruses using the regulatory vaccinia virus KIL gene as a transient selection marker, which is removed by means of intragenomic homologous recombination (Staib et al., 2000).
  • FWPV grows more slowly than the vaccinia virus. Maintaining the full replication ability of recombinant viruses is critical to the generation and use of potential FWPV vaccine viruses.
  • the present invention is based on the tasks of providing a recombinant fowlpox virus which results in increased vector stability after insertion of foreign DNA and a higher level of safety when used as a vaccine vector, while maintaining full replication capability and optimal efficiency during the Selection of recombinant viruses retained.
  • the solution according to the invention is based on the identification of the FWPV-Fl III gene as a new insertion site for foreign DNA.
  • F1 IL mutated viruses replicated efficiently after infection with CEF (chicken embryo fibroblasts).
  • CEF chicken embryo fibroblasts
  • the F III of the FWPV is already known and precisely identified. In the publication by Afonso et al. In 2000, the Fl III gene homolog was precisely identified as ORF FPV110 with genome position 131.387-132.739. Afonso et al. however, do not disclose the property of the Fl IL gene as an integration site for foreign DNA.
  • Fl IL gene as an integration site for foreign DNA offers some unexpected advantages: First, it has surprisingly been found that the recombinant fowlpox viruses, which contain one or more insertions of foreign DNA in the Fl III gene, are one over conventional ones Vectors have increased vector stability. In addition, the recombinant FWPV according to the invention have proven to be very safe in the in vivo application as vaccine ectors. Another advantage of the insertion according to the invention into the F1 IL gene can be seen in the fact that the insertion can be carried out at any point in the gene.
  • the present invention consequently provides a recombinant fowlpox virus (FWPV) which contains at least one insertion of a foreign DNA in the Fl 1L gene.
  • the insertion takes place in position 131.387-132.739 of the FWPV genome.
  • the insertion can in principle take place at any desired location of the Fl IL gene, an insertion in the genome section defined by the nucleotide positions 131.860-131.870 in the fowlpox virus genome is preferred.
  • Any DNA that is introduced into the DNA of an organism, a cell or a virus etc. using genetic engineering methods is generally referred to as foreign DNA in the context of the present invention, from which it does not originate.
  • the foreign DNA contains at least one foreign gene, optionally in combination with a sequence for regulating the expression of the foreign gene.
  • the foreign gene contained in the recombinant fowlpox virus (FWPV) according to the invention codes for a polypeptide which can preferably be used therapeutically and / or codes for a detectable marker and / or is a selection gene.
  • a reporter gene refers to genes whose gene products can be detected using simple biochemical or histochemical methods. Indicator and marker genes are synonyms for the term reporter gene.
  • a selection gene or selection marker denotes genes which give viruses or cells in which the corresponding gene products are formed a growth advantage or survival advantage over other viruses or cells which do not synthesize the corresponding gene product.
  • Selection markers preferably used are the genes for E. coli guanine phosphoribosyl transferase, E. coli hygromycin resistance and neomycin resistance.
  • the foreign DNA sequence can be a gene which codes, for example, for a pathogenic agent or for a component of a pathogenic agent.
  • Pathogenic agents are understood to mean viruses, bacteria and parasites that can cause an illness, as well as tumor cells that multiply uncontrollably in an organism and can therefore lead to pathological growth. Examples of such pathogenic agents are described in Davis, BD et al., (Microbiology, 3rd edition, Harper International Edition).
  • Preferred pathogenic agents are components of influenza viruses or measles and of respiratory syncytial viruses, of dengue viruses, of human immunodeficiency viruses, for example HTV I and HIN II, of human hepatitis viruses, for example HCN and HBN, of herpes -Niren, Papilloma-Niren, the malaria parasite Plasmodium falciparum and the tuberculosis-causing mycobacteria.
  • components of pathogenic agents are, for example, envelope proteins of viruses (HTV-Env, HCV-E1 / E2, influenza virus-HA- ⁇ A, RSV-FG), regulatory virus proteins (HTV-Tat-Rev- ⁇ ef, HCV- ⁇ S3- ⁇ S4- ⁇ S5), the protective antigen protein from Bacillus anthracis, Merozoite Surface Antigen and circumsporozoite protein from Plasmodium fal- ciparum, the tyrosinase protein as a melanoma antigen, or the HER-2 / neu protein as an antigen of human adenocarcinomas.
  • envelope proteins of viruses HTV-Env, HCV-E1 / E2, influenza virus-HA- ⁇ A, RSV-FG
  • regulatory virus proteins HTV-Tat-Rev- ⁇ ef, HCV- ⁇ S3- ⁇ S4- ⁇ S5
  • the protective antigen protein from Bacillus anthracis
  • Preferred genes which code for tumor-associated antigens are those for melanoma-associated differentiation antigens, for example tyrosinase, tyrosinase-related proteins 1 and 2, from cancer testes antigens or tumor testicular antigens, for example MAGE 1, -2, -3 and BAGE, for non-mutated shared antigens or antigens which are shared by several tumor types which are overexpressed on tumors, for example Her-2 / neu, MUC-1 and p53, are encoded.
  • melanoma-associated differentiation antigens for example tyrosinase, tyrosinase-related proteins 1 and 2
  • cancer testes antigens or tumor testicular antigens for example MAGE 1, -2, -3 and BAGE
  • non-mutated shared antigens or antigens which are shared by several tumor types which are overexpressed on tumors for example Her-2 / neu, MUC-1 and p53
  • Polypeptides which are a component of HTV, Mycobacterium spp. are particularly suitable. or Plasmodium falciparum or are part of a melanoma cell.
  • constituents are to be understood as constituents of the aforementioned which have immunogenic properties, that is to say are able to produce an immune reaction in mammals, in particular humans (for example surface antigens).
  • promoters are known to the person skilled in the art, for example a pox virus-specific promoter can be used.
  • the detectable marker is a beta-galactosidase, beta-glucoronidase, a luciferase or a green fluorescent protein.
  • the marker gene and / or selection gene can be eliminated.
  • this property is of great advantage because it enables the same selection strategy for the insertion to be repeated at different points.
  • the presence of a marker gene is also not recommended for a vaccine for human use.
  • the deletion of these gene sequences The genome of the final recombinant viruses is virtually "automatically" by an intragenomic homologous recombination between identical gene sequences that flank the marker selection gene expression cassette.
  • the present invention provides a DNA vector which contains a recombinant fowlpox virus according to the invention or functional parts thereof which contain at least one insertion of a foreign DNA in the Fl III gene, and further preferably a replicon for replicating the vector in a pro- or eukaryotic cell and a selection gene or marker gene which can be selected in pro- or eukaryotic cells.
  • a recombinant fowlpox virus according to the invention or functional parts thereof which contain at least one insertion of a foreign DNA in the Fl III gene, and further preferably a replicon for replicating the vector in a pro- or eukaryotic cell and a selection gene or marker gene which can be selected in pro- or eukaryotic cells.
  • Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook, et al, in Molecular Clo ning. A Laboratory Manual, 2 nd Edition, Cold Spring Harbor, described New
  • the DNA vectors of the present invention play the role of a self-contained, replicable entity that possesses the ability to replicate DNA in suitable host cells.
  • the non-replicable foreign DNA is thus passively replicated and can then be isolated and purified together with the vector.
  • the DNA vector can also contain the following sequence elements: enhancers for enhancing gene expression, promoters which are the prerequisite for gene expression, origins of replication, reporter genes, selectable genes, splice signals and packaging signals.
  • the DNA vector according to the invention serves primarily as a transfer vector in order to enable the insertion of foreign genes in a virus-infected cell via homologous recombination. It is usually used in the context of a Fowlpox virus infection, since the regulatory elements depend on the presence of other virus proteins.
  • the recombinant fowlpox virus or the DNA vector is provided in a pharmaceutical composition, which these in combination with pharmaceutical includes compatible excipients and / or carriers.
  • the pharmaceutical composition is preferably a vaccine.
  • the FWPV generated according to the present invention are converted to a physiologically acceptable form. This can be done on the basis of many years of experience in the preparation of vaccines which are used for vaccination against smallpox (Kaplan, Br. Med. Bull. 25, 131-135 [1969]).
  • PBS phosphate buffered saline
  • peptone and 1% human albumin in an ampoule, freeze-dried, preferably in a glass ampoule.
  • the lyophilisate can contain fillers or diluents (such as, for example, nitro nol, dextran, sugar, glycine, lactose or polyvinylpyrrolidone) or other auxiliaries (for example antioxidants, stabilizers, etc.) which are suitable for parenteral administration.
  • fillers or diluents such as, for example, nitro nol, dextran, sugar, glycine, lactose or polyvinylpyrrolidone
  • auxiliaries for example antioxidants, stabilizers, etc.
  • the lyophilisate can be dissolved in 0.1 to 0.2 ml of an aqueous solution, preferably physiological saline, and administered parenterally, for example by intradermal inoculation.
  • the vaccine according to the invention is preferably injected intracutaneously. Slight swelling and redness, and sometimes itching, may occur at the injection site.
  • the route of administration, the dose and the number of administrations can be optimized in a known manner by the person skilled in the art. Where appropriate, it is convenient to administer the vaccine several times over an extended period of time to achieve a high level of immune responses to the foreign antigen.
  • the aforementioned objects according to the invention ie the recombinant fowlpox virus, the DNA vector or the pharmaceutical composition are preferably used for the treatment of infectious diseases or tumor diseases as defined above.
  • the Fowlpox virus according to the invention, the DNA vector or the pharmaceutical composition can be used prophylactically or therapeutically either alone (for example as a vaccine) or in the context of a so-called prime boost approach.
  • the immune response against the fowlpoxvirus vaccine can be increased further by repeated administration of a vaccine dose of the fowlpoxvirus according to the invention.
  • Fowlpox viruses according to the invention with other viral vectors, for example MVA.
  • MVA or other vaccine viruses that belong to the genus of orthopoxviruses can be used.
  • certain strains of the vaccinia virus have been used as live vaccine for smallpox immunization for many years, for example the Elstree strain of the Lister Institute in the United Kingdom.
  • Vaccinia viruses have also been used frequently as vectors for the generation and delivery of foreign antigens (Smith et al., Biotechnology and Genetic Engineering Reviews 2, 383-407 [1984]).
  • Vaccinia viruses are among the best studied living vectors and have special features that support their use as recombinant vaccines: they are highly stable, inexpensive to manufacture, easy to administer and can absorb large amounts of foreign DNA.
  • the vaccinia viruses have the advantage of inducing both antibody and cytotoxic reactions and enable the presentation of antigens to the immune system in a more natural way and have been used successfully as vector vaccines that protect against infectious diseases.
  • vaccine viruses are infectious to humans and their use as an expression vector in the laboratory is restricted by safety concerns and regulations.
  • Most of the recombinant vaccinia viruses described in the literature are based on the Western Reserve (WR) strain of the vaccinia viruses.
  • WR Western Reserve
  • this strain is highly neurovirolent and therefore poorly suited for use in humans and animals (Morita et al, Vaccine 5, 65-70 (1987)).
  • Safety concerns regarding the standard strains of W have been addressed through the development of vaccine vectors from highly attenuated virus strains, which are characterized by their limited ability to reproduce in vitro and their avirulence in vivo.
  • the so-called modified vaccine virus Ankara (MVA) was cultivated based on the Ankara strain.
  • the MVA virus was deposited with CNCM on December 15, 1987 under the deposit number I-721 in accordance with the requirements of the Budapest Treaty.
  • vaccinia viruses and poxvirus vectors with similar properties can also be used for the above vaccination schedule, e.g. recombinant forms of the vaccinia viruses NYVAC, CN-I-78, LC16m0 and LC16m8 as well as recombinant parapox viruses such as e.g. the attenuated Orf virus D1701.
  • adenoviruses in particular human adenovirus 5
  • orthomyxoviruses in particular influenza viruses
  • herpes viruses in particular human or equine herpesviruses
  • alphaviruses in particular Semiliki-Forest-Niren, Sindbisviruses, and equine encephalitis
  • the Fowlpox detector according to the invention is preferably used during the first vaccination, i.e. during priming.
  • a vaccination scheme according to the invention which can be used, for example, as part of a vaccination against infectious diseases or tumor diseases, or for the treatment thereof, is as follows:
  • a method according to the invention for immunizing an animal preferably a human, preferably comprises the following steps:
  • the priming step is preferably carried out twice before the boosting step and particularly preferably the priming steps are carried out at the start of the treatment and in weeks three to five, preferably week four, of the immunization, the boosting step being carried out in weeks eleven to thirteen, preferably week twelve of immunization is carried out.
  • the present invention is also directed to a combined preparation for the successive use of the individual components mentioned above, for vaccination.
  • a combined preparation consists of the following components:
  • Prime / Boost regulation provides a better immune response than vaccination with either Fowlpox viruses according to the present invention or another vector such as MVA alone.
  • the method according to the invention for producing a recombinant fowlpox virus or DNA vector comprises introducing foreign DNA into the F1 III gene of a fowlpox virus by means of recombinant DNA techniques.
  • the introduction is preferably carried out by homologous recombination of the virus DNA with the foreign DNA, the Fl 1L- contains specific sequences, followed by replication and isolation of the recombinant virus or the DNA vector.
  • the present invention further provides eukaryotic cells or prokaryotic cells which contain the recombinant DNA vector according to the invention or the recombinant FWPV.
  • a bacterial cell preferably E. coli cell
  • Avian cells preferably chicken cells, or a mammalian cell, preferably a human cell, can be used as eukaryotic cells, with the exception of human embryonic stem cells and human germline cells.
  • the DNA vector according to the invention can be transfected into the cells, for example by means of calcium phosphate precipitation (Graham et al., Virol. 52, 456-467 [1973]; Wigler et al., Cell 777-785 [1979] by means of electroporation (Neumann et al., EMBO J. 1, 841-845 [1982]), by microinjection (Graessmann et al., Meth. Enzymology 101, 482-492 (1983)), by means of liposomes (Straubinger et al., Methods in Enzymology 101, 512-527 (1983)), by means of spheroblasts (Schaffner, Proc. Natl. Acad. Sci. USA 77, 2163-2167 (1980)) or by other methods known to the person skilled in the art Transfection using a calcium phosphate precipitation is preferably used.
  • calcium phosphate precipitation Graham et al., Virol. 52, 45
  • Fig. 1 (A) Primer walking sequencing strategy for the sequencing of FWPV-Fl 1L. The length of each sequence reaction is shown. (B) Schematic representation of the FWPV genome, showing the inverted terminal repeats (ITR) and the central location of the Fl IL gene, as well as a representation of the production of Fl III gene sequences which were used as flanking sequences for the homologous recombination , It is the positions along the F1 IL ORF for the primers F1 and F2 that are used to amplify Flank 1 was used, as well as primers F3 and F4 used to amplify Flank 2.
  • ITR inverted terminal repeats
  • a unique PweER restriction site in pLGFV7.5 can be used to insert foreign genes that are placed under the transcriptional control of P7.5.
  • the mouse tyrosinase-encoding gene (mTyr) served as the first recombinant model gene.
  • Fig. 4 Multi-step growth curve experiment. CEF were inoculated in triplicate with either FP9 virus or with the FL III knockout virus in a moi of 0.05 pfu / cell. The triple batches were harvested at different times after infection and titrated under agar. The error bars show the standard deviations between the triple samples. 5: PCR analysis of genomic DNA from the recombinant FWPV tyrosinase virus MT31. The initial plaque isolation (lane 0) and the first 2 subsequent plaque cleaning rounds (lanes 1 and 2) took place in the presence of selection medium (MXH), whereas the last 3 plaque cleaning steps (lanes 3 to 6) took place in the absence of MXH.
  • MXH selection medium
  • pLGFV7.5-mTyr-DNA was used as the control template DNA
  • FP9 is the wt virus control DNA
  • UC the non-infected control DNA.
  • Control PCR (F1-F2) showing the relative amount of virus DNA.
  • PCR F1-F4 the 984 bp band corresponds to the expected DNA fragment which is amplified from wt virus DNA (wt), the 7282 bp band corresponds to the amplification product which contains the tyrosinase gene and the / Contains ⁇ cZ-gpt sub-cassette which are contained in the intermediate recombinant virus (interm.), the 2880 bp band corresponds to the product which is only the amplification product of the tyrosinase gene expression cassette (rec.).
  • C PCR PR43-44 showing the presence of the / ccZ sequence.
  • D Expression of mouse tyrosinase, which is detected by the production of melanin in CEF.
  • CEF cells in 6 cm diameter petri dishes were infected with a moi of 0.1 pfu / cell. Six days after infection, the cells were harvested, transferred to a U-bottom microtiter plate and washed in PBS. Lanes 1-5: cells infected with five different recombinant viruses; Lane 6: uninfected cells; Lane 7. cells infected with wt virus.
  • Fig. 6 Advantage of a combined vaccination with FWPV tyrosinase and MVA tyrosinase vaccines in the prime boost method. Two mice per group were immunized twice every four weeks with 10 8 infectious units of virus vaccine by intraperitoneal administration.
  • the vaccination groups are made up as follows:
  • the T cells from the spleens of the animals were prepared, cultivated in vitro over a period of 7 days and then tested for their cytotoxic capacity for tyrosinase-specific target cells in the chromium release test. This shows the values obtained for the specific lysis of the target cells (in% with an effector / target ratio of 30: 1). It was shown that the T cells of the combined vaccinated animals clearly had the highest reactivity in the FM group. In contrast, only moderate cytotoxic responses could be measured in the FF and MM group mice immunized uniformly with regard to the vaccine. The weakest cytotoxicity was shown in the test of the group MF T cells, which had been vaccinated first with MVA tyrosinase and then with FWPV tyrosinase.
  • CEF Primary chicken embryo fibroblasts
  • MEM MEM
  • BMS basal medium supplement
  • HeLa cells and Vero cells were grown in DMEM (Gibco) enriched with 10% fetal calf serum (FCS) (Gibco).
  • FCS fetal calf serum
  • FWPV-FP9 a well characterized plaque isolate of the attenuated strain HP1-438 (Boulanger et al., 1998), was grown for CEF in the presence of MEM enriched with 2% FCS.
  • FWPV-FP9 grown on CEF were harvested after a freeze-thaw cycle.
  • the virus was concentrated by ultracentrifugation and semi-purified through a 25% (w / w) sucrose cushion as previously described (Boulanger et al., 1998).
  • the sediment was resuspended in 0.05 M Tris, pH 8, with 1% SDS, 100 ⁇ M ⁇ -mercaptoethanol and 500 ⁇ g / ml Proteinase K and incubated for 1 hour at 50 ° C. After phenol / chloroform extraction, the DNA was isolated, precipitated with ethanol and resuspended in H 2 O. Sequencing was carried out using primer walking on the virus DNA.
  • the first primer (PR30) was designed based on the partial sequence of the pigeonpox Fl IL gene, which was developed by Ogawa et al. (1993) was published under accession number M88588.
  • the primers used for sequencing were: PR30: 5'-CTCGTACCTTTAGTCGGATG-3 ⁇ PR31: 5'-GGTAGCTTTGATTACATAGCCG-3 ', PR32: 5'- GATGGTCGTCTGTTATCGACTC-3' and PR33: 5'- GTCTGATAGATGTAAAT.
  • a 4.2 bp / ⁇ cZ-gpt cassette which corresponds to the cassette contained in the plasmid p ⁇ iLZgpt described by Sutter & Moss (1992) and the E. coli lacZ gene under the control of the late vaccinia virus promoter Pl 1 and the E. coli gpt gene under the control of the early / late vaccinia virus promoter P7.5 was inserted directly into the multiple cloning site of the pBluescript II SK + plasmid (Stratagene), plasmid pBSLG was obtained.
  • GGCCGCGGCCGCCACTAGATGAACATGACACCGG-3 ' GGCCGCGCGCCACTAGATGAACATGACACCGG-3 '
  • PRF2 5'- GGCCCCCCGGGGCATTACGTGTTGTTTGTTGC-3'
  • This fragment was used in pBSLG previously digested with the same enzymes, pBSLGFl 1 being obtained.
  • Flank 2 (534 bp) was primed using the primers PRF3 (5'-GGCCCCTGCAGGCAACAAACAACACGTAATGC-3 ') and PRF4 (5'-CGCCCGTCGACCTTCTTTAGAGGAAATCGCTGC-3'), which contain a Pstl and S ⁇ / 7 restriction site , This fragment was inserted into pBSLGFl 1 which had previously been digested with both enzymes, pLGFl 1 being obtained.
  • the Flank 2 repeat P7.5 promoter cassette was then extracted from the plasmid obtained by RstZ cleavage. cut, treated with Klenow polymerase and inserted into the Sm ⁇ J site of pLGFl 1, the insertion plasmid pLGFV7.5 being obtained.
  • pLGFV7.5-rnTyr A single E ⁇ ne / site downstream of the vaccinia virus P7.5 promoter sequence in plasmid pLGFV7.5 was used to insert the gene coding for mouse tyrosinase into this plasmid.
  • the plasmid pZeoSV2 + / muTy (Drexler et al., Unpublished results) was cleaved with Nhel and Not /. The desired fragment was treated with Klenow polymerase and inserted into the Pmel restriction site with blunt ends in pLGFV7.5, whereby the plasmid pLGFV7.5-mTyr was obtained.
  • CEF infected with FWPV FP9 were transfected with plasmid pLGFl 1 using Lipofectin (Gibco).
  • the progeny virus was harvested and plated under agar containing mycophenolic acid, xanthine and hypoxanthine (MHX medium).
  • MHX medium mycophenolic acid, xanthine and hypoxanthine
  • Viruses which formed ⁇ -galactosidase positive plaques were visualized with an Xgal coating and the plaques were cleaned twice in the presence of selection medium. LacZ / gpt + viruses were further purified without selection medium until 100% blue plaques were obtained.
  • the total D ⁇ A was isolated from CEF which had been infected with different selected virus isolates, extracted as described above (Boulanger et al., 1998) and analyzed by means of PCR, using the primers PRF1 and PRF4, to check the absence of the wt sequence, and the primers PRF1 and PRF2 to check for the presence of DNA.
  • CEF infected with FWPV FP9 were transfected with linearized pLGFV7.5 mTyr plasmid DNA (Fig. 2).
  • Recombinant viruses were purified three times in the presence of selection medium.
  • blue plaque isolates which had once been propagated to CEF, were further purified in the absence of selection medium. Viruses that formed white plaques were then plaque cleaned.
  • the clones obtained were then tested by means of PCR as described above, in addition to which a PCR was carried out using 2 primers specific for the ⁇ cZ sequence (PR43: 5 * -GACTACACAAATCAGCGATTTCC-3 'and PR44: 5'-CTTCTGACCTGCGGTCG-3') , so that the presence of the selection cassette could be examined.
  • the FWPV-Fl III gene is located in the central region of the virus genome (FIG. 1 B). Since the corresponding open reading frame is fragmented in the genome of the CEF-adapted vaccinia virus strain MVA (Antoine et al., 1998), we speculate that the gene may not be essential for FWPV replication.
  • the partial sequence of the C-terminus of the orthopedic Fl IL virus from poxpox virus as well as the complete gene coding for the F12L pox virus virus ortholog and a partial sequence for the F13L ortholog were known (Ogawa et al., 1993; accession number M88588 ).
  • Frame shift mutations of the coding F1 IL sequence in vaccinia virus MVA indicated that F1 1L may be a non-essential gene that may be used as an insertion site.
  • F1 1L may be a non-essential gene that may be used as an insertion site.
  • our analysis of the FWPV-Fl 1L protein (451 amino acids) using the GeneStream Align program showed only 18.6% o amino acid identity with the ortholog (354 amino acids) of the vaccinia virus strain Copenhagen, which indicated different properties in both could indicate viruses.
  • FWPV-Fl 1L In order to determine whether FWPV-Fl 1L can be used as a new insertion site, we constructed mutant viruses using insertion disruption of the coding Fl III sequence.
  • the plasmid pLGFl 1 which contained the / ocZ cassette, flanked by 2 sequences from the FWPV-Fl 1L-ORF (FIGS. 1B and 2), was used to produce recombinant viruses det, which were selected for their growth in the presence of mycophenolic acid under an XGal coating.
  • the recombinants can be obtained from either a double recombination event in both flank 1 and flank 2, resulting in stable recombinant viruses, or by a simple recombination event in one of the flanking gene sequences, which leads to unstable intermediate recombinant genomes. In the latter case, further passages in the absence of selection medium, which make wt virus visible as white plaques, are necessary until a stable recombinant virus is obtained which only produces blue plaques.
  • the genotype of successive virus isolates was characterized by PCR using the external primers used to generate the flanks (PRF1 and PRF4).
  • Virus clone F2 (FIG. 3A) had lost the wt gene sequence after 4 plaque purifications (clone F2.1.2.1.1).
  • Virus clone F 15, which only generated blue plaques after 3 plaque purifications (Fl 5.1.1.1), still contained the wt sequence, as shown by PCR (FIG. 3A).
  • the restricted dilution After amplification of this virus clone (Fl 5.1.1.1.1) by three successive passages in CEF, the restricted dilution also revealed the presence of viruses which produced white plaques.
  • the virus clone F8 only needed a further plaque cleaning in order to be free of wt virus be (Fig. 3B).
  • the plaque titration of virus clone F9.1.1.1.1 after three propagation cycles in CEF showed no presence of contaminating wt virus.
  • F11L as an insertion target enables the stable expression of recombinant genes
  • the plasmid pLGFl 1 was used to construct a plasmid vector (pLGFV7.5) so that foreign genes could be inserted into the FWPV genome together with the / ⁇ cZ-gpt selection sub-cassette under the control of the vaccinia virus P7.5 promoter (FIG. 2).
  • the plasmid also contained a repeat of the Flank-2 sequence (Fig. 2) so that the sub-cassette could then be removed from the recombinant viruses.
  • the first foreign gene obtained from pLGFV7.5 was inserted, the DNA sequence coding for the enzyme tyrosinase, which is of interest as an antigen for an experimental vaccination against melanoma (Drexler et al., 1999).
  • Tyrosinase is involved in the biosynthetic pathway for the production of melanin. Cells that express this enzyme accumulate melanin and go dark. This property provides a simple method for screening for the expression of tyrosinase and its functional integrity. After transfection with pLGFV7.5-mTyr, five recombinant virus clones were selected for further analysis.
  • the linearization of the plasmid DNA which had proven to be very efficient during the production of the F1 IL mutant virus, was also used to produce recombinant viruses.
  • the virus Clones MT22 (data not shown) and MT31 (FIG. 5) showed no detectable wt virus sequence after only one plaque cleaning in the presence of selection medium (MT31.1, lane 1, FIG. 5B).
  • the genomic DNA preparation of both virus clones already showed the presence of recombinant virus genomes which no longer contained any detectable marker gene sequences (2880 bp gene product in FIG.
  • the vaccinia virus Fl 1L ORF potentially encodes a protein that has no homology or characteristic motif that could predict a specific function. Therefore, the FWPV's FIIP ortho may not be essential.
  • this hypothesis was examined by inserting a selection cassette into the FWPV gene which contained a marker gene (lacZ) and a selection gene (gpt).
  • lacZ marker gene
  • gpt selection gene
  • the generation of recombinant viruses containing this cassette and no wt gene sequences showed that the full-length orthologous FWPV gene is not essential for the growth of FWPV.
  • the mutant virus grew just as efficiently as the wt virus (FIG. 4), which suggests that the F1 IL gene locus can be considered a suitable insertion site for recombinant genes.
  • this site to successfully generate recombinant FWPV viruses that stably expressed the melanoma model antigen tyrosinase.
  • the stable expression of marker or selection genes in recombinant viruses can be unsuitable for use as a vector vaccine or for other genetic engineering.
  • the selection sub-cassette was flanked by repeat sequences so that it could subsequently be eliminated.
  • the production of such a recombinant first requires the isolation of a recombinant virus which still contains the selection sub-cassette but no longer contains a wt sequence, and then the isolation of the stable recombinant which has lost the selection sub-cassette.
  • the efficiency of the isolation strategy is therefore critical so that final recombinants can be obtained in a reasonable amount of time.
  • tyrosinase recombinant FWPV viruses obtained by using Fl 1L as a target can easily be monitored by examining the melanin synthesis, simply by examining the color of the cell sediments (Fig. 5D and Table 1).
  • CMV cytomegalovirus
  • Vaccinia virus DNA ligase is nonessential for virus replication - recovery of plasmids from virus-infected cells. Virology 180, 625-
  • Transient host ranks selection for genetic engineering of modified vaccinia virus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft ein rekombinantes Fowlpox-Virus (FWPV) sowie einen DNA-Vektor, der Gensequenzen für ein solches rekombinantes Fowlpox-Virus enthält. Die Erfindung betrifft weiterhin eine pharmazeutische Zusammensetzung, die das rekombinante Fowlpox-Virus oder einen DNA-Vektor umfasst, die Verwendung des rekombinanten Fowlpox-Virus zur Behandlung von Infektionskrankheiten oder Tumorerkrankungen sowie ein Verfahren zur Herstellung des rekombinanten Fowlpox-Virus oder DNA-Vektors. Zuletzt betrifft die vorliegende Erfindung Eukaryontenzellen oder Prokaryontenzellen, die den rekombinanten DNA-Vektor oder das rekombinante Fowlpox-Virus enthalten. Die Erfindung beruht auf der Identifikation der FWPV-F11L-Gens als neue Insertionsstelle für Fremd-DNA.

Description

REKOMBINANTES FO WLPOX- VIR US
Die vorliegende Erfindung betrifft ein rekombinantes Fowlpox-Nirus (FWPN) sowie einen DΝA-Nektor, der Gensequenzen für ein solches rekombinantes Fowlpox-Nirus enthält. Die Erfindung betrifft weiterhin eine pharmazeutische Zusammensetzung, die das rekom- binante Fowlpox-Nirus oder einen DΝA-Nektor umfasst, die Verwendung des rekombinanten Fowlpox-Nirus zur Behandlung von Infektionskrankheiten oder Tumorerkrankungen sowie ein Verfahren zur Herstellung des rekombinanten Fowlpox-Nirus oder DΝA- Nektors. Zuletzt betrifft die vorliegende Erfindung Eukaryontenzellen oder Prokaryontenzellen, die den rekombinanten DΝA-Nektor oder das rekombinante Fowlpox-Nirus enthalten.
Pockenviren verschiedener Gattungen wurden bereits als rekombinante Impfstoffvektoren etabliert (Moss, 1996; Paoletti, 1996). Von Nogelpockenviren, einschließlich Geflügelpockenviren (Fowlpox-Niren bzw. FWPN) als prototypischem Mitglied, ist bekannt, dass sie sich nur in Nogelzellen replizieren. In Säugerzellen ist die Virus Vermehrung je nach dem Zelltyp zu verschiedenen Zeitpunkten im Replikationszyklus blockiert, aber es erfolgt eine virus-spezifϊsch gesteuerte Genexpression (Taylor et al., 1988; Somogyi et al., 1993). Diese Eigenschaft wurde ausgenutzt, um rekombinante Kandidaten-Vogelpockenviren als sichere, nicht replizierende Vektoren für die Impfung von Säugern, einschließlich Menschen, gegen Infektionskrankheiten und Krebs zu entwickeln (Wang et al., 1995; Perkus et al., 1995; Roth et al., 1996). Einige dieser Impfstoffe hat man bereits in klinischen Phase I- (Cadoz et al., 1992; Marshall et al., 1999, Berencsi et al., 2001) oder Phase II-Studien getestet (Belshe et al., 2001).
Zukünftige, komplexere Impfstrategien erfordern wahrscheinlich die gleichzeitige Expression verschiedener Antigene oder die Expression einer Kombination von Antigenen und immuncostimulatorischen Molekülen (Leong et al., 1994; Hodge et al., 1999). Diese Gene können entweder als einzelne Kassette an einer Stelle des Virusgenoms inseriert werden oder nacheinander eingefügt werden, so dass bereits konstruierte Vektorviren kontinuierlich verbessert werden können. Im letzteren Fall ist es wünschenswert, die Wahl unter verschiedenen stabilen Insertionsstellen zu haben und die Selektionsmarker eliminieren zu können, damit die gleiche Selektionsstrategie für die Insertion an verschiedenen Stellen wiederholt werden kann. Das Vorliegen eines Markergens ist zudem bei einem Impfstoff für den Gebrauch bei Menschen nicht zu empfehlen. Mittels Shotgun-Insertionsstrategien hat man mehrere Insertionsstellen im FWPV-Genom identifiziert (Taylor et al., 1988; Jen- kins et al., 1991). Zudem hat man die Fremdgen-Insertion im Virusgenom in den Bereich der terminalen Inverted Repeats (Boursnell et al., 1990), zu nicht essentiellen Genen, wie dem Thymidinkinasegen (Boyle & Coupar, 1988) oder zu Bereichen zwischen kodierenden Gensequenzen (Spehner et al., 1990) gelenkt.
Mehrere Strategien zur Erzeugung von rekombinanten Viren, aus denen das zur Plaque- isolation verwendete Markergen nach der Verwendung deletiert worden war, wurden beschrieben.
Die erste Strategie ist das von Falkner und Moss (1990) beschriebene, häufig eingesetzte transiente dominante Selektionsverfahren, bei dem der Selektionsmarker in der Plasmidsequenz außerhalb der Insertionskassette vorliegt. Rekombinante Viren, die durch ein Ein- fachcrossover-Ereignis erzeugt werden und die gesamte Plasmidsequenz enthalten, werden in Anwesenheit von Selektionsmedium erhalten. Diese rekombinanten Viren sind aufgrund des Vorliegens der wiederholten Sequenzen der flankierenden Regionen instabil. In Abwesenheit von Selektionsmedium wird das zwischen diesen Wiederholungen liegende Markergen nach einer zweiten Rekombination deletiert, die entweder zur Produktion des Wildtyp- (wt-) Virus oder eines stabilen rekombinanten Virus führt. Letzteres muss wieder nach dem Plaqueverfahren isoliert und anschließend durch PCR oder Southem-Blotting identifiziert werden. Ein zweites Verfahren basiert auf der Beobachtung, dass bei rekombinantem FWPV, das das Zielprotein und ß-Galactosidase jeweils unter der Kontrolle des P7.5-Promotors in direkt wiederholter Orientierung exprimierte, eine homologe Rekombination zwischen den Promotorwiederholungen erfolgte, wodurch das lacZ-Gen deletiert wurde (Spehner et al., 1990). Daher wurden weiße Plaques von rekombinanten Viren gebildet, die das Markergen verloren hatten. Eine ähnliche Strategie ist entwickelt worden, um rekombinante MVA- Viren unter Verwendung des regulatorischen Vacciniavirus KIL-Gens als transienten Selektionsmarker herzustellen, der mittels intragenomischer homologer Rekombination entfernt wird (Staib et al., 2000).
FWPV wächst langsamer als das Vacciniavirus. Die Aufrechterhaltung der vollen Replikationsfähigkeit von rekombinanten Viren ist für Erzeugung wie auch Verwendung potentieller FWPV-Impfviren von entscheidender Bedeutung.
Gegenüber den bisher existierenden Vektoren liegen der vorliegenden Erfindung die Aufgaben zu Grunde, ein rekombinantes Fowlpox-Virus bereitzustellen, das eine erhöhte Vektorstabilität nach Insertion von Fremd-DNA sowie eine höhere Sicherheit bei Einsatz als Impfstoffvektor ergibt und dabei die volle Replikationsfähigkeit und optimale Effizienz während der Selektion rekombinanter Viren beibehält.
Diese Aufgaben werden durch den Gegenstand der unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben.
Die erfindungsgemäße Lösung beruht auf der Identifikation der FWPV-Fl lL-Gens als neue Insertionsstelle für Fremd-DNA. Fl lL-mutierte Viren replizierten sich nach Infektion von CEF (chicken embryo fibroblasts) effizient. Die Verwendbarkeit von Fl 1L- Vektorplasmiden, die eine transiente Expression des Markergens ermöglichen, wurde durch die schnelle Produktion rekombinanter FWPV- Viren gezeigt, die das Tumormodell- antigen Tyrosinase stabil produzieren. Das Fl lL-Gen von FWPV ist an sich bereits bekannt und genau identifiziert. In der Publikation von Afonso et al. 2000 ist das Fl lL-Gen-Homolog präzise als ORF FPV110 mit der Genomposition 131.387-132.739 identifiziert. Afonso et al. offenbaren jedoch nicht die Eigenschaft des Fl IL-Gens als Integrationsort für Fremd-DNA.
Die Verwendung des Fl IL-Gens als Integrationsort für Fremd-DNA bietet einige unerwartete Vorteile: zunächst hat sich überraschenderweise herausgestellt, dass die rekombinanten Fowlpox- Viren, die eine oder mehrere Insertionen von Fremd-DNA im Fl lL-Gen enthalten, eine gegenüber herkömmlichen Vektoren erhöhte Vektorstabilität aufweisen. Zudem haben sich die erfindungsgemäßen rekombinanten FWPV als in der in vivo Anwendung als Impfstoff ektoren sehr sicher herausgestellt. Ein weiterer Vorteil der erfindungsgemäßen Insertion in das Fl lL-Gen ist darin zu sehen, dass die Insertion an einer beliebigen Stelle des Gens vorgenommen werden kann.
Gemäß eines Grundgedankens stellt die vorliegende Erfindung folglich ein rekombinantes Fowlpox-Virus (FWPV) bereit, das zumindest eine Insertion einer Fremd-DNA im Fl 1L- Gen enthält. Die Insertion erfolgt, wie bereits oben angesprochen, in Position 131.387- 132.739 des FWPV-Genoms. Obwohl die Insertion grundsätzlich an jeder beliebigen Stelle des Fl IL-Gens erfolgen kann, wird eine Insertion in dem durch die Nukleotidpositi- onen 131.860-131.870 im Fowlpoxvirusgenom definierten Genomabschnitt bevorzugt.
Als Fremd-DNA wird im Kontext der vorliegenden Erfindung generell jegliche DNA bezeichnet, die mit Hilfe gentechnologischer Methoden in die DNA eines Organismus, einer Zelle oder eines Virus etc. eingebracht wird, aus der/dem sie nicht stammt.
Gemäß einer bevorzugten Ausführungsform enthält die Fremd-DNA zumindest ein Fremdgen, wahlweise in Kombination mit einer Sequenz zur Regulation der Expression des Fremdgens. Das im erfindungsgemäßen rekombinanten Fowlpox-Virus (FWPV) enthaltene Fremdgen kodiert für ein Polypeptid, das bevorzugt therapeutisch einsetzbar ist und/oder kodiert für einen nachweisbaren Marker und/oder ist ein Selektionsgen.
Unter einem Reportergen, wie hierin verwendet, werden Gene bezeichnet, deren Genprodukte sich mit Hilfe einfacher biochemischer oder histochemischer Methoden nachweisen lassen. Synonyme für den Begriff Reportergen sind Indikatorgen sowie Markergen.
Unter einem Selektionsgen bzw. Selektionsmarker werden im Kontext der vorliegenden Erfindung Gene bezeichnet, die Viren bzw. Zellen, in denen die entsprechende Genprodukte gebildet werden, einen Wachstumsvorteil bzw. Überlebensvorteil gegenüber anderen Viren bzw. Zellen verschaffen, die das entsprechende Genprodukt nicht synthetisieren . Vorzugsweise verwendete Selektionsmarker sind die Gene für E. coli Guanin- Phosphoribosyltransferase, E. coli Hygromycin-Resistenz und Neomycin-Resistenz.
Die Fremd-DNA-Sequenz kann ein Gen sein, das beispielsweise für ein pathogenes Mittel bzw. für einen Bestandteil eines pathogenen Mittels kodiert. Unter pathogenen Mitteln sind Viren, Bakterien und Parasiten zu verstehen, die eine Krankheit verursachen können, ebenso wie Tumorzellen, die sich unkontrolliert in einem Organismus vermehren und somit zu einem pathologischen Wachstum führen können. Beispiele derartiger pathogener Mittel sind in Davis, B.D. et al., (Microbiology, 3. Ausgabe, Harper International Edition) beschrieben. Bevorzugte pathogene Mittel sind Bestandteile von Influenza- Viren oder Masern und von Respiratory-Syncytial-Viren, von Dengue- Viren, von humanen Immundefi- zienzviren, beispielsweise HTV I und HIN II, von humanen Hepatitis-Niren, beispielsweise HCN und HBN, von Herpes-Niren, von Papilloma-Niren, vom Malariaparasiten Plasmodium falciparum und von den Tuberkulose verursachenden Mykobakterien. Spezielle Beispiele von Bestandteilen pathogener Mittel sind z.B. Hüllproteine von Viren (HTV-Env, HCV-E1/E2, Influenzavirus-HA-ΝA, RSV-F-G), regulatorische Virusproteine (HTV-Tat-Rev-Νef, HCV-ΝS3-ΝS4-ΝS5), das Protective Antigen Protein von Bacillus anthracis, Merozoite Surface Antigen und Circumsporozoite Protein von Plasmodium fal- ciparum, das Tyrosinase-Protein als Melanomantigen, bzw. das HER-2/neu Protein als Antigen von Adenokarzinomen des Menschen, zu nennen.
Bevorzugte Gene, die Tumor-assoziierte Antigene kodieren, sind die, die für Melanom- assoziierte Differenzierungs-Antigene, beispielsweise Tyrosinase, Tyrosinase- verwandte Proteine 1 und 2, von Cancer-Testes-Antigenen bzw. Tumor-Hoden- Antigenen, beispielsweise MAGE-1, -2, -3 und BAGE, für nicht mutierte Shared Antigene bzw. Antigene, die von mehreren Tumortypen geteilt werden, die auf Tumoren überexprimiert werden, beispielsweise Her-2/neu, MUC-1 und p53, kodiert werden.
Besonders geeignet sind Polypeptide, die ein Bestandteil von HTV, Mykobakterium spp. oder Plasmodium falciparum oder Bestandteil einer Melanomzelle sind.
Als Bestandteile sind allgemein Bestandteile des Vorgenannten zu verstehen, die immuno- gene Eigenschaften aufweisen, dass heißt dazu in der Lage sind, bei Säugern, insbesondere Menschen, eine Immunreaktion hervorzurufen (z.B. Oberflächenantigene).
Damit die Fremd-DNA-Sequenz oder das Gen exprimiert werden kann ist es notwendig, daß Regulatorsequenzen, die zur Transkription des Gens erforderlich sind, auf der DNA vorliegen. Derartige Regulatorsequenzen (als Promotoren bezeichnet) sind dem Fachmann bekannt, beispielsweise kann ein Pockenvirus-spezifϊscher Promoter eingesetzt werden.
Vorzugsweise ist der nachweisbare Marker eine beta-Galactosidase, beta-Glucoronidase, eine Luziferase oder ein Grün-Fluoreszierendes-Protein.
Gemäß einer bevorzugten Ausführungsform ist das Markergen und /oder Selektionsgen eliminierbar. Wie bereits eingangs ausgeführt, ist diese Eigenschaft von großem Vorteil, weil damit die gleiche Selektionsstrategie für die Insertion an verschiedenen Stellen wiederholt werden kann. Das Vorliegen eines Markergens ist zudem bei einem Impfstoff für den Gebrauch bei Menschen nicht zu empfehlen. Die Deletion dieser Gensequenzen aus dem Genom der endgültigen rekombinanten Viren erfolgt quasi "automatisch" durch eine intragenomische homologe Rekombination zwischen identischen Gensequenzen, die die Marker-Selektionsgen-Expressionskassette flankieren.
Gemäß einem weiteren Grundgedanken stellt die vorliegende Erfindung einen DNA- Vektor bereit, der ein erfindungsgemäßes rekombinantes Fowlpox-Virus oder funktioneile Teile hiervon, die zumindest eine Insertion einer Fremd-DNA im Fl lL-Gen enthalten, und weiterhin bevorzugt ein Replikon zur Replikation des Vektors in einer Pro- oder Eukary- ontenzelle und ein in Pro-oder Eukaryontenzellen selektierbares Selektionsgen oder Markergen, enthält. Geeignete Klonierungs- und Expressionsvektoren zur Verwendung mit prokaryontischen und eukaryontischen Wirten sind in Sambrook, et al., in Molecular Clo- ning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor, New York (1989), beschrieben.
Die DNA-Vektoren der vorliegenden Erfindung spielen die Rolle einer eigenständigen, vermehrungsfähigen Einheit, die in geeigneten Wirtszellen die Fähigkeit zur DNA- Replikation bessitzen. Die nicht replizierfähige Fremd-DNA wird somit passiv mitrepliziert und kann sodann zusammen mit dem Vektor isoliert und gereinigt werden. Neben dem erfindungsgemäßen rekombinanten Fowlpox- Virusgensequenzen kann der DNA- Vektor noch folgende Sequenzelemente enthalten: Enhancer zur Verstärkung der Genexpression, Promotoren, die die Voraussetzung für die Genexpression darstellen, Repli- kationsursprünge, Reportergene, selektierbare Gene, Spleißsignale und Verpackungssignale.
Der erfindungsgemäße DNA- Vektor dient in erster Linie als Transfervektor, um in einer virusinfizierten Zelle über homologe Rekombination die Insertion von Fremdgenen zu ermöglichen. Er wird in der Regel im Kontext einer Fowlpox- Virusinfektion eingesetzt, da die Regulationselemente vom Vorhandensein anderer Virusproteine abhängig sind.
Erfindungsgemäß wird das rekombinante Fowlpox-Virus oder der DNA- Vektor in einer pharmazeutischen Zusammensetzung bereitgestellt, die diese in Verbindung mit pharma- zeutisch verträglichen Hilfsstoffen und/oder Trägerstoffen umfasst. Die pharmazeutische Zusammensetzung ist vorzugsweise eine Vakzine.
Um eine Vakzine herzustellen, werden die gemäß der vorliegenden Erfindung erzeugten FWPV in eine physiologisch verträgliche Form umgewandelt. Dies kann auf Grundlage der vieljährigen Erfahrung in der Zubereitung von Vakzinen, die zur Impfung gegen Pocken verwendet werden, durchgeführt werden (Kaplan, Br. Med. Bull. 25, 131-135 [1969]). Typischerweise werden ungefähr 106- 107 Teilchen des rekombinanten FWPV in 100 ml Phosphat gepufferter Salzlösung (PBS) in Gegenwart von 2 % Pepton und 1 % menschlichen Albumin in einer Ampulle gefriergetrocknet, vorzugsweise in einer Glasampulle. Das Lyophilisat kann Füllmittel bzw. Verdünnungsmittel (wie beispielsweise Man- nitol, Dextran, Zucker, Glycin, Laktose oder Polyvinylpyrrolidon) oder andere Hilfsmittel (beispielsweise Antioxidanzien, Stabilisatoren etc.) enthalten, die zur parenteralen Verabreichung geeignet sind. Die Glasampulle wird dann verschlossen bzw. versiegelt und kann vorzugsweise bei Temperaturen unterhalb -20 °C für mehrere Monate aufbewahrt werden.
Zur Vakzinierung kann das Lyophilisat in 0,1 bis 0,2 ml einer wäßrigen Lösung, vorzugsweise physiologischer Salzlösung, gelöst und parenteral verabreicht werden, beispielsweise durch intradermale Inokulation. Die erfindungsgemäße Vakzine wird vorzugsweise intrakutan injiziert. Ein leichtes Anschwellen und eine Rötung und manchmal auch ein Juckreiz kann an der Injektionsstelle auftreten. Der Verabreichungsweg, die Dosis und die Anzahl der Verabreichungen kann vom Fachmann in einer bekannten Weise optimiert werden. Wo dies angebracht ist, ist es zweckdienlich, die Vakzine mehrere Male über eine verlängerte Zeitspanne hinweg zu verabreichen, um ein hohes Niveau von Immunreaktionen gegen das Fremdantigen zu erzielen.
Die vorgenannten erfindungsgemäßen Gegenstände, d.h. das rekombinante Fowlpox- Virus, der DNA- Vektor oder die pharmazeutische Zusammensetzung werden vorzugsweise zur Behandlung von Infektionskrankheiten oder Tumorerkrankungen, wie sie oben definiert sind, eingesetzt. Das erfindungsgemäße Fowlpox-Virus, der DNA-Vektor oder die pharmazeutische Zusammensetzung können entweder alleine (z.B. als Vakzine) oder im Rahmen eines sogenannten Prime-Boost-Ansatzes prophylaktisch oder therapeutisch angewendet werden. Mit anderen Worten kann durch wiederholte Gabe einer Impfdosis des erfindungsgemäßen Fowlpoxvirus die Immunreaktion gegen den Fowlpoxvirus-Impfstoff weiter erhöht werden.
Es ist insbesondere von Vorteil, die erfindungsgemäßen Fowlpox- Viren mit anderen vira- len Vektoren, beispielsweise MVA, zu kombinieren.
Im Rahmen einer Kombinationsimpfung können, wie oben angesprochen, beispielsweise MVA oder andere Vakzinia- Viren eingesetzt werden, die zur Gattung der Orthopoxviren gehören. Bekanntlicherweise wurden bestimmte Stämme der Vakzinia- Viren über viele Jahre als Lebendvakzine zur jinmunisierung gegen Pocken verwendet, beispielsweise der Elstree-Stamm des Lister Instituts im Vereinigten Königreich. Vakzinia- Viren wurden ebenfalls häufig als Vektoren zur Erzeugung und Abgabe von Fremdantigenen verwendet (Smith et al., Biotechnology and Genetic Engineering Reviews 2, 383-407 [1984]). Vakzinia- Viren gehören zu den am besten untersuchten Lebendvektoren und weisen spezielle Merkmale auf, die deren Verwendung als rekombinante Vakzine unterstützen: sie sind hochstabil, billig herzustellen, leicht zu verabreichen und können große Mengen an Fremd- DNA aufnehmen. Die Vakzinia- Viren weisen den Vorteil auf, sowohl Antikörper- als auch zytotoxische Reaktionen zu induzieren und ermöglichen die Präsentation von Antigenen gegenüber dem Immunsystem auf einem natürlicheren Weg und wurden erfolgreich als Vektorvakzine verwendet, die gegen Infektionskrankheiten schützen.
Jedoch sind Vakzinia- Viren für Menschen infektiös und ihre Verwendung als Expressionsvektor im Labor wird durch Sicherheitsbedenken und Regulierungen eingeschränkt. Die meisten der in der Literatur beschriebenen rekombinanten Vakzinia- Viren basieren auf dem Western Reserve (WR)-Stamm der Vakzinia- Viren. Es ist jedoch bekannt, dass dieser Stamm in starkem Maße neurovirolent ist und somit zur Verwendung in Menschen und Tieren schlecht geeignet ist (Morita et al, Vaccine 5, 65-70 (1987)). Sicherheitsbedenken bezüglich der Standard-Stämme von W wurden durch Entwicklung von Vakzinia- Vektoren aus hochattenuierten Virusstämmen angegangen, die durch ihre eingeschränkte Vermehrungsfähigkeit in vitro und ihre Avirulenz in vivo gekennzeichnet sind. So wurde basierend auf dem Ankara-Stamm das sogenannte modifizierte Vakzinia- Virus Ankara (MVA) kultiviert. Das MVA- Virus wurde gemäß der Erfordernisse des Budapester Vertrages bei CNCM am 15. Dezember 1987 unter der Hinterlegungsnummer I- 721 hinterlegt.
Jedoch können auch andere avirulente Vakzinia- Viren und Pockenvirus-Vektoren mit ähnlichen Eigenschaften für das oben genannte Impfschema verwendet werden, z.B. rekombinante Formen der Vakziniaviren NYVAC, CN-I-78, LC16m0 und LC16m8 sowie rekombinante Parapockenviren wie z.B. das attenuierte Orf- Virus D1701. Abgesehen von Pockenviren können als weitere virale Vektoren vorzugsweise Adenoviren (insbesondere humanes Adenovirus 5), Orthomyxoviren (insbesondere Influenzaviren), Herpesviren (insbesondere Humane bzw. Equine Herpesviren) oder Alphaviren (insbesondere Semiliki- Forest-Niren, Sindbisviren, und Equine Enzephalitis viren - NEE) eingesetzt werden.
Im Rahmen eines Prime-Boost-Ansatzes wird der erfindungsgemäße Fowlpox-Nektor vorzugsweise bei der Erstimpfung, d.h. beim Priming, verabreicht.
Ein erfindungsgemäßes Impfschema, das beispielsweise im Rahmen einer Schutzimpfung vor Infektionskrankheiten oder Tumorerkrankungen, oder auch zur Behandlung derselben eingesetzt werden kann, gestaltet sich wie folgt:
Ein erfindungsgemäßes Verfahren zur Immunisie ng eines Tieres, vorzugsweise eines Menschen, umfasst vorzugsweise die folgenden Schritte:
a) Primen eines Tieres mit einer therapeutisch wirksamen Menge eines erfindungsgemäßen Fowlpox-Virus, DNA- Vektors oder einer erfindungsgemäßen pharmazeutischen Zusammens etzung b) wahlweise zwischen ein- und dreimal wiederholen von Schritt a) nach zwischen einer Woche und acht Monaten; und c) Boosten des Tieres mit einer therapeutisch wirksamen Menge eines anderen viralen Vektors, der diesselbe Fremd-DNA wie der erfindungsgemäße Fowlpox- Vektor enthält.
Der Priming-Schritt wird vorzugsweise zweimal vor dem Boosting-Schritt durchgeführt und besonders bevorzugt werden die Priming-Schritte zu Beginn der Behandlung und in Woche drei bis fünf, vorzugsweise Woche vier der Immunisierung durchgeführt, wobei der Boosting-Schritt in Woche elf bis dreizehn, vorzugsweise Woche zwölf der Immunisierung durchgeführt wird.
Die vorliegende Erfindung ist insofern auch auf eine kombinierte Zubereitung zur aufeinanderfolgenden Verwendung der einzelnen, oben genannten Bestandteile, für eine Vakzinierung, gerichtet. Eine solche kombinierte Zubereitung besteht aus folgenden Bestandteilen:
a) das erfindungsgemäße rekombinante Fowlpox-Virus oder der erfindungsgemäße DNA- Vektor, wahlweise enthaltend einen pharmazeutisch verträglichen Träger; b) einen weiteren viralen Vektor, der das gleiche Fremdantigen wie der Fowlpox-Virus oder der DNA-Vektor von a) kodiert.
Die oben genannte Prime-/Boost-Vorschrift stellt eine bessere Immunreaktion bereit als eine Impfung mit entweder Fowlpox- Viren gemäß der vorliegenden Erfindung oder eines anderen Vektors wie beispielsweise MVA alleine.
Das erfindungsgemäße Verfahren zur Herstellung eines rekombinanten Fowlpox-Virus oder DNA- Vektors umfasst das Einbringen von Fremd-DNA in das Fl lL-Gen eines Fowlpox-Virus durch rekombinante DNA-Techniken. Vorzugsweise erfolgt das Einbringen durch homologe Rekombination der Virus-DNA mit der Fremd-DNA, die Fl 1L- spezifische Sequenzen enthält, gefolgt von einer Vermehrung und Isolierung des rekombinanten Virus oder des DNA- Vektors.
Die vorliegende Erfindung stellt weiterhin Eukaryontenzellen oder Prokaryontenzellen bereit, die den erfindungsgemäßen rekombinanten DNA-Vektor oder das rekombinante FWPV enthalten. Als Prokaryontenzelle findet vorzugsweise eine Bakterienzelle, bevorzugt E. coli-Zelle, Verwendung. Als Eukaryontenzellen können Vogelzellen, bevorzugt Hühnerzellen, oder eine vom Säugetier stammende Zelle, bevorzugt eine humane Zelle, eingesetzt werden, wobei humane embryonale Stammzellen sowie humane Keimbahnzellen ausgenommen sind.
Beispielsweise kann der erfindungsgemäße DNA- Vektor in die Zellen durch Transfektion, beispielsweise mittels einer Kalziumphosphat-Ausfällung (Graham et al., Virol. 52, 456- 467 [1973]; Wigler et al., Cell 777-785 [1979] mittels Elektroporation (Neumann et al., EMBO J. 1, 841-845 [1982]), durch Mikroinjektion (Graessmann et al., Meth. Enzymolo- gy 101, 482-492 (1983)), mittels Liposomen (Straubinger et al., Methods in Enzymology 101, 512-527 (1983)), mittels Sphäroblasten (Schaffner, Proc. Natl. Acad. Sei. USA 77, 2163-2167 (1980)) oder durch andere Verfahren eingebracht werden, die dem Fachmann bekannt sind. Die Transfektion mittels einer Kalziumphosphat- Aus fällung wird vorzugsweise angewendet.
Die vorliegende Erfindung wird nun durch Beispiele und die begleitenden Abbildungen veranschaulicht, die Folgendes zeigen:
Fig. 1: (A) Primer Walking-Sequenzierstrategie für die Sequenzierung von FWPV-Fl 1L. Die Länge jeder Sequenzreaktion ist dargestellt. (B) Schematische Darstellung des FWPV- Genoms, die die invertierten terminalen Repeats (ITR) und die zentrale Lage des Fl IL- Gens zeigt, sowie eine Darstellung der Herstellung von Fl lL-Gensequenzen, die als flankierende Sequenzen für die homologe Rekombination verwendet wurden. Es sind die Positionen entlang des Fl lL-ORFs für die Primer Fl und F2, die zur Amplifizierung von Flank 1 verwendet wurden, sowie die Primer F3 und F4, die zur Amplifizierung von Flank 2 verwendet wurden, gezeigt.
Fig. 2: Schematische Karten des Insertionsplasmids pLGFl 1, das zur Herstellung Fl 1L- mutierter Viren verwendet wurde, des Vektorplasmids pLGFV7.5 und von pLGFV7.5- mTyr, das zur Herstellung von FWPV-Tyrosinase-Rekombinanten verwendet wurde. Die von FWPV-Fl 1L stammenden Sequenzen Flank 1 und Flank 2, als schwarze Kästen dargestellt, dirigieren die homologe Rekombination zwischen dem Plasmid und der viralen genomischen DNA. Die E. coli-lacZ- und -gpt-Gene dienen als Selektionsmarker (als schattierte Kästen dargestellt). P7.5 und Pl 1 sind gut charakterisierte Vacciniavirus- spezifische Promotoren, deren Transkriptionsrichtung durch Pfeile dargestellt ist. Eine einzigartige PweERestriktionsstelle in pLGFV7.5 kann zur Insertion von Fremdgenen, die unter die Transkriptionskontrolle von P7.5 gebracht werden, verwendet werden. Das Tyrosinase kodierende Gen (mTyr) aus der Maus diente als erstes rekombinantes Modellgen.
Fig. 3: PCR- Analyse viraler DNA aus Fl lL-mutierten Viren, die nach Transfektion mit ungespaltener (A) oder linearisierter pLGFl 1-Plasmid-DNA (B) erzeugt wurden. Die oberen Bilder zeigen das Ergebnis der PCR-Reaktionen unter Verwendung der Primer F 1 und F4, die entweder eine Bande mit hohem MG für die rekombinanten Viren (rec.) oder eine Bande mit niedrigem MG für das wt- Virus (wt) ergeben. Die unteren Bilder zeigen die Kontroll- (cntr.) PCR-Reaktionen unter Verwendung der Primer Fl und F2, die die jeweilige Menge Virus-DNA in jeder Probe zeigen. Die Anzahl der Plaquereinigungen für jedes Isolat ist beginnend mit 0, was dem anfänglich gepickten Plaqueisolat entspricht, angegeben. pLGFl 1 wird als Kontroll -Matrizen-DNA eingesetzt, FP9 steht für die wt- Virus- DNA-Kontrolle und UC ist Kontroll-DNA aus nicht infizierten Zellen.
Fig. 4: Mehrschritt- Wachstumskurven-Experiment. CEF wurden in Dreifachansätzen entweder mit FP9-Virus oder mit dem Fl lL-Knockout- Virus in einer moi von 0,05 pfu/Zelle angeimpft. Die Dreifachansätze wurden jeweils zu unterschiedlichen Zeiten nach der Infektion geerntet und unter Agar titriert. Die Fehlerbalken zeigen die Standardabweichungen zwischen den Dreifachproben. Fig. 5: PCR-Analyse von genomischer DNA aus dem rekombinanten FWPV-Tyrosinase- Virus MT31. Die anfängliche Plaqueisolation (Spur 0) und die ersten 2 folgenden Plaque- reinigungsrunden (Spuren 1 und 2) erfolgten in Anwesenheit von Selektionsmedium (MXH), wohingegen die letzten 3 Plaquereinigungsschritte (Spuren 3 bis 6) in Abwesenheit von MXH erfolgten. pLGFV7.5-mTyr-DNA wurde als Kontroll-Matrizen-DNA eingesetzt, FP9 ist die wt- Virus-Kontroll-DNA und UC die nicht infizierte Kontroll-DNA. (A) Kontroll-PCR (F1-F2), die die relative Menge an Virus-DNA zeigt. (B) PCR F1-F4: Die 984 bp-Bande entspricht dem erwarteten DNA-Fragment, das aus wt- Virus-DNA (wt) amplifϊziert wird, die 7282 bp-Bande entspricht dem Amplifizierungsprodukt, das das Ty- rosinasegen und die /αcZ-gpt-Subkassette enthält, die im intermediären rekombinanten Virus (interm.) enthalten sind, die 2880 bp-Bande entspricht dem Produkt, das nur das Amplifizierungsprodukt der Tyrosinasegen-Expressionskassette (rec.) darstellt. (C) PCR PR43-44, die das Vorliegen der /ccZ-Sequenz zeigt. (D) Expression der Tyrosinase aus Maus, die über die Produktion von Melanin in CEF nachgewiesen wird. CEF-Zellen in Petrischalen mit 6 cm Durchmesser wurden mit einer moi von 0,1 pfu/Zelle infiziert. Sechs Tage nach der Infektion wurden die Zellen geemtet, in eine U-Boden- Mikrotiterplatte überführt und in PBS gewaschen. Spuren 1-5: Mit fünf verschiedenen rekombinanten Viren infizierte Zellen; Spur 6: nicht infizierte Zellen; Spur 7. mit wt- Virus infizierte Zellen.
Fig. 6: Vorteil einer kombinierten Impfung mit FWPV-Tyrosinase- und MVA-Tyrosinase- Vakzinen im Prime-Boost- Verfahren. Zwei Mäuse pro Gruppe wurden im Abstand von vier Wochen zweimal mit jeweils 108 infektiösen Einheiten Virusimpfstoff durch intrape- ritoneale Verabreichung immunisiert. Dabei setzten sich die Impfgruppen wie folgt zusammen:
Gruppe FF: Prime mit FWPV-Tyrosinase und Boost mit FWPV-Tyrosinase Gruppe FM: Prime mit FWPV-Tyrosinase und Boost mit MVA-Tyrosinase Gruppe MM: Prime mit MVA-Tyrosinase und Boost mit MVA-Tyrosinase Gruppe MF: Prime mit MVA-Tyrosinase und Boost mit FWPV-Tyrosinase Drei Wochen nach der zweiten Immunisierung (Boost) wurde die Tyrosinase-spezifische T-Zellantwort vergleichend untersucht. Hierzu wurden die T Zellen aus der Milz der Tiere präpariert, über einen Zeitraum von 7 Tagen in vitro kultiviert und dann im Chrom- Freisetzungstest auf ihre zytotoxische Kapazität für Tyrosinase-spezifische Zielzellen getestet. Dargesellt sind die erhaltenen Werte für die jeweilige spezifische Lyse der Ziellzel- len (in % bei einem Effektor/Target Verhältnis von 30: 1). Hierbei zeigte sich, dass die T Zellen der kombiniert geimpften Tiere in der Gruppe FM deutlich die höchste Reaktivität aufwiesen. Dagegen konnten bei den hinsichtlich des Impfstoffes einheitlich immunisierten Mäusen der Gruppen FF und MM lediglich moderate zytotoxische Antworten gemessen werden. Die schwächste Zytotoxizität zeigte sich im Test der T Zellen der Gruppe MF die zuerst mit MVA-Tyrosinase und dann mit FWPV-Tyrosinase geimpft worden war.
Diese Ergebnisse sprechen klar für die Überlegenheit einer kombinierten Impfung mit FWPV-Tyrosinase- Vektoren und MVA-Tyrosinase- Vektoren im Vergleich zur alleinigen Impfung mit der jeweiligen Vektor- Vakzine. Dabei erscheint von besonderer Wichtigkeit zu sein, den FWPV- Vektorimpfstoff als Erstimpfstoff einzusetzen.
Materialien und Verfahren
Zellen und Viren
Primäre Hühnerembryofibroblasten (chicken embryo fibroblasts, CEF) wurden unter Verwendung 11 Tage alter bebrüteter Eier hergestellt und in MEM (Gibco) mit 10% Lactal- bumin (Gibco) und 5% Basalmediumsupplement (BMS - Seromed) gezüchtet. HeLa- Zellen und Vero-Zellen wurden in DMEM (Gibco), das mit 10% fötalem Kälberserum (FCS) (Gibco) angereichert war, gezüchtet. FWPV-FP9, ein gut charakterisiertes Plaque- isolat des abgeschwächten Stammes HP1-438 (Boulanger et al., 1998), wurde in Anwesenheit von MEM, das mit 2% FCS angereichert war, auf CEF gezüchtet.
Sequenzierung von genomischer FWPV-DNA
Auf CEF gezüchtete FWPV-FP9 wurden nach einem Gefrier- Auftau-Zyklus geerntet. Das Virus wurde durch Ultrazentrifugation konzentriert und durch ein 25% (Gew./Gew.) Saccharosekissen, wie zuvor beschrieben (Boulanger et al., 1998), semi-gereinigt. Das Sediment wurde in 0,05 M Tris, pH 8, mit 1% SDS, 100 μM ß-Mercaptoethanol und 500 μg/ml Proteinase K resuspendiert und 1 Std. bei 50°C inkubiert. Die DNA wurde nach Phenol/Chloroform-Extraktion isoliert, mit Ethanol gefällt und in H2O resuspendiert. Die Sequenzierung erfolgte mittels Primer- Walking auf der Virus-DNA. Der erste Primer (PR30) wurde anhand der partiellen Sequenz des Taubenpocken-Fl IL-Gens gestaltet, die von Ogawa et al. (1993) unter der Zugangsnummer M88588 veröffentlicht wurde. Die zur Sequenzierung verwendeten Primer waren: PR30: 5'-CTCGTACCTTTAGTCGGATG-3\ PR31: 5'-GGTAGCTTTGATTACATAGCCG-3', PR32: 5'- GATGGTCGTCTGTTATCGACTC-3' und PR33: 5'- GTCTGATAGTGTATTAGCAGATGTAAAAC-3'. Plasmidkonstruktionen
(a) pBSLG. Eine 4,2 bp große /αcZ-gpt-Kassette, die der im von Sutter & Moss (1992) beschriebenen Plasmid pπiLZgpt enthaltenen Kassette entspricht und das E. coli-lacZ-Gen unter der Kontrolle des späten Vacciniavirus-Promotors Pl 1 und das E. coli-gpt-Gen unter der Kontrolle des frühen/späten Vacciniavirus-Promotors P7.5 enthält, wurde direkt in die multiple Klonierungsstelle des pBluescript II SK+-Plasmids (Stratagene) eingesetzt, wobei Plasmid pBSLG erhalten wurde.
(b) pLGFl 1. Die Primer PRF1 (5'-
GGCCGCGGCCGCCACTAGATGAACATGACACCGG-3') und PRF2 (5'- GGCCCCCCGGGGCATTACGTGTTGTTTGTTGC-3'), die eine Notl- bzw. eine Smal- Restriktionsstelle enthalten (unterstrichen), wurden zur Amplifizierung der 471 Basenpaare (bp) langen Flank 1 -Sequenz aus der genomischen Virus-DNA mittels PCR als Matrize verwendet. Dieses Fragment wurde in zuvor mit den gleichen Enzymen gespaltenen pBSLG eingesetzt, wobei pBSLGFl 1 erhalten wurde. Flank 2 (534 bp) wurde unter Verwendung der Primer PRF3 (5'-GGCCCCTGCAGGCAACAAACAACACGTAATGC-3') und PRF4 (5'-CGCCCGTCGACCTTCTTTAGAGGAAATCGCTGC-3'), die eine Pstl- bzw. Sα/7-Restriktionsstelle enthalten (unterstrichen), amplifiziert. Dieses Fragment wurde in zuvor mit beiden Enzymen gespaltenes pBSLGFl 1 eingesetzt, wobei pLGFl 1 erhalten wurde.
(c) pπiV7.5Fl IRep und pLGFV7.5. Die Primer PRF5 (5'- GGCCCTACGTAGCAACAAACAACACGTAATGC-3') und PRF6 (5'- GGCCGCGGCCGCCTCTATGTTTTTGTAGATATCTTTTTCC-3'), die eine Sna BI- bzw. eine NotZ-Restriktionsstelle (unterstrichen) enthalten, wurden zur Amplifizierung der 263 bp langen Sequenz, die einem Repeat am 5'-Ende von Flank 2 entspricht, mittels PCR verwendet. Dieses Fragment wurde stromaufwärts der Vacciniavirus-P7.5- Promotorsequenz in das Plasmid pffldhrP7.5 (Staib et al., 2000), das zuvor mit den gleichen Restriktionsenzymen gespalten wurde, eingesetzt. Die Flank 2-Wiederholung-P7.5- Promotor-Kassette wurde dann aus dem erhaltenen Plasmid mittels RstZ-Spaltung ausge- schnitten, mit Klenow-Polymerase behandelt und in die SmαJ-Stelle von pLGFl 1 eingesetzt, wobei das Insertionsplasrnid pLGFV7.5 erhalten wurde.
(d) pLGFV7.5-rnTyr. Eine einzelne Eτne/-Stelle stromabwärts der Vacciniavirus-P7.5- Promotorsequenz im Plasmid pLGFV7.5 wurde verwendet, um in dieses Plasmid das für die Tyrosinase aus der Maus kodierende Gen einzusetzen. Das Plasmid pZeoSV2+/muTy (Drexler et al., unveröffentlichte Ergebnisse) wurde mit Nhel nd Not/ gespalten. Das gewünschte Fragment wurde mit Klenow-Polymerase behandelt und in die Pmel- Restriktionsstelle mit glatten Enden in pLGFV7.5 eingesetzt, wobei das Plasmid pLGFV7.5-mTyr erhalten wurde.
Herstellung von mutiertem FWPV-Virus
Mit FWPV FP9 infizierte CEF wurden mit dem Plasmid pLGFl 1 unter Verwendung von Lipofectin (Gibco) transfiziert. Die Virusnachkommenschaft wurde geerntet und unter Agar, der Mycophenolsäure, Xanthin und Hypoxanthin enthielt (MHX-Medium), ausplattiert. Viren, die ß-Galactosidase-positive Plaques bildeten, wurden mit einem Xgal- Überzug sichtbar gemacht und die Plaques zweimal in Anwesenheit von Selektionsmedium gereinigt. LacZ/gpt+- Viren wurden ohne Selektionsmedium weiter aufgereinigt, bis 100%o blaue Plaques erhalten wurden.
PCR- Analyse der Viren-DNA
Aus CEF, die mit unterschiedlichen selektierten Virusisolaten infiziert worden waren, wurde nach Proteinase K-Behandlung die Gesamt-DΝA isoliert, wie zuvor beschrieben extrahiert (Boulanger et al., 1998) und mittels PCR analysiert, wobei die Primer PRFl und PRF4 verwendet wurden, um die Abwesenheit der wt-Sequenz zu überprüfen, sowie die Primer PRFl und PRF2, um das Vorliegen von DNA zu überprüfen.
Analyse des Viruswachstums Konfluente CEF wurden in Dreifachansätzen mit dem wt- Virus oder mit der Fl 1L- Mutante mit einer Infektionsmultiplizität (moi) von 0,05 pfu/Zelle infiziert. Das Impfgut wurde 1 Std. später entfernt und durch frisches Medium ersetzt. Zu verschiedenen Zeiten nach der Infektion wurden die Kolben aus dem Brutschrank entnommen und bei -80°C aufbewahrt. Der Titer wurde nach Klärung der Virussuspension bei niedriger Geschwindigkeit mittels Plaquetest bestimmt.
Herstellung von rekombinantem Virus
Mit FWPV FP9 infizierte CEF wurden mit linearisierter pLGFV7.5-mTyr-Plasmid-DNA transfiziert (Fig. 2). Rekombinante Viren wurden dreimal in Anwesenheit von Selektionsmedium gereinigt. Damit zwischen Flank 2 und der Flank 2-Wiederholung eine erneute Rekombination erfolgen konnte, die zum Verlust der /αcZ-gpt-Subkassette führt, wurden blaue Plaqueisolate, die einmal auf CEF vermehrt worden waren, in Abwesenheit von Selektionsmedium weiter gereinigt. Viren, die weiße Plaques bildeten, wurden anschließend Plaque-gereinigt. Die erhaltenen Klone wurden dann wie zuvor beschrieben mittels PCR getestet, wobei zusätzlich eine PCR unter Verwendung von 2 für die αcZ-Sequenz spezifischen Primem (PR43: 5*-GACTACACAAATCAGCGATTTCC-3' und PR44: 5'- CTTCTGACCTGCGGTCG-3') durchgeführt wurde, sodass die Anwesenheit der Selektionskassette untersucht werden konnte.
Sequenzanalyse des Fl IL-Gens
Das FWPV-Fl lL-Gen befindet sich im zentralen Bereich des Virusgenoms (Fig. 1 B). Da der entsprechende offene Leserahmen im Genom des CEF-adaptierten Vacciniavirus- Stamms MVA fragmentiert ist (Antoine et al., 1998), spekulieren wir, dass das Gen möglicherweise für die FWPV-Replikation nicht essentiell ist. Die partielle Sequenz des C- Terminus des orthol ogen Fl IL-Gens aus Taubenpockenvirus sowie das vollständige, für das F12L-Taubenpockenvirus-Ortholog kodierende Gen und eine partielle Sequenz für das F13L-Ortholog waren bekannt (Ogawa et al., 1993; Zugangsnummer M88588). Diese veröffentlichte Sequenz überlappte eine FWPV-Sequenz, die das gesamte F13L-Ortholog und fast das gesamte F12L-Ortholog umfasste (Calvert et al., 1992; Zugangsnummer M88587). Die beiden Sequenzen überlappen sich um 2598 bp und zeigen 100%> Nucleotididentität. Unter der Annahme, dass das Fl lL-Ortholog ebenfalls zwischen Taubenpocken- und Ge- fiügelpockenviren hochkonserviert ist, wurde der erste zur Sequenzierung des FWPV-Gens verwendete Primer (PR30) anhand der partiellen Taubenpocken-Fl lL-Sequenz (453 bp) gestaltet (Fig. 1 A). Die unter Verwendung dieses Primers erhaltene Sequenz (488 bp) zeigte 100% Nucleotididentität mit dem Ende der veröffentlichten Taubenpocken- Sequenz. Die folgenden Primer (PR31 bis 33) wurden anhand der neuen Sequenzen gestaltet, um Überlappungen zu erzeugen, die zweimal die Fl lL-Gensequenz abdeckten (Fig. 1A). Eine Sequenzierung wurde für die letzten 1254 bp des FWPV Fl 1L-ORF erhalten (Fig. 1 A). Der Vergleich mit der veröffentlichten vollständigen Genomsequenz von FWPV (Afonso et al., 2000) zeigte, dass diese Sequenz identisch mit der veröffentlichten Sequenz des ORF FPV110, des orthologen FWPV-Fl IL-Gens, ist.
Leserasterverschiebungsmutationen der kodierenden Fl lL-Sequenz in Vacciniavirus- MVA deuteten daraufhin, dass Fl 1L möglicherweise ein nicht essentielles Gen ist, das eventuell als Insertionsstelle verwendet werden kann. Unsere Analyse des FWPV-Fl 1L- Proteins (451 Aminosäuren) unter Verwendung des GeneStream Align-Programms zeigte jedoch nur 18,6%o Aminosäureidentität mit dem Ortholog (354 Aminosäuren) des Vaccini- avirus-Stamms Kopenhagen, was auf unterschiedliche Eigenschaften in beiden Viren hindeuten könnte. Beim Screening nach möglicherweise essentiellen Fl lL-Genfunktionen fanden wir mittels BLAST-Suche keine signifikanten weiteren Homologien. Weder im FWPV- noch im Vacciniavirus-Protein wurden Signalsequenzen oder Transmembrandomänen vorhergesagt.
Herstellung lebensfähiger FllL-mutierter FWPV-Viren
Um zu bestimmen, ob FWPV-Fl 1L als neue Insertionsstelle verwendet werden kann, konstruierten wir mutierte Viren mittels Insertionsdisruption der kodierenden Fl lL-Sequenz. Das Plasmid pLGFl 1, das die /ocZ-Kassette, flankiert von 2 Sequenzen aus dem FWPV- Fl 1L-ORF, enthielt (Fig. 1B und 2), wurde zur Herstellung rekombinanter Viren verwen- det, die aufgrund ihres Wachstums in Anwesenheit von Mycophenolsäure unter einem XGal-Überzug selektiert wurden. Die Rekombinanten können entweder aus einem Doppelrekombinationsereignis sowohl in Flank 1 als auch Flank 2 erhalten werden, was stabile rekombinante Viren ergibt, oder durch ein einfaches Rekombinationsereignis in einer der flankierenden Gensequenzen, was zu instabilen intermediären rekombinanten Genomen führt. Im letzteren Fall sind weitere Passagen in Abwesenheit von Selektionsmedium, die das Sichtbarmachen von wt- Virus als weiße Plaques ermöglichen, nötig, bis ein stabiles rekombinantes Virus erhalten wird, das nur blaue Plaques hervorbringt. Der Genotyp aufeinanderfolgender Virusisolate wurde mittels PCR unter Verwendung der externen Primer charakterisiert, die zur Erzeugung der Flanken verwendet worden waren (PRFl und PRF4). Die Anwesenheit kontaminierender wt- Viren wurde durch bevorzugte Amplifizierung der genomischen wt-Sequenz anhand des kürzeren PCR-Produktes überwacht, wodurch der Test sehr sensitiv war. Der Virusklon F2 (Fig. 3A) hatte nach 4 Plaquereinigungen die wt-Gensequenz verloren (Klon F2.1.2.1.1). Der Virusklon F 15, der nach 3 Plaquereinigungen nur blaue Plaques erzeugte (Fl 5.1.1.1), enthielt immer noch die wt-Sequenz, wie durch PCR gezeigt wurde (Fig. 3A). Nach der Amplifizierung dieses Virusklons (Fl 5.1.1.1.1) durch drei aufeinanderfolgende Passagen in CEF ergab die eingeschränkte Verdünnung zudem die Anwesenheit von Viren, die weiße Plaques erzeugten.
Bei einem Versuch, die Isolation rekombinanter Viren zu beschleunigen, testeten wir die Transfektion mit linearisierter Plasmid-DNA, eine Strategie, die von Ken- & Smith (1991) empfohlen wurde, um das Auftreten von Einfachcrossoverereignissen und das Erhaltenbleiben von Plasmiden zu reduzieren, die aus der Auflösung instabiler Einfachcrossover- Zwischenprodukte in Viren während der Vacciniavirus-Mutagenese stammten. Die Herstellung rekombinanter Viren unter Verwendung von linerarisiertem Plasmid sollte nur aufgrund eines Doppelrekombinationsereignisses zustande kommen und in der Folge direkt zu stabilen rekombinanten Genomen führen. Tatsächlich zeigten die Virusklone F9, F10 und F 16, die durch linearisiertes Plasmid hergestellt wurden, sogar nach der ersten Plaquereinigungsrunde keine nachweisbaren wt-Gensequenzen mehr (Fig. 3B). Der Virusklon F8 benötigte nur eine weitere Plaquereinigung, um offensichtlich von wt- Virus frei zu sein (Fig. 3B). Zudem zeigte die Plaquetitration von Virusklon F9.1.1.1.1 nach drei Vermehrungszyklen in CEF keine Anwesenheit von kontaminierendem wt- Virus.
Effiziente in vitro-Züchtung des FllL-mutierten Virus
Die erfolgreiche Erzeugung lebensfähiger Fl IL-mutierter Viren legte nahe, dass die Fl 1L- Gensequenz vernachlässigbar ist. Um zu bestimmen, ob die Inaktivierung das Viruswachstum stören kann, wurde der mutierte Virusklon F9.1.1.1 vermehrt und im Vergleich mit wt-FWPV bezüglich des Mehrschrittwachstums in CEF (Fig. 4) getestet. Beide Viren zeigten fast identische Replikationskinetiken und erzeugten gleiche Mengen an infektiöser Nachkommenschaft.
F11L als Insertionsziel ermöglicht die stabile Expression rekombinanter Gene
Da festgestellt wurde, dass das Fl lL-Gen nicht essentiell ist und die Disruption des Gens das Viruswachstum nicht beeinträchtigt, wurde der Fl lL-Genlocus als geeignete Insertionsstelle betrachtet. Das Plasmid pLGFl 1 wurde zur Konstruktion eines Plasmidvektors (pLGFV7.5) verwendet, damit in das FWPV-Genom fremde Gene zusammen mit der /αcZ-gpt-Selektionssubkassette unter der Kontrolle des Vacciniavirus-P7.5-Promotors eingesetzt werden konnten (Fig. 2). Das Plasmid enthielt außerdem eine Wiederholung der Flank-2-Sequenz (Fig. 2), damit die Subkassette anschließend aus den rekombinanten Viren entfernt werden konnte. Als erstes von pLGFV7.5 erhaltenes Fremdgen wurde die DNA-Sequenz inseriert, die für das Enzym Tyrosinase kodiert, das als Antigen für eine experimentelle Impfung gegen Melanome von Interesse ist (Drexler et al., 1999). Tyrosinase ist am Biosyntheseweg zur Herstellung von Melanin beteiligt. Zellen, die dieses Enzym exprimieren, akkumulieren Melanin und werden dunkel. Diese Eigenschaft liefert ein einfaches Verfahren für das Screening bezüglich der Expression von Tyrosinase und ihrer funktionellen Unversehrtheit. Nach der Transfektion mit pLGFV7.5-mTyr wurden fünf rekombinante Virusklone für weitere Analysen selektiert. Die Linearisierung der Plasmid- DNA, die sich während der Produktion der Fl lL-mutierten Viren als sehr effizient herausgestellt hatte, wurde auch zur Herstellung rekombinanter Viren verwendet. Die Virus- klone MT22 (Daten nicht gezeigt) und MT31 (Fig. 5) zeigten nach nur einer Plaquereinigung in Anwesenheit von Selektionsmedium keine nachweisbare wt- Virussequenz (MT31.1, Spur 1, Fig. 5B). Auf dieser Stufe zeigte die genomische DNA-Präparation beider Virusklone bereits das Vorliegen rekombinanter Virusgenome, die keine nachweisbaren Markergensequenzen mehr enthielten (2880 bp-Genprodukt in Fig. 5B) und gleichzeitig den selektierten αcZ-gpt-positiven Genotyp (7282 bp), der durch diese PCR-Reaktion kaum nachweisbar ist (siehe Klon 31.1.1, Fig. 5B, dritte Spur), aber mit der PR43-44-PCR nachgewiesen wird (Fig. 5C). Von viraler DNA der vierten Plaquereinigung beider Klone, d.h. nach nur einer Plaquereinigung in Abwesenheit von Selektionsmedium konnte keine Markersequenz mehr amplifiziert werden (Fig. 5C). Alle fünf rekombinanten Viren produzierten nach CEF-Infektion funktionelle Tyrosinase (Fig. 5D).
Es wurde auch die spezifische Synthese von Melanin in infizierten HeLa- und Vero-Zellen demonstriert, die beide für FWPV nicht permissiv sind. Die in diesen Säugerzellen hergestellte Menge an Melanin schien verglichen mit der CEF-Infektion kleiner zu sein. Der Grund dafür könnte entweder fehlende Virusreplikation oder eine verringerte Expression des Tyrosinasegens oder ein weniger effizienter Melaninsyntheseweg in diesen Zelllinien sein (Daten nicht gezeigt). Zur Untersuchung der genetischen Stabilität der Tyrosinase- Insertion wurden alle fünf rekombinanten Virusisolate in vier aufeinanderfolgenden Mehrschritt-Wachstumspassagen auf CEF amplifiziert und die Virusnachkommen mittels Pla- quetitration unter Agar analysiert. Von jedem rekombinanten Virus wurden zehn verschiedene Plaqueisolate auf ihre Tyrosinaseexpression untersucht. In allen Proben wurde Melaninsynthese nachgewiesen, was zeigt, dass jedes Virus noch funktionelles rekombinantes Enzym bildete (Tabelle 1). Der gleiche Test wurde nach sechs Passagen durchgeführt. Nur ein Plaqueisolat von einem der fünf rekombinanten Viren konnte keine funktionelle Tyrosinase produzieren (Tabelle 1). Die PCR-Analyse der Virus-DNA zeigte, dass das Genom dieses Virusklons anscheinend noch die rekombinanten Volllängen-Gensequenzen enthielt. Das legt nahe, dass die Tyrosinasegenexpression höchstwahrscheinlich durch (eine) Punktmutation(en) inaktiviert wurde (Daten nicht gezeigt). Der Vacciniavirus-Fl 1L-ORF kodiert potentiell ein Protein, das keine Homologie oder kein charakteristisches Motiv aufweist, das eine spezifische Funktion vorhersagen könnte. Daher ist das Fl lL-Ortholog von FWPV möglicherweise nicht essentiell. In der vorliegenden Erfindung wurde diese Hypothese durch Insertion einer Selektionskassette in das FWPV-Gen untersucht, die ein Markergen (lacZ) und eine Selektionsgen (gpt) enthielt. Die Erzeugung rekombinanter Viren, die diese Kassette und keine wt-Gensequenzen mehr enthielten, zeigte, dass das orthologe Volllängen-FWPV-Gen für das Wachstum von FWPV nicht essentiell ist. Das mutierte Virus wuchs genauso effizient wie das wt- Virus (Fig. 4), was nahelegt, dass der Fl lL-Genlocus als geeignete Insertionsstelle für rekombinante Gene betrachtet werden kann. Folglich verwendeten wir diese Stelle, um erfolgreich rekombinante FWPV- Viren zu erzeugen, die das Melanom-Modellantigen Tyrosinase stabil exprimierten.
Die stabile Expression von Marker- oder Selektionsgenen in rekombinanten Viren kann bei einer Verwendung als Vektorimpfstoff oder für weitere Gentechnik ungeeignet sein. In unserem FWPV-Plasmidvektor war die Selektionssubkassette von Wiederholgungssequen- zen flankiert, damit sie anschließend eliminiert werden konnte. Die Herstellung einer solchen Rekombinante erfordert zunächst die Isolation eines rekombinanten Virus, das noch die Selektionssubkassette, aber keine wt-Sequenz mehr enthält, und anschließend die Isolation der stabilen Rekombinante, die die Selektionssubkassette verloren hat. Die Effizienz der Isolationsstrategie ist daher entscheidend, damit endgültige Rekombinanten in einem vernünftigen Zeitraum erhalten werden. Ähnlich wie frühere Untersuchungen (Leong et al., 1994; Sutter & Moss, 1992) fanden wir, dass die Kombination eines Reportergens und eines Selektionsgens ein einfaches und sehr effizientes Selektionsverfahren ist. Diese Strategie wurde weiter verbessert, indem mit linearisierter Plasmid-DNA transfiziert wurde. Die Rekombination zwischen der Plasmid-DNA und dem Virusgenom kann entweder mittels Einfachcrossover, was zur Integration der gesamten Plasmidsequenz im Virusgenom führt (Spyropoulos et al., 1988; Falkner & Moss, 1990; Nazarian & Dhawale, 1991), oder durch doppelte Rekombination erfolgen. Laut Spyropoulos et al. (1988) ist die Häufigkeit für beide Ereignisse ähnlich. In unseren Händen war die Anzahl der Plaquereinigungen, die zur Eliminierung jeglicher wt-Sequenz nötig war, unter Verwendung von line- arisierter Plasmid-DNA tatsächlich stark verringert (Fig. 3 und 5). Diese Technik erlaubte nicht nur eine Zeitersparnis, sondern reduzierte zudem das Risiko, zufällige Mutationen im Virusgenom zu integrieren, die während zahlreicher Passagen unvermeidbar auftreten. Wie Nazarian & Dhawale (1991) nahelegen, könnte die Gesamteffizienz der Rekombination nach der Transfektion mit linearisiertem Plasmid niedriger sein als bei Verwendung von zirkulärem Plasmid. In unseren Händen verringerte jedoch die Verwendung von linearisiertem Plasmid die Effizienz der Rekombination nicht, da wir bei der Herstellung Fl IL- mutierter Viren ein Verhältnis von einem blauen Plaque nach Transfektion mit zirkulärem Plasmid zu fünf blauen Plaques nach der Transfektion mit linearisiertem Plasmid erhielten. Wir erhielten zudem Verhältnisse zwischen 1 und 10 bei der Herstellung anderer rekombinanter Viren (unveröffentlicht). Daher bestätigen unsere Ergebnisse frühere Daten (Spyropoulos et al., 1982), die nahelegen, dass die Gesamthäufigkeit der Rekombination im Vacciniavirus sich nicht merklich ändert, wenn man die Bildung von Einfachcrossover- Rekombinanten durch Linearisierung des Plasmids in nicht homologen Abschnitten verhindert.
Ein wichtiger Aspekt bei der Entwicklung geeigneter Virus vektorimpfstoffe ist die Stabilität der rekombinanten Viren, die von der angestrebten Insertionsstelle entscheidend bestimmt werden kann. Der Locus des viralen Thymidinkinasegens scheint sich zur Herstellung rekombinanter Vogelpockenviren nicht zu eignen, obwohl er die Standard- Insertionsstelle zur Herstellung von rekombinantem Vacciniavirus ist (Scheiflinger et al., 1997; Amano et al., 1999). Die Stabilität von Tyrosinase-rekombinanten FWPV- Viren, die durch Verwendung von Fl 1L als Ziel erhalten werden, kann leicht durch die Untersuchung der Melaninsynthese überwacht werden, wobei einfach die Farbe der Zellsedimente untersucht wird (Fig. 5D und Tabelle 1). Nach sechs Passagen auf CEF exprimierte nur ein Plaqueisolat von 50 kein funktionelles rekombinantes Gen, was ein hohes Maß an genomischer Stabilität anzeigt. Tabelle 1 : Stabilität der murinen Expression von Tyrosinase in 5 rekombinanten Viren
*n = Anzahl Passagen in CEF mit niedriger Infektionsmultiplizität
Literatur:
Afonso, C. L, Tulman, E. R., Lu, Z., Zsak, L, Kutish, G. F., Rock, D. L, 2000. The genome of fowlpox virus. J. Virol. 74, 3815-31. Amano, H., Morikawa, S., Shimizu, H., Shoji, I., Kurosawa, D., Matsuura, Y., Miyamura, T., Ueda, Y., 1999. Identification of the canarypox virus thymidiπe kinase gene and insertion of foreign genes. Virology 256, 280-90. Antoine, G., Scheiflinger, F., Dorner, F., Falkner, F. G., 1998. The complete genomic sequence of the modified vaccinia Ankara strain: companson ith other orthopoxviruses. Virology 244, 365-96. Belshe, R. B., Stevens, C, Gorse, G. J., Buchbinder, S., Weinhold, K., Sheppard, H., Stablein, D., Seif, S., McNamara, J., Frey, S., Flores, J., Excler, J. L., Klein, M., Habib, R. E., Duliege, A. M., Harro, C, Corey, L, Keefer, M., Mulligaπ, M., Wright, P., Celum, O, Judson, F., Mayer, K., McKirnan, D., Marmor, M., Woody, G., 2001. Safety and immuπogeπicity of a canarypox-vectored human immunodeficiency virus Type 1 vaccine with or without gp120: a phase 2 study in higher- and lo er-risk volunteers. J. Infect. Dis. 183, 1343-52. Berencsi, K., Gyulai, Z., Gonczol, E., Pincus, S., Cox, W. I., Michelson, S., Kari, L., Meric, C, Cadoz, M., Zahradnik, J., Starr, S., Plotkin, S., 2001. A canarypox vector-expressing cytomegalovirus (CMV) phosphoprotein 65 induces long- lasting cytotoxic T cell responses in human CMV- seronegative subjects. J. Infect. Dis. 183, 1171-9. Boulanger, D., Green, P., Smith, T., Czerny, C. P., Skinner, M. A., 1998. The 131- amino-acid repeat regioπ of the essential 39-kilodalton core protein of fowlpox virus FP9, equivalent to vaccinia virus A4L protein, is nonessential and highly. immunogenic. J Virol 72, 170-9. Boursnell, M. E., Green, P. F., Campbell, J. I., Deuter, A, Peters, R. W., Tomley, F. M., Samson, A. C, Chambers, P., Emmerson, P. T., Binns, M. M., 1990. Insertion of the fusion gene from Newcastle disease virus into a noπ- essential region in the terminal repeats of fowlpox virus and demonstration of protective immuπity induced by the recombinant. J. Gen. Virol. 71, 621-8.
Boyle, D. B., Coupar, B. E., 1988. Construction of recombinant fowlpox viruses as vectors for poultry vaccines. Virus Res. 10, 343-56.
Cadoz, M., Strady, A., Meignier, B., Taylor, J., Tartaglia, J., Paoletti, E., Plotkiπ, S.,
1992. Immunization with canarypox virus expressing rabies glycoprotein. Lancet
339, 1429-1432.
Calvert, J. G., Ogawa, R., Yanagida, N., Nazerian, K., 1992. Identification and functional analysis of the fowlpox virus homolog of the vaccinia virus p37K major envelope antigen gene. Virology 191, 783-92.
Drexler, I., Antunes, E., Schmitz, M., Wolfel; T., Huber, O, Erfie, V., Rieber, P.,
Theobald, M., Sutter, G., 1999. Modified vaccinia virus Ankara for delivery of human tyrosinase as melanoma-associated antigen: induction of tyrosinase- and melanoma- specific human leukocyte antigen A*0201-restricted cytotoxic T cells in vitro and in vivo. Cancer Res. 59, 4955-63.
Falkner, F. G., Moss, B., 1990. Transient dominant selection of recombinant vaccinia viruses. J. Virol. 64, 3108-11.
Hodge, J. W., Sabzevari, H., Yafal, A. G., Gritz, L, Lorenz, M. G., Schlom, J„ 1999. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer
Res. 59, 5800-7.
Jenkins, S., Gritz, L, Fedor, C. H., Oneill, E. M., Cohen, L K., Panicali, D. L, 1991.
Formation of lentivirus particles by mammalian-cells infected with recombinant fowlpox virus. AIDS Res. Hum. Retrov. 7, 991-998.
Kerr, S. M., Smith, G. L., 1991. Vaccinia virus-DNA ligase is nonessential for virus- replication - Recovery of plasmids from virus-infected cells. Virology 180, 625-
632.
Leong, K. H., Ramsay, A. J., Bαyle, D. B., Ramshaw, I. A., 1994. Selective induction of immune responses by cytokines coexpressed in recombinant fowlpox virus. J.
Virol. 68, 8125-30. Marshall, J. L, Hawkins, M. J., Tsang, K. Y., Richmond, E., Pedicano, J. E., Zhu, M. Z , Schlom, J., 1999. Phase I study in cancer patients of a replicatioπ-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J. Cliπ. Oncol. 17, 332-7. Moss, B., 1996. Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc. Natl. Acad. Sei. USA 93, 11341-8. Nazerian, K., Dhawale, S., 1991. Structural aπalysis of unstable intermediate and stable forms of recombinant fowlpox virus. J. Gen. Virol. 72, 2791-2795. Ogawa, R., Calvert, J. G., Yanagida, N., Nazerian, K., 1993. Insertional inactivation of a fowlpox virus homolog of the vaccinia virus-F12L gene inhibits the release of enveloped virions. J. Gen. Virol. 74, 55-64. Paoletti, E., 1996. Applications of pox virus vectors to vaccination: an update. Proc.
Natl. Acad. Sei. USA 93, 11349-53. Perkus, M. E., Tartaglia, J., Paoletti, E., 1995. Poxvirus-based vaccine candidates for cancer, Aids, and other infectious-diseases. J. Leukocyte Biol. 58, 1-13. Roth, J„ Dittmer, D., Rea, D., Tartaglia, J., Paoletti, E., Levine, A. J., 1996. p53 as a target for cancer vaccines:.recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge. Proc. Natl. Acad. Sei. USA 93,
4781-6. Scheiflinger, F., Falkner, F. G, Domer, F., 1997. Role of the fowlpox virus thymidiπe kinase gene for the growth of FPV recombinants in cell eulture. Arch. Virol. 142,
2421-31. Somogyi, P., Frazier, J., Skinner, M. A., 1993. Fowlpox Virus host-range restriction -
Gene-expression, DNA- replication, and morphogenesis in nonpermissive mammalian-cells. Virology 197, 439-444. Spehner, D., Drillien, R., Lecocq, J. P., 1990. Construction of fowlpox virus vectors with intergenic insertions - Expression of the beta-galactosidase gene and the measles-virus fusion gene. J. Virol. 64, 527-533. Spyropoulos, D. D., Roberts, B. E., Panicali, D. L, and Cohen, L. K., 1988. Delineation of the viral products of recombinatioπ in vaccinia virus-infected cells. J. Virol. 62,
1046-1054. Staib, C, Drexler, I., Ohlmann, M., Wintersperger, S., Erfle, V., Sutter, G, 2000.
Transient host ränge selection for genetic engineering of modified vaccinia virus
Ankara. Biotechniques 28, 1137-42, 1144-6, 1148. Sutter, G., Moss, B., 1992. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sei. USA 89, 10847-10851. Taylor, J., Weinberg, R., Languet, B., Desmettre, P., Paoletti, E., 1988. Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine 6, 497-
503. Wang, M., Bronte, V., Chen, P. W., Gritz, L, Panicali, D., Rosenberg, S. A., Restifo, N.
P., 1995. Active immunotherapy of cancer with a nonreplicating recombinant fowlpox virus encoding a model tumor-associated antigen. J. Immunol. 154, 4685-
4692.

Claims

PATENTANSPRÜCHE:
1. Rekombinantes Fowlpox-Virus (FWPV), enthaltend zumindest eine Insertion einer Fremd-DNA im F 11 L-Gen.
2. Rekombinantes Fowlpox-Virus (FWPV) nach Anspruch 1, wobei die Fremd-DNA zumindest ein Fremdgen, wahlweise in Kombination mit einer Sequenz zur Regulation der Expression des Fremdgens, aufweist.
3. Rekombinantes Fowlpox-Virus (FWPV) nach Anspruch 1 oder 2, wobei die Fremd- DNA eine Regulationssequenz beinhaltet, bevorzugt einen Pockenvirus-spezifischen Promotor.
4. Rekombinantes Fowlpox-Virus (FWPV) nach einem oder mehreren der vorhergehenden Ansprüche, wobei das Fremdgen für ein Polypeptid kodiert, welches bevorzugt therapeutisch einsetzbar ist und/oder für einen nachweisbaren Marker kodiert und/oder ein Selektionsgen ist.
5. Rekombinantes Fowlpox-Virus (FWPV) nach Anspruch 4, wobei das therapeutisch einsetzbare Polypeptid ein Bestandteil eines viralen, bakteriellen oder parasitären Krankheitserregers oder einer Tumorzelle ist.
6. Rekombinantes Fowlpox-Virus (FWPV) nach Anspruch 5, wobei das therapeutisch einsetzbare Polypeptid ein Bestandteil von HTV, Mykobakterium spp. oder Plasmodium falciparum ist.
7. Rekombinantes Fowlpox-Virus (FWPV) nach Anspruch 5, wobei das therapeutisch einsetzbare Polypeptid ein Bestandteil einer Melanomzelle ist.
8. Rekombinantes Fowlpox-Virus (FWPV) nach einem oder mehreren der vorhergehenden Ansprüche, wobei der nachweisbare Marker eine beta-Galactosidase, beta- Glucoronidase, eine Guanin-Ribosyl-Transferase, eine Luziferase oder ein Grün- Fluoreszierendes-Protein ist.
9. Rekombinantes Fowlpox-Virus (FWPV) nach Anspruch 8, wobei das Markergen und/oder das Selektionsgen eliminierbar ist.
10. Rekombinantes Fowlpox-Virus (FWPV) nach einem oder mehreren der vorhergehenden Ansprüche, wobei der durch die Nukleotidpositionen 131.860-131.870 im Fow- poxvirusgenom definierte Genomabschnitt der bevorzugte Integrationsort im Fl 1L- Genhomolog ist.
11. DNA- Vektor, der ein rekombinantes Fowlpox-Virus (FWPV) nach einem oder mehreren der vorhergehenden Ansprüche oder funktionelle Teile hiervon, die zumindest eine Insertion einer Fremd-DNA im Fl 1 L-Gen enthalten, weiterhin bevorzugt ein Replikon zur Replikation des Vektors in einer Pro- oder Eukaryontenzelle und ein in Pro-oder Eukaryontenzellen selektierbares Selektionsgen oder Markergen enthält.
12. Pharmazeutische Zusammensetzung, enthaltend ein rekombinantes Fowlpox-Virus (FWPV) nach einem oder mehreren der vorhergehenden Ansprüche oder einen DNA- Vektor nach Anspruch 11 in Verbindung mit pharmazeutisch verträglichen Hilfsstoffen und/oder Trägerstoffen.
13. Pharmazeutische Zusammensetzung nach Anspruch 12, die in Form einer Vakzine vorliegt.
14. Verwendung eines rekombinanten Fowlpox-Virus, eines DNA- Vektors oder einer pharmazeutischen Zusammensetzung nach einem oder mehreren der vorhergehenden Ansprüche zur Behandlung von Infektionskrankheiten oder Tumorerkrankungen.
15. Verfahren zur Herstellung eines rekombinanten Fowlpox-Virus oder DNA-Vektors nach einem oder mehreren der vorhergehenden Ansprüche, wobei Fremd-DNA in das Fl 1 L-Gen eines Fowlpox-Virus durch rekombinante DNA-Techniken eingebracht wird.
16. Verfahren nach Anspruch 15, wobei das Einbringen durch homologe Rekombination der Virus-DNA mit der Fremd-DNA erfolgt, die Fl lL-spezifische Sequenzen enthält, gefolgt von einer Vermehrung und Isolierung des rekombinanten Virus oder des DNA- Vektors.
17. Eukaryontenzelle oder Prokaryontenzelle, enthaltend einen rekombinanten DNA- Vektor oder ein rekombinantes Virus nach einem oder mehreren der vorhergehenden Ansprüche.
18. Prokaryontenzelle nach Anspruch 17, die eine Bakterienzelle, bevorzugt E. coli-Zelle ist.
19. Eukaryontenzelle nach Anspruch 18, die eine Hefezelle, Vogelzelle, bevorzugt Hühnerzelle, oder eine vom Säugetier stammende Zelle, bevorzugt Humanzelle ist.
20. Verfahren zur Immunisierung eines Säugetieres, vorzugsweise eines Menschen, das die folgenden Schritte umfasst: a) Primen des Säugetieres mit einer therapeutisch wirksamen Menge eines Fowlpox- Virus nach einem der Ansprüche 1-10, eines DNA-Vektors nach Anspruch 11 oder einer pharmazeutischen Zusammensetzung nach Anspruch 12 oder 13;
b) wahlweise zwischen ein- und dreimal Wiederholen von Schritt a) nach einer Woche bis zu acht Monaten; und
c) Boosten des Säugetieres mit einer therapeutisch wirksamen Menge eines anderen viralen Vektors, der diesselbe Fremd-DNA wie Fowlpox-Virus, DNA- Vektor oder pharmazeutische Zusammensetzung in a) enthält.
21. Verfahren nach Anspruch 20, bei dem die Primingschritte zweimal vor dem Boosting- Schritt durchgeführt werden.
22. Verfahren nach Anspruch 21, wobei die Primingschritte zu Beginn der Behandlung und in Woche drei bis fünf, vorzugsweise Woche vier der Immunisierung durchgeführt werden, wobei der Boosting-Schritt in Woche elf bis dreizehn, vorzugsweise Woche zwölf der Immunisierung durchgeführt wird.
23. Verfahren nach einem oder mehreren der Ansprüche 20-22, wobei als andere virale Vektoren rekombinantes MVA, andere avirulente Vakzinia- Viren und Pockenvirus- Vektoren, vorzugsweise rekombinante Formen der Vakziniaviren NYVAC, CV-I-78, LC16m0, oder LC16m8, rekombinante Parapockenviren, vorzugsweise das attenuierte Orf- Virus Dl 701, Adenoviren, vorzugsweise humanes Adenovirus 5, Orthomyxoviren, vorzugsweise Influenzaviren, Herpesviren, vorzugsweise humane oder equine Herpesviren, oder Alphaviren, vorzugsweise Semiliki-Forest-Viren, Sindbisviren, oder Equine Enzephalitisviren (- NEE) eingesetzt werden.
24. Kombinierte Zubereitung, die folgende Bestandteile umfasst: a) ein Fowlpox-Virus nach einem der Ansprüche 1-10, einen DNA-Vektors nach Anspruch 11 oder eine pharmazeutische Zusammensetzung nach Anspruch 12 oder 13; und
b) einen weiteren viralen Vektor, der die gleiche Fremd-DNA wie das Fowlpox-Virus oder der DNA- Vektor von a) enthält.
25. Kombinierte Zubereitung nach Anspruch 24, bei der als weitere virale Vektoren rekombinantes MVA, andere avirulente Vakzinia- Viren und Pockenvirus-Vektoren, vorzugsweise rekombinante Formen der Vakziniaviren NYVAC, CV-I-78, LClόmO oder LC16m8, rekombinante Parapockenviren, vorzugsweise das attenuierte Orf- Virus Dl 701, Adenoviren, vorzugsweise humanes Adenovirus 5, Orthomyxoviren, vorzugsweise In- fluenzaviren, Herpesviren, vorzugsweise humane oder equine Herpesviren, oder Alphaviren, vorzugsweise Semiliki-Forest- Viren, Sindbisviren, oder Equine Enzephalitisviren (- VEE) eingesetzt werden.
EP03722604A 2002-05-14 2003-05-13 Rekombinantes fowlpox-virus Withdrawn EP1504107A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10221411 2002-05-14
DE10221411A DE10221411B4 (de) 2002-05-14 2002-05-14 Rekombinantes Fowlpox-Virus
PCT/EP2003/004991 WO2003095656A1 (de) 2002-05-14 2003-05-13 Rekombinantes fowlpox-virus

Publications (1)

Publication Number Publication Date
EP1504107A1 true EP1504107A1 (de) 2005-02-09

Family

ID=29413803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03722604A Withdrawn EP1504107A1 (de) 2002-05-14 2003-05-13 Rekombinantes fowlpox-virus

Country Status (8)

Country Link
US (1) US20050287162A1 (de)
EP (1) EP1504107A1 (de)
JP (1) JP2005525119A (de)
CN (1) CN1653182A (de)
AU (1) AU2003229783A1 (de)
CA (1) CA2485655A1 (de)
DE (1) DE10221411B4 (de)
WO (1) WO2003095656A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR052743A1 (es) * 2006-04-11 2007-03-28 Inst Nac De Tecnologia Agropec Vector plasmidico de transferencia y virus canarypox recombinante
CN101220374B (zh) * 2007-01-11 2012-02-01 华南农业大学 鸡痘病毒双基因表达载体(pg7.5n)
GB0823497D0 (en) 2008-12-24 2009-01-28 Isis Innovation Immunogenic composition and use thereof
PT2694101T (pt) 2011-04-06 2016-12-19 Université Paris Descartes Composições farmacêutivas para prevenção e/ou tratamento de doença por vih em seres humanos
CN115300622A (zh) 2015-02-25 2022-11-08 纪念斯隆-凯特琳癌症中心 使用灭活的修饰的痘苗病毒安卡拉作为实体肿瘤的单一免疫疗法或与免疫检查点阻断剂组合
EP3283088A4 (de) 2015-04-17 2018-10-24 Memorial Sloan-Kettering Cancer Center Verwendung von mva oder mvadeltae3l als immunotherapeutika gegen solide tumoren
CN105002145B (zh) * 2015-07-01 2017-12-15 天津农学院 利用mTERT和mTyr双启动子联合调控HN基因构建重组腺病毒的方法及重组腺病毒和应用
DE102015111756A1 (de) * 2015-07-20 2017-01-26 Eberhard Karls Universität Tübingen Medizinische Fakultät Rekombinanter Orf-Virus-Vektor
JP7025339B2 (ja) 2016-02-25 2022-02-24 メモリアル スローン ケタリング キャンサー センター 癌免疫療法のための、チミジンキナーゼの欠失を伴い、ヒトflt3lまたはgm-csfの発現を伴うかまたは伴わない、複製可能な弱毒化ワクシニアウイルス
SG11201807022XA (en) 2016-02-25 2018-09-27 Memorial Sloan Kettering Cancer Center Recombinant mva or mvadele3l expressing human flt3l and use thereof as immuno-therapeutic agents against solid tumors
WO2018209315A1 (en) * 2017-05-12 2018-11-15 Memorial Sloan Kettering Cancer Center Vaccinia virus mutants useful for cancer immunotherapy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595887A (en) * 1990-07-16 1997-01-21 Bionebraska, Inc. Purification directed cloning of peptides using carbonic anhydrase as the affinity binding segment
ATE157703T1 (de) * 1991-12-16 1997-09-15 Ciba Geigy Ag Endoplasmatisches retikulum-ständige rekombinante dibasische endoprotease und deren verwendungen
AU729518B2 (en) * 1995-06-07 2001-02-01 Syntro Corporation Recombinant fowlpox viruses and uses thereof
US5840839A (en) * 1996-02-09 1998-11-24 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Alternative open reading frame DNA of a normal gene and a novel human cancer antigen encoded therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03095656A1 *

Also Published As

Publication number Publication date
JP2005525119A (ja) 2005-08-25
CN1653182A (zh) 2005-08-10
CA2485655A1 (en) 2003-11-20
WO2003095656A1 (de) 2003-11-20
DE10221411A1 (de) 2003-12-04
AU2003229783A1 (en) 2003-11-11
US20050287162A1 (en) 2005-12-29
DE10221411B4 (de) 2004-07-08

Similar Documents

Publication Publication Date Title
DE60303218T2 (de) Intergene regionen als insertionsstellen im genom von modifiziertem vaccinia virus ankara (mva)
DE69810459T3 (de) Reagenzien zur impfung, die eine cd8 t-zell-immunantwort erzeugen
DE69635173T2 (de) Rekombinante MVA Viren und deren Verwendung
DE60116371T2 (de) Variante des modifizierten vaccinia ankara virus
US8394385B2 (en) Optimized early-late promoter combined with repeated vaccination favors cytotoxic T cell response against recombinant antigen in MVA vaccines
EP2558581B1 (de) System für pockenvirenexpression
US20060099181A1 (en) Viral vectors having reduced virulence
DE10221411B4 (de) Rekombinantes Fowlpox-Virus
DE60314541T2 (de) Mindestens zwei ati promotoren enthaltendes rekombinantes pockenvirus
US20080075694A1 (en) MVA vaccine
DE60302848T2 (de) Expression von genen im modifizierten vaccinia virus ankara durch verwendung eines cowpox ati promoter
US7150874B2 (en) Vector for integration of heterologous sequences into poxviral genomes
EP1554383B1 (de) Rekombinante mva-stamme als potentielle impfstoffe gegen p. falciparum -malaria
EP1553977B1 (de) Impfstoff gegen infektionen mit onkoviren, wie dem felinen leukosevirus der katze
EP1188834A1 (de) Rekombinantes MVA mit der Fähigkeit zur Expression des HER-2/neu-Gens
Baier Recombinant fowlpox virus
DE10249594A1 (de) Immunisierung gegen Bestandteile des Humanen Immunschwächevirus (HIV)
EP1167529A2 (de) Vektorsystem zum Einbringen von DNA in eukaryonte Zellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080729