EP1500499B2 - Verfahren und Vorrichtung zur Messung und Regelung der Konzentrationen von chemischen Verbindungen in Prozessflüssigkeiten beim Offsetdruck - Google Patents
Verfahren und Vorrichtung zur Messung und Regelung der Konzentrationen von chemischen Verbindungen in Prozessflüssigkeiten beim Offsetdruck Download PDFInfo
- Publication number
- EP1500499B2 EP1500499B2 EP04017479.9A EP04017479A EP1500499B2 EP 1500499 B2 EP1500499 B2 EP 1500499B2 EP 04017479 A EP04017479 A EP 04017479A EP 1500499 B2 EP1500499 B2 EP 1500499B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- individual
- accordance
- fountain solution
- components
- chemical components
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 63
- 239000000126 substance Substances 0.000 title claims description 53
- 239000007788 liquid Substances 0.000 title claims description 22
- 238000007645 offset printing Methods 0.000 title claims description 14
- 230000008569 process Effects 0.000 title description 47
- 239000000654 additive Substances 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 6
- 230000005670 electromagnetic radiation Effects 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims 3
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 238000007639 printing Methods 0.000 description 45
- 230000000996 additive effect Effects 0.000 description 26
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 14
- 239000002904 solvent Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012855 volatile organic compound Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- -1 dirt Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F7/00—Rotary lithographic machines
- B41F7/20—Details
- B41F7/24—Damping devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F33/00—Indicating, counting, warning, control or safety devices
- B41F33/0054—Devices for controlling dampening
Definitions
- the respective printing plate is wetted with an aqueous liquid by a so-called dampening system in order to ensure that in a subsequent process step the image areas take on the color, while the image-free areas behave ink-repellently.
- the aqueous liquid often consists of a mixture with alcohol, usually isopropanol, and a chemical mixture of up to around twenty substances, which is referred to below as an additive.
- the additive is available in concentrations of 1 to 8% vol., the alcohol from 0.5 to 20% vol. added.
- the concentration of the water is between 72% and 98.5% - vol.
- alcohol is sometimes completely avoided. In this case, the additive is also called an alcohol substitute.
- the optimized additive then fully or at least partially takes over the function of isopropanol.
- a major problem with offset printing is the insufficient availability of the process, which is typically only around 80% and is therefore characterized by long downtimes of very investment-intensive printing machines. For example, with a so-called 64-page offset rotary printing line, you would save around EUR 35,000 per year if the actual production time per day could be extended by an average of just two minutes. New, intensive practical studies have clearly shown that the low availability of offset printing machines is largely due to an undefined, unknown physical and chemical composition of the process fluid that has not yet been measurable in the process and therefore, in particular, cannot be controlled.
- the concentrations of alcohol in the dampening solution are currently between 6% and 20% and make it easier to use so-called film dampening systems in the case of web and sheetfed offset.
- the latter consist of several rollers coated with rubber mixtures and/or metals, which rotate in contact with one another with a certain contact pressure and transport the dampening solution to the printing plate in the form of a film of adjustable layer thickness. This transport process is promoted by the addition of isopropanol as a result of the resulting reduction in the surface tension of the liquid film.
- contactless systems in particular spray dampening systems operated with nozzles or dampening systems which have rollers with plush covers, are also used.
- the new method according to the invention is also in accordance with the prior art in these versions of utmost importance as it enables an optimal composition of the chemicals in the fountain solution.
- a real alternative to alcohol are the so-called surfactants, which have comparable advantages in terms of the wetting properties of the dampening solution on the rollers of the dampening unit.
- surfactants are not VOC's.
- surfactants lead to undesirable foaming and to quality-reducing emulsification of ink and fountain solution, so that in many practical cases alcohol-free printing fails and has to be replaced by printing with alcohol.
- the aim of the present invention is therefore to readjust the composition of the dampening solution to the respective target values by continuously measuring and regulating the composition of the dampening solution, ie by continuously re-dosing the individual differently impoverishing chemical components or selected groups of components, in order to ensure the availability of the offset printing process to the values of the competing Gravure pressure, ie to around 90 to 95%.
- JP-A-4327940 It is intended to control the concentrations of individual components in the fountain solution of offset printing machines by measuring the pH value, the conductivity, the refractive index, the specific gravity and the gas concentration and to replenish the respective component via pumps over a specific period of time if the concentration value is high is not within a range between an upper and a lower limit.
- a method and a device are used for the first time in printing technology, which continuously measure the concentrations of the individual components of the additive and regulate them to predetermined optimal values due to selective weakening of electromagnetic radiation. This prevents the process liquid from suffering a depletion or an overdose of individual components of the additive, so that the printing process can be continued continuously at the optimal operating point with high stability and availability.
- the process not only works with alcohol-free printing, ie for substitute materials, but that the selectivity of the measurement and control of the additive can also be maintained when printing with additional admixture of alcohol, ie that the alcohol does not cause any distortion of the measurement of the concentrations of the individual components of the additive.
- the selective measurement of the concentrations of the individual components or groups of different chemical compounds is coupled with a dosing system that removes the various components from different containers via a system consisting of clocked valves and pumps and supplies them to the dampening solution in a controlled manner.
- This new process significantly optimizes offset printing with alcohol. For the first time, printing without alcohol is put on a basis that enables a long-term process while meeting the economic constraints.
- the too narrow window of variation in the concentrations of the individual chemical components of ready-to-use additives is expanded as desired by the new process, so that constant changes of the dampening solution, in particular Due to the already mentioned search for better dampening solution additives when the printing process is shut down for several hours and the corresponding negative consequences for the disposal of the previously used dampening solution and thus also for the economic efficiency of the printing process, the new process no longer applies.
- dosing devices are used to produce the process liquid, which volumetrically mix the two or three components under fixed conditions within the framework of a control and into the liquid circuit of the printing press according to the respective consumption, ie according to the removal of the liquid through the paper to be printed.
- systems with conventional dosing pumps are currently in use.
- a major disadvantage of these systems is that neither the mixing devices malfunction nor changes in the physical and/or chemical composition, e.g. as a result of chemical reactions or absorption or desorption processes through the printing ink, the paper, through the pipeline or the machine modules, can be detected.
- evaporation processes in these classic dosing methods lead to significant concentration errors.
- the sensors currently in use as the only control instruments for detecting electrical conductivity are not suitable for quantitative measurement of the concentration of the respective additive or substitute because of the heavy and fluctuating contamination of the process liquid.
- the important chemical key components of the additives, which enable the printing process cannot be detected by a conductivity measurement because these substances cannot be dissociated in water.
- the pH probe which has already been introduced more or less as a standard in offset printing, can only be used as an indicator shortly before the functioning of the printing process collapses, since the required strong chemical buffering of the process liquid, for example by citric acid, also causes a change in the pH value major changes in the chemical composition are prevented.
- the aims of the present invention are therefore a method and a device for implementing the method, which enables quantitative, continuous measurement and control of the concentrations of the individual components of the respective additive or substitute in a matrix of up to 20 chemical components without incorrect influence from other substances , such as alcohol, dirt, paint and paper particles, gas bubbles, salts from the paper coating and other contaminants typical of offset printing.
- the individual components must be measured and controlled with a material-dependent accuracy of between 10 ppm and 3.0%. This problem has not yet been solved in any practical case.
- the present invention solves the tasks set, among other things, in that the individual chemical components are continuously measured and regulated to the dampening solution circuit as pure raw materials and / or as partial mixtures of several components, usually in mixtures with water, so that they are simply in the dampening solution solve and in particular do not form separate phases. In this way, chemical formulations in particular can be realized that separate in a prefabricated additive concentrate and would therefore not lead to a homogeneous solution.
- the weakening of electromagnetic radiation as it passes through the dampening solution is used to determine the concentration.
- Process liquid (2) located in a tank (1) is circulated by circulation pumps (3) to the printing press (4) and back to the tank (1) via pipes (5).
- the respective concentrations of the individual chemical components of the additive are continuously measured by a measuring system (6).
- the specified chemical components K1, K2, K3,... to Kn are fed into the process liquid (2) via pumps (7) and valves (8).
- the different required target concentrations of the chemical components K1 to Kn are guaranteed by the fact that the measuring system (6) continuously measures the actual concentrations and, as part of a control system, replenishes the amount of the respective component so that the actual value is equal to the specified one Target value is.
- the concentration of alcohol, unless alcohol-free printing is used is continuously measured in the process liquid (2) and the Alcohol lost essentially through evaporation is fed in from a storage container (13) via a unit consisting of a valve and metering pump (14), so that even when printing with alcohol, the target and actual values constantly match and the availability and quality of the printing process is guaranteed are.
- An agitator (15) is used to homogenize the process liquid.
- Fig 2 outlines an arrangement consisting of a printing press (16), a dampening solution tank (17), a dampening solution (18) with circulation (19) and the chemical components K1 to Kn (20), which have a Venturi nozzle (21) and a pump ( 22) is operated, the chemical components K1 to Kn are sucked in via valves (23) and fed into the dampening solution (18), the concentrations of the chemical components being measured via the measuring and control system (24) takes place.
- the make-up (25) of water with automatic level control and the agitator (26) correspond to the arrangements of Fig. 1 .
- Fig. 3 is in the overall arrangement consisting of printing press (27), dampening solution tank (28), dampening solution (29), measuring and control system (30), agitator (31), water feed (32) with fill level control (33) and dampening solution circulation (34), as Additional component a static mixer (35) is realized.
- the dampening water (29) circulated via the pump (36) is mixed with the chemical components K1 to Kn (37), which are fed into the circuit (39) via the valves (38), in the static mixer (35), as follows that both the measuring system (30) and the circuit (34) have homogeneous liquid mixtures with the aim that the entire system in Fig. 3 works optimally.
- Fig. 4 represents a version of the invention, which is characterized by a premixing of the chemical components K1 to Kn (42) via pumps (50a) with a water supply (41) in a mixing container (40).
- This arrangement ensures that the control process of the measuring system (43) for achieving the target concentrations of the chemical components K1 to Kn (42) is significantly shortened, so that the composition of the dampening solution (44) in the dampening solution tank (45) also over shorter time intervals always has the specified target values.
- a homogenization device (39) is also used in the premixing container (40).
- the latter can also be according to Fig. 3 be a static mixer.
- Fig. 5 shows a simple variant according to the invention, in which the chemical components K1 to Kn (51) are metered in via a valve (54) via calibrated metering pumps (53) controlled by the measuring system (52) in accordance with the respective target value of the individual component.
- the level measurement (55) and the agitator (56), in combination with the water supply (57), enable a homogeneous mixture of the dampening water (58), which circulates via the circulation pump (59) in the circuit (60) between the printing press (61) and the dampening water cooling device (62).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Printing Plates And Materials Therefor (AREA)
- Inking, Control Or Cleaning Of Printing Machines (AREA)
- Rotary Presses (AREA)
Description
- Bei Offset-Druckmaschinen wird die jeweilige Druckplatte durch ein sogenanntes Feuchtwerk mit einer wässrigen Flüssigkeit benetzt, um zu erreichen, dass in einem nachfolgenden Prozeßschritt die Bildbereiche die Farbe annehmen, während sich die bildfreien Bereiche farbabweisend verhalten. Die wässrige Flüssigkeit besteht neben Wasser häufig aus einem Gemisch mit Alkohol, meist wird Isopropanol verwendet, sowie einem chemischen Gemisch aus bis zu ca. zwanzig Substanzen, das im folgenden als Additiv bezeichnet wird. Das Additiv wird in Konzentrationen von 1 bis 8 %-Vol., der Alkohol von 0,5 bis 20 %-Vol. zugesetzt. Die Konzentration des Wassers liegt demnach zwischen 72% und 98,5 % - Vol. Unter Verwendung von optimierten Additiven wird zum Teil gänzlich auf den Alkohol verzichtet. In diesem Fall wird das Additiv auch als Alkohol-Ersatzstoff bezeichnet. Das optimierte Additiv übernimmt dann voll oder zumindest teilweise die Funktion von Isopropanol.
- Ein großes Problem des Offsetdrucks liegt in der unzureichenden Verfügbarkeit des Prozesses, die typisch bei ca. nur 80 % liegt und daher durch hohe Stillstandszeiten sehr investitionsintensiver Druckmaschinen gekennzeichnet ist. Beispielsweise würde man bei einer sog. 64-Seiten Offset-Rotationsdrucklinie pro Jahr ca. 35.000,-- EUR einsparen, wenn die reine Produktionszeit pro Tag durchschnittlich um nur zwei Minuten verlängert werden könnte. Neue, intensive praktische Untersuchungen haben klar gezeigt, dass die zu niedrige Verfügbarkeit von Offset-Druckmaschinen zu einem wesentlichen Teil auf eine undefinierte, unbekannte und bisher nicht im Prozeß meßbare und daher insbesondere nicht regelbare physikalische und chemische Zusammensetzung der Prozeßflüssigkeit zurückzuführen ist. Im Rahmen dieser Untersuchungen wurde insbesondere und paradoxerweise festgestellt, dass selbst bei exakter Realisierung einer vorgegebenen volumetrischen Mischung der Komponenten Wasser und Additiv, z.B. durch eine exakte Steuerung von zwei Dosierpumpen, welche z.B. die Volumina 97 % - Vol. Wasser und 3 % - Vol. Additiv in die Prozeßflüssigkeit injizieren, im Kreislauf der Prozeßflüssigkeit ein viel niedrigerer Wert, z. B. 0,8 % - Vol. an Additiv, vorhanden ist. Noch viel erstaunlicher ist die Tatsache, dass Analysen ergaben, dass die ursprüngliche prozentuale Zusammensetzung der Einzelkomponenten des Additives im Feuchtwasserkreislauf nicht mit der ursprünglich beabsichtigten und von den Dosierpumpen durch eine Steuerung bei der Einspeisung realisierten Zusammensetzung übereinstimmen. Vielmehr treten von uns als "kannibalistische Effekte" bezeichnete Vorgänge auf, die darin bestehen, dass im Druckprozess die Bestandteile des Additivs mehr oder weniger stark verschwinden, obwohl in den beabsichtigten Konzentrationsverhältnissen periodisch zudosiert wird. Die derzeit standardmäßig im Offsetdruck eingeführte Technik, das Additiv-Konzentrat als eine einzige chemische Formulation, die aus allen notwendigen chemischen Bestandteilen mit definiert vorgegebenen Konzentrationen besteht und deren Zusammensetzung von der Druckapplikation, d.h. Rollenoffset, Bogenoffset oder Zeitungsdruck sowie vom Maschinentyp, Papiertyp, Farbtyp, abhängt, in den Feuchtwasserkreislauf einer Druckmaschine einzuspeisen, ist eine Notlösung, die den modernen Anforderungen an eine hohe Verfügbarkeit des Offsetproesses nicht gerecht wird. Auch wenn diese Nachteile beim Drucken mit Alkohol durch Zudosierung erhöhter Konzentrationen von Isopropanol zu einem gewissen Teil ausgeglichen werden können, was in der Praxis derzeit so gehandhabt wird, ist diese Vorgehensweise nicht als eine zukünftige technische Lösung zu betrachten, da Isopropanol als Lösemittel und leicht flüchtiger Stoff (VOC = Volatile Organic Compound) im Offsetdruck in vielen Staaten der USA verboten, in Europa mit strengen Gesetzen zur Emissionbegrenzung und in der Schweiz sogar mit einer für die Wirtschaftlichkeit des Druckprozesses schädlichen Strafsteuer, der sog. "Lenkungsabgabe", belegt ist. Aus umweltpolitischen Gesichtspunkten und insbesondere auch zum Schutze der Gesundheit der Drucker am Arbeitsplatz, müssen daher Isopropanol oder andere Lösemittel in der Zukunft massiv reduziert bzw. letztendlich vollständig aus dem Druckprozess verschwinden. Die Konzentrationen von Alkohol im Feuchtwasser liegen in der Regel derzeit zwischen 6 % und 20 % und erleichtern im Falle des Rollen- und des Bogen-Offset den Einsatz von sogenannten Filmfeuchtwerken. Gemäß dem Stand der Technik bestehen letztere aus mehreren mit Gummimischungen und/oder Metallen beschichteten Walzen, die mit einem gewissen Anpressdruck in Kontakt miteinander rotieren und das Feuchtwasser in Form eines Filmes einstellbarer Schichtdicke zur Druckplatte transportieren. Dieser Transportvorgang wird durch die Zugabe von Isopropanol infolge der dadurch bewirkten Reduktion der Oberflächenspannung des Flüssigkeitsfilmes begünstigt. Neben Filmfeuchtwerken gemäß dem Stand der Technik werden auch kontaktlos arbeitende Systeme, insbesondere mit Düsen betriebene Sprühfeuchtwerke oder Feuchtwerke, die Walzen mit Bezügen aus Plüsch aufweisen, eingesetzt. Da in diesen Fällen das Feuchtmittel ohne kontinuierlichen Flüssigkeitsfilm transportiert wird, kann der Einsatz von Alkohol entfallen. Auch bei diesen Ausführungen gemäß dem Stand der Technik ist das erfindungsgemäße neue Verfahren von größter Wichtigkeit, da es eine optimale Zusammensetzung der Chemikalien des Feuchtwassers ermöglicht.
- Um den gesetzlichen Zwängen bezüglich der Vermeidung von Isopropanol nachzukommen, wurden insbesondere in den USA andere Lösemittel auf den Markt gebracht. Dieser Weg wurde jedoch in Europa nicht nachvollzogen, da dadurch keine Eliminierung von Lösemitteln erzielt wurde. Ferner gelten die anderen Lösemittel zum Teil als krebserregend bzw. als gesundheitsschädlich und stellen daher keine Alternative zum Alkohol dar.
- Eine echte Alternative zum Alkohol sind die sog. Tenside, welche vergleichbare Vorteile bezüglich den Benetzungseigenschaften des Feuchtwassers an den Walzen des Feuchtwerkes bewirken. Insbesondere ist festzustellen. dass Tenside keine VOC' s sind. Diese positiven Eigenschaften der Tenside können jedoch erfahrungsgemäß nur dann zum Tragen kommen, wenn die erforderlichen Soll Konzentrationen exakt eingehalten werden können. Bei den derzeit eingesetzten alkoholfreien Verfahren gemäß dem Stand der Technik, führen daher Tenside zu unerwünschtem Schäumen sowie zu qualitätsminderndem Emulgieren von Farbe und Feuchtwasser, so dass in vielen praktischen Fällen der alkoholfreie Druck versagt und wieder durch das Drucken mit Alkohol abgelöst werden muss. Hinzu kommt die Schwierigkeit, dass Tenside in einem chemischen Multikomponentengemisch sehr oft schwierig zu lösen sind, so dass zusätzlich Stoffe als Lösemittelvermittler in das Additiv - Konzentrat eingebracht werden müssen, um eine Entmischung, d.h. ein Absetzen auf dem Boden des Additiv - Fasses des Lieferanten zu verhindern. Auch diese Schwierigkeit wird durch das erfindungsgemäße Verfahren leicht gelöst. Es bietet nämlich die Möglichkeit, nur diejenigen chemischen Stoffkomponenten anzuwenden, die für den Druckprozess absolut notwendig sind. Da die Bahngeschwindigkeiten moderner Druckmaschinen laufend gesteigert werden und letzteres eine zunehmend präzisere Messung und Dosierung der chemischen Einzelkomponenten erfordert, ist das neue Verfahren für den Druck ohne Alkohol unverzichtbar. Unterstützend hinzu kommt, dass bei ein und derselben Druckmaschine, abhängig vom Druckauftrag, d.h. von dem aktuell verwendeten Papier, von den vom spezifischen Kunden verlangten Sonderfarben, von dem speziell verwendeten Gummituch, der Walzenbeschichtung, etc., die Zusammensetzung der Einzelkomponenten des Additivs veränderbar sein muss. Auch letzteres ist nur mit dem hier beschriebenen neuen Verfahren möglich. Dies wird insbesondere auch dadurch bewiesen, dass es bis heute kein einziges Additiv auf der Welt gibt, welches Drucken ohne Alkohol unter allen in einer Druckmaschine auftretenden Bedingungen ermöglicht. Letzteres erklärt, weshalb Druckereileiter immer wieder andere Additivformulationen testen wollen, um ihre Druckaufträge durchzuführen. Trotzdem muss festgestellt werden, dass jede chemische Formulierung einen Kompromiss darstellt und daher nur für eine beschränkte Skala von Druckaufträgen optimal ist. Insgesamt ist die derzeitige Vorgehensweise notgedrungen mit einem hohen finanziellen Aufwand verbunden, der trotz der oben genannten gesetzlichen Vorschriften in Europa, den Druck ohne Alkohol de facto unmöglich macht.
- Ziel der vorliegenden Erfindung ist daher, durch kontinuierliche Messung und Regelung der Zusammensetzung des Feuchtwassers, d.h. durch kontinuierliche Nachdosierung der einzelnen unterschiedlich verarmenden chemischen Komponenten bzw. ausgewählter Gruppen von Komponenten auf die jeweiligen Sollwerte nachzuregeln, um die Verfügbarkeit des Offset-Druckprozesses auf Werte des konkurrierenden Tiefdrucks, d.h. auf etwa 90 bis 95 %, zu erhöhen. Gemäß dem Stand der Technik aus
JP-A-4327940 - Gemäß dem derzeitigen Stand der Technik werden zur Herstellung der Prozeßflüssigkeit Dosiereinrichtungen verwendet, die volumetrisch im Rahmen einer Steuerung die zwei bzw. drei Komponenten unter fest vorgegebenen Verhältnissen mischen und in den Flüssigkeitskreislauf der Druckmaschine entsprechend dem jeweiligen Verbrauch, d.h. gemäß dem Abtransport der Flüssigkeit durch das zu bedruckende Papier, einspeisen. Neben Mischstationen, die von Hand bedient werden, sind derzeit insbesondere Systeme mit herkömmlichen Dosierpumpen im Einsatz. Ein großer Nachteil dieser Systeme besteht darin, dass weder Fehlfunktionen der Mischeinrichtungen noch Änderungen der physikalischen und / oder der chemischen Zusammensetzung , z.B. infolge von chemischen Reaktionen oder von Absorptions- oder Desorptionsprozessen durch die Druckfarbe, das Papier, durch die Rohrleitung oder die Maschinenmodule, festgestellt werden können. Insbesondere führen Verdunstungsprozesse bei diesen klassischen Dosierungsverfahren zu erheblichen Konzentrationsfehlern. Die im Moment als einzige Kontrollinstrumente bereits im Einsatz befindlichen Sensoren zur Erfassung der elektrischen Leitfähigkeit sind wegen der starken und schwankenden Verschmutzung der Prozeßflüssigkeit für eine quantitative Messung der Konzentration des jeweiligen Additivs bzw. des Ersatzstoffes nicht geeignet. Ferner sind die wichtigen chemischen Leitkomponenten der Additive, welche den Druckprozeß ermöglichen, durch eine Leitfähigkeitsmessung nicht erfassbar, da diese Substanzen im Wasser nicht dissoziierbar sind. Auch die mehr oder weniger als Standard im Offsetdruck bereits eingeführte pH - Sonde kann allenfalls als Indikator kurz vor dem Zusammenbruch der Funktion des Druckprozesses herangezogen werden, da die erforderliche starke chemische Pufferung der Prozeßflüssigkeit, z.B. durch Zitronensäure, eine Veränderung des pH-Wertes auch bei starker Veränderung der chemischen Zusammensetzung verhindert.
- Ziele der vorliegenden Erfindung sind daher ein Verfahren sowie eine Vorrichtung zur Realisierung des Verfahrens, welche eine quantitative, kontinuierliche Messung und Regelung der Konzentrationen der Einzelkomponenten des jeweiligen Additivs bzw. des Ersatzstoffes in einer Matrix von bis zu 20 chemischen Komponenten ohne fehlerhafte Beeinflussung durch andere Stoffe, wie z.B. insbesondere durch Alkohole, Schmutz-, Farb- und Papier- Partikel, Gasblasen, Salze aus dem Papierstrich und andere für den Offsetdruck typische Verunreinigungen, ermöglichen. Darüber hinaus müssen die Einzelkomponenten mit einer stoffabhängigen Genauigkeit zwischen 10 ppm und 3.0 % gemessen und geregelt werden. Dieses Problem wurde bisher in keinem aller praktischen Fälle gelöst. Da unsere wissenschaftlichen Untersuchungen vor allem gezeigt haben, dass die verschiedenen chemischen Inhaltsstoffe einer statisch vorgegebenen Additiv-Mischung nicht konzentrationsproportional verbraucht werden, sich die Mischung im Laufe des Druckprozesses also verändert, da sowohl die Farben, als auch das Papier, als auch andere Effekte eine mehr oder weniger selektive Abreicherung der Einzelkomponenten hervorrufen. Diese besondere Situation im Offsetdruck macht die vorliegende Erfindung in höchstem Maße wertvoll, da Abreicherungseffekte vollständig ausgeglichen werden, unabhängig von dem jeweils in der Druckmaschine befindlichen Kundenauftrag. Die vorliegende Erfindung löst die gestellten Aufgaben unter anderem dadurch, dass die chemischen Einzelkomponenten kontinuierlich gemessen und dem Feuchtmittelkreislauf geregelt als reine Rohstoffe oder / und als Teilmischungen aus mehreren Komponenten in der Regel in Mischungen mit Wasser, so zugeführt werden, dass sie sich einfach im Feuchtwasser lösen und insbesondere keine getrennten Phasen bilden. Auf diese Weise können insbesondere auch chemische Formulierungen realisiert werden, die sich in einem vorgefertigten Additiv - Konzentrat abtrennen und daher nicht zu einer homogenen Lösung führen würden. Für die Konzentrationsbestimmungen wird erfindungsgemäß die Schwächung elektromagnetischer Strahlung beim Durchgang durch das Feuchtwasser ausgenutzt.
- Ausführungsbeispiele werden im folgenden detailliert mittels Figuren beschrieben. Dabei zeigen im einzelnen:
- Fig. 1:
- Das Gesamtsystem bestehend aus Meß- und Regelsystemen, Druckmaschine und Prozeßflüssigkeitskreislauf, wobei die Dosierung der verschiedenen chemischen Komponenten / Komponentengruppen direkt durch das Mess- und Regelgerät erfolgt.
- Fig. 2:
- Eine alternative Ausbildung der Erfindung, wobei die Dosierung über eine Venturi - Düse stattfindet.
- Fig. 3:
- Eine alternative Ausbildung der Erfindung, die dadurch gekennzeichnet ist, dass die chemischen Einzelkomponenten über einen statischen Mischer geführt werden.
- Fig. 4:
- Eine weitere Systemvariante, bei welcher eine Voranmischung in einem separaten Behälter stattfindet, welcher mit dem Gesamtsystem verbunden ist, wobei die Zusammensetzung dem optimalen Mischungsverhältnis entspricht.
- Fig. 5:
- System, bei welchem die optimale Zusammensetzung über kalibrierte Dosierpumpen erfolgt.
- Die gemäß
Fig. 1 in einem Tank (1) befindliche Prozeßflüssigkeit (2) wird durch Umwälzpumpen (3) zur Druckmaschine (4) und zurück zum Tank (1) über Rohrleitungen (5) im Kreislauf geführt. Die jeweiligen Konzentrationen der chemischen Einzelkomponenten des Additivs werden von einem Messsystem (6) kontinuierlich gemessen. Die vorgegebenen chemischen Komponenten K1, K2, K3,.... bis Kn werden über Pumpen (7) sowie über Ventile (8) in die Prozessflüssigkeit (2) eingespeist. Die jeweils erforderlichen verschiedenen Soll - Konzentrationen der chemischen Komponenten K1 bis Kn werden dadurch garantiert, dass das Messsystem (6) die Ist - Konzentrationen kontinuierlich mißt und im Rahmen einer Regelung von der jeweiligen Komponente so viel nachdosiert, dass der Ist-Wert gleich dem vorgegebenen Soll-Wert ist. Dadurch ist gewährleistet, dass die durch den Druckprozeß ständig verbrauchten oder durch chemische Reaktionen oder physikalische Absorptionsprozesse an den Wänden der Drucklinie entzogenen Additiv-Komponenten in die Prozeßflüssigkeit (2) nachgespeist werden, so dass unabhängig von der Stärke der jeweiligen Verlustprozesse die Ist-Werte der Konzentration des Additivs gleich den vom Drucker vorgegebenen Soll-Werten sind. Der Wasserverlust in der Prozeßflüssigkeit (2) wird über eine Rohrleitung (9) ausgeglichen, wobei die Füllhöhe (10) über ein Niveau - Mess- und Regel - System (11) nach dem Ultraschall - Echolot - Prinzip oder einem Verfahren gemäß dem Stand der Technik konstant gehalten wird. Mit einer weiteren Meß- und Regeleinrichtung (12), die in einer anderen Ausbildung der Erfindung auch im Meßsystem (6) integriert sein kann, wird kontinuierlich die Konzentration des Alkohols, sofern nicht alkoholfrei gedruckt wird, in der Prozeßflüssigkeit (2) gemessen und der im wesentlichen durch Verdunstung verlorene Alkohol aus einem Vorratsbehälter (13) über eine Einheit bestehend aus Ventil und Dosierpumpe (14) eingespeist, so dass auch im Falle des Druckens mit Alkohol Soll- und Ist-Wert ständig übereinstimmen und die Verfügbarkeit und Qualität des Druckprozesses gewährleistet sind. Zur Homogenisierung der Prozessflüssigkeit wird ein Rührwerk (15) eingesetzt. -
Fig 2 skizziert eine Anordnung bestehend aus Druckmaschine (16), Feuchtwassertank (17), Feuchtwasser (18) mit Zirkulation (19) sowie den chemischen Komponenten K1 bis Kn (20), welche über eine Venturi - Düse (21), und über eine Pumpe (22) betrieben wird, die chemischen Komponenten K1 bis Kn über Ventile (23) ansaugt und in das Feuchtwasser (18) einspeist, wobei die Messung der Konzentrationen der chemischen Komponenten über das Mess- und Regelsystem (24) erfolgt. Die Nachspeisung (25) von Wasser mit automatischer Niveauregulierung sowie das Rührwerk (26) entsprechen den Anordnungen vonFig. 1 . - In
Fig. 3 ist in der Gesamtanordnung bestehend aus Druckmaschine (27), Feuchtwassertank (28), Feuchtwasser (29), Mess- und Regelsystem (30), Rührwerk (31), Wassereinspeisung (32) mit Füllhöhenkontrolle (33) und Feuchtwasserzirkulation (34), als zusätzliche Komponente ein statischer Mischer (35) realisiert. Das über die Pumpe (36) im Kreislauf geführte Feuchtwasser (29) wird mit den chemischen Komponenten K1 bis Kn (37), die über die Ventile (38) in den Kreislauf (39) eingespeist werden im statischen Mischer (35) durchmischt, so dass sowohl das Messsystem (30) als auch der Kreislauf (34) homogene Flüssigkeitsgemische aufweisen mit dem Ziel, dass das Gesamtsystem inFig. 3 optimal funktioniert. -
Fig. 4 stellt eine Version der Erfindung dar, die durch eine Voranmischung der chemischen Komponenten K1 bis Kn (42) über Pumpen (50a) mit einer Wasserzufuhr (41) in einem Mischbehälter (40) gekennzeichnet ist. Durch diese Anordnung wird erreicht, dass der Regelprozeß des Messsystems (43) zur jeweiligen Erreichung der Sollkonzentrationen der chemischen Komponenten K1 bis Kn (42) entscheidend verkürzt wird, so dass die Zusammensetzung des Feuchtwassers (44) im Feuchtwassertank (45) auch über kürzere Zeitintervalle immer die vorgegebenen Sollwerte aufweist. Ferner wird analog zu dem Rührwerk (46) im Feuchtwassertank auch im Vormischbehälter (40) eine Homogenisierungseinrichtung (39) verwendet. Letztere kann auch gemäßFig. 3 ein statischer Mischer sein. Um bei der Einspeisung der vorgemischten Flüssigkeit (47) in den Feuchtwassertank (45) eventuelle Füllstandsprobleme zu vermeiden, ist der Einsatz eines Sensors (48), vorzugsweise nach dem Ultraschall - Echolot - Prinzip, von großer Bedeutung. Die Umwälzung (49) des Feuchtwassers (44) über die Pumpe (49) zur Druckmaschine (50) erfolgt analog zu der in denFiguren 1 bis 3 . -
Fig. 5 zeigt eine einfache Variante gemäß der Erfindung, in welcher die chemischen Komponenten K1 bis Kn (51) über vom Messsystem (52) geregelte, kalibrierte Dosierpumpen (53) gemäß dem jeweiligen Soll-Wert der Einzelkomponente über ein Ventil (54) zudosiert werden. Die Füllstandsmessung (55) und das Rührwerk (56) ermöglichen in Kombination mit der Wasserzufuhr (57) eine homogene Mischung des Feuchtwassers (58), welches über die Umwälzpumpe (59) im Kreislauf (60) zwischen Druckmaschine (61) und Feuchtwasserkühlgerät (62) zirkuliert.
Claims (14)
- Verfahren zur direkten, selektiven Messung und Regelung der Konzentrationen der chemischen Einzelkomponenten von chemischen Additiven bzw. von chemischen Alkohol-Ersatzstoffen im Feuchtwasser des Offsetdrucks dadurch gekennzeichnet, dass die Konzentrationen der chemischen Einzelkomponenten oder Gruppen derselben kontinuierlich durch Erfassung der Schwächung elektromagnetischer Strahlung beim Durchgang durch das Feuchtwasser bestimmt werden und dass eine Nachdosierung der Einzelkomponenten bzw. Gruppen von Einzelkomponenten auf die jeweiligen Sollwerte vorgenommen wird, wobei die chemischen Einzelkomponenten / Gruppen in einem Vormischbehälter mit Wasser vorgemischt werden und wobei der Flüssigkeitsinhalt des Vormischbehälters in den Feuchtwasserbehälter überführt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass sich die verschiedenen chemischen Komponenten in einzelnen Behältern befinden und die Nachdosierung über ein Messsystem erfolgt, welches die Konzentrationen der Einzelkomponenten kontinuierlich misst und die Nachdosierung der Einzelkomponenten über eine Regelschleife vornimmt.
- Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass die Nachdosierung der chemischen Einzelkomponenten / Gruppen aus den Einzelbehältern über Pumpen erfolgt, die mit je einem Ventil in Serie geschaltet sind.
- Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass die Ansaugung der Einzelkomponenten / Gruppen in den Feuchtwasserkreislauf mit einer Bernouilli-Düse erfolgt.
- Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Durchmischung von Feuchtwasser und Einzelkomponenten / Gruppen durch einen statischen Mischer optimiert wird.
- Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass die chemischen Einzelkomponenten / Gruppen aus jedem Behälter über jeweils eine Pumpe, denen ein gemeinsames Ventil vorgeschaltet ist, dosiert werden.
- Vorrichtung zur Messung und Regelung der Konzentrationen von chemischen Einzelkomponenten oder Gruppen derselben im Feuchtwasser beim Offsetdruck, wobei die Vorrichtung sowohl Pumpen sowie ein Messsystem zur kontinuierlichen Überwachung des Feuchtwassers bezüglich der Konzentration der Einzelkomponenten umfasst, dadurch gekennzeichnet, dass die Vorrichtung ein Mess- und Regelsystem (6, 24, 30, 43, 52) die Konzentrationen der Einzelkomponenten aufgrund von selektiver Schwächung von elektromagnetischer Strahlung durch das besagte Feuchtwasser im Betriebszustand messen, aufweist und die chemischen Einzelkomponenten K1 bis Kn über Pumpen (7, 21, 36, 50, 55) nachspeist, derart, dass zu jedem Zeitpunkt die Konzentrationen der chemischen Einzelkomponenten gleich den Soll-Konzentrationen sind, wobei die chemischen Einzelkomponenten K1 bis Kn in einem Vormischbehälter (40) mit Wasser aus einer Wasserleitung (41) über Pumpen (50 a) angesetzt werden und das Gemisch (47) anschließend dem Hauptbehälter (44) zugeführt wird.
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass als Pumpe eine Bernouilli-Düse (21) verwendet wird, welche durch einen Teilstrom des Feuchtwassers (18) betrieben und das durch eine Pumpe (22) umgewälzt wird.
- Vorrichtung nach Anspruch 7 und 8, dadurch gekennzeichnet, dass die chemischen Komponenten K1 bis Kn durch einen statischen Mischer (35) mit dem Feuchtwasser (29) in einem Kreislauf (39), der durch eine Pumpe (38) angetrieben wird, homogen miteinander vermischt werden.
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die chemischen Einzelkomponenten K1 bis Kn über jeweils eine Pumpe (53), welcher ein Ventil (54) vorgeschaltet ist, in das Feuchtwasser (58) dosiert werden.
- Vorrichtung nach Anspruch 7 bis 10, dadurch gekennzeichnet, dass eine zweite Mess- und Regeleinheit (12), welche die Konzentration von Alkohol im Feuchtwasser (2, 18, 29, 44, 58) kontinuierlich misst und den verbrauchten Alkohol aus einem Alkoholreservoir (13) über eine Pumpe (14) mit vorgeschaltetem Ventil nachdosiert, vorgesehen ist.
- Vorrichtung nach Anspruch 7 bis 11, dadurch gekennzeichnet, dass der Füllstand (10, 27) mit einem Sensor (11, 28, 33, 48, 55) detektiert wird und dass die Füllhöhe durch eine Regelschleife konstant gehalten wird.
- Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass als Füllstandssensor (11, 28, 33, 48, 55) eine Ultraschalleinheit verwendet wird, die nach dem Echolot-Prinzip arbeitet.
- Vorrichtung nach Anspruch 7 bis 13, dadurch gekennzeichnet, dass das Feuchtwasser (2, 18, 29, 44, 58) durch Rührwerke (15, 26, 31, 39, 46, 58) homogenisiert wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10333625 | 2003-07-24 | ||
DE10333625A DE10333625B4 (de) | 2003-07-24 | 2003-07-24 | Verfahren und Vorrichtung zur Messung und Regelung der Konzentration von chemischen Verbindungen im Feuchtwasser beim Offsetdruck |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1500499A1 EP1500499A1 (de) | 2005-01-26 |
EP1500499B1 EP1500499B1 (de) | 2016-01-20 |
EP1500499B2 true EP1500499B2 (de) | 2023-11-22 |
Family
ID=33483038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04017479.9A Expired - Lifetime EP1500499B2 (de) | 2003-07-24 | 2004-07-23 | Verfahren und Vorrichtung zur Messung und Regelung der Konzentrationen von chemischen Verbindungen in Prozessflüssigkeiten beim Offsetdruck |
Country Status (3)
Country | Link |
---|---|
US (1) | US20050061188A1 (de) |
EP (1) | EP1500499B2 (de) |
DE (1) | DE10333625B4 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005003372B4 (de) | 2005-01-24 | 2024-04-18 | Gunther Krieg | Verfahren und Vorrichtung zum Regeln der Konzentration von Komponenten von Additiven in einer Druck- Prozessflüssigkeit |
DE102005042299A1 (de) * | 2005-09-06 | 2007-03-08 | Baldwin Germany Gmbh | Druckmaschinenreinigungsvorrichtung |
DE102005042298A1 (de) * | 2005-09-06 | 2007-03-08 | Baldwin Germany Gmbh | Reinigungsflüssigkeitsversorgungsvorrichtung für eine Druckmaschinenreinigungsvorrichtung und Messverfahren |
DE102006024789A1 (de) * | 2006-05-27 | 2007-11-29 | Man Roland Druckmaschinen Ag | Druckmaschine |
DE102006042091B4 (de) * | 2006-09-07 | 2008-04-30 | Technotrans Ag | Anlage zur Feuchtmittelaufbereitung für den Offset-Druck |
DE102007034973A1 (de) * | 2007-07-26 | 2009-01-29 | Technotrans Ag | Kontinuierliche Füllstandsüberwachung und Feuchtmittelzulauf |
CN105690978A (zh) * | 2016-01-24 | 2016-06-22 | 东莞华南印刷有限公司 | 全自动水斗液环保配料系统 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2017867A (en) * | 1930-02-05 | 1935-10-22 | Merle E Nantz | Mixing device |
US4403866A (en) * | 1982-05-07 | 1983-09-13 | E. I. Du Pont De Nemours And Company | Process for making paints |
DD219436B1 (de) | 1983-11-11 | 1988-06-15 | Polygraph Leipzig | Einrichtung zur selbsttaetigen herstellung von aus mehreren komponenten zusammengesetzten feuchtmittel in vorbestimmter konzentration fuer offsetdruckmaschinen |
US4571092A (en) * | 1984-09-06 | 1986-02-18 | Ryco Graphic Manufacturing, Inc. | Liquid mixing system |
US4864925A (en) * | 1987-09-28 | 1989-09-12 | Rockwell International Corporation | Simplified lithography using ink and water admixtures |
JPH04327940A (ja) * | 1991-04-26 | 1992-11-17 | Toyo Ink Mfg Co Ltd | 平版印刷用湿し水濃度の制御方法 |
DE4324141A1 (de) * | 1993-07-19 | 1995-03-16 | Krieg Gunther | Verfahren und Vorrichtung zur kontinuierlichen, präzisen und zuverlässigen Bestimmung und Steuerung des Isopropanol - Gehaltes in Feuchtmitteln in Druckmaschinen |
DE19546971A1 (de) * | 1995-12-15 | 1997-06-19 | Baldwin Gegenheimer Gmbh | Vorrichtung einer Druckmaschine |
US5713062A (en) * | 1996-09-26 | 1998-01-27 | Xerox Corporation | Color mixing and control system for use in an electrostatographic printing machine |
JP3843584B2 (ja) * | 1998-03-20 | 2006-11-08 | 大日本インキ化学工業株式会社 | 感熱性組成物およびそれを用いた平版印刷版原版および印刷刷版作製方法 |
US6947175B1 (en) * | 2000-07-31 | 2005-09-20 | Xerox Corporation | Method and system for adjusting color mixing due to substrate characteristics |
US6917424B2 (en) * | 2001-03-19 | 2005-07-12 | E. I. Du Pont De Nemours And Company | Process for manufacturing pigment dispersions |
US6575096B1 (en) * | 2001-11-07 | 2003-06-10 | Xerox Corporation | Computer controlled mixing of customer-selected color inks for printing machines |
US6682865B2 (en) * | 2001-11-21 | 2004-01-27 | Xerox Corporation | Hybrid electrophotographic apparatus for custom color printing |
DE102005003372B4 (de) * | 2005-01-24 | 2024-04-18 | Gunther Krieg | Verfahren und Vorrichtung zum Regeln der Konzentration von Komponenten von Additiven in einer Druck- Prozessflüssigkeit |
-
2003
- 2003-07-24 DE DE10333625A patent/DE10333625B4/de not_active Expired - Lifetime
-
2004
- 2004-07-21 US US10/895,388 patent/US20050061188A1/en not_active Abandoned
- 2004-07-23 EP EP04017479.9A patent/EP1500499B2/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20050061188A1 (en) | 2005-03-24 |
DE10333625B4 (de) | 2009-04-02 |
EP1500499A1 (de) | 2005-01-26 |
DE10333625A1 (de) | 2005-02-24 |
EP1500499B1 (de) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3888270T2 (de) | Vereinfachtes Flachdrucksystem unter Anwendung von Mischungen aus Farbe und Wasser. | |
EP0049887B1 (de) | Verfahren und Einrichtung zur Erfassung von biologisch abbaubaren und toxischen Inhaltsstoffen in wässrigen Lösungen, z.B. Abwasser | |
EP1500499B2 (de) | Verfahren und Vorrichtung zur Messung und Regelung der Konzentrationen von chemischen Verbindungen in Prozessflüssigkeiten beim Offsetdruck | |
DE102013207483A1 (de) | Systeme und Verfahren zum Inline-Mischen von Geltinte | |
DE2745741B2 (de) | Verfahren und Vorrichtung zur Regulierung des in nach dem lithographischen Verfahren arbeitenden Druckmaschinen verwendeten Feuchtwassers | |
DE102005003372B4 (de) | Verfahren und Vorrichtung zum Regeln der Konzentration von Komponenten von Additiven in einer Druck- Prozessflüssigkeit | |
EP2335941B1 (de) | Feuchtmittel Härteregelung | |
DE102008061408A1 (de) | Vorrichtung und Verfahren zur Aufbereitung von Feuchtmittel für eine Offsetdruckmaschine | |
EP0854035A1 (de) | Verfahren zum Regeln der Zusammensetzung und der Viskosität von Druckfarbe | |
DE3828325C2 (de) | ||
DE69406736T2 (de) | Schablonendruckvorrichtung | |
DE69327749T2 (de) | Verfahren zum Einstellen der Konzentration eines Entwicklers | |
DE102009053087B4 (de) | Verfahren und Vorrichtung zur Farbansatzherstellung, Computerprogrammprodukt und Verwendung | |
EP0855023B1 (de) | Verfahren und vorrichtung zur bestimmung des biologischen sauerstoffbedarfs von abwasser | |
DE932491C (de) | Feuchtwerk fuer lithographische Druckmaschinen | |
EP0932502A1 (de) | Verfahren und anlage zur bereitstellung von druckpaste oder dergleichen, insbesondere zum bedrucken von textilen warenbahnen wie teppichbahnen | |
DE102011102421A1 (de) | Verfahren zum Verdrucken von durch Polymerisation härtenden Farben in Flachdruckmaschinen | |
DE10393224T5 (de) | Feuchtmittelzuführ-Verfahren und -Vorrichtung für eine Offsetdruckmaschine | |
DE10159159B4 (de) | Dosiervorrichtung für die Feuchtmittel-Zubereitung an Druckmaschinen | |
DE2807733A1 (de) | Verfahren und vorrichtung zum messen des biologischen sauerstoffverbrauchs | |
EP1396340B1 (de) | Verfahren und Vorrichtung zur Befeuchtung des Plattenzylinders, insbesondere bei alkoholarmen oder alkoholfreiem Druck | |
DE102014014087A1 (de) | Verfahren zur Produktkodierung | |
DE10208655A1 (de) | Umkehrosmose-Anlage | |
DE102008010036B3 (de) | Nachdosierung von Zusatzstoffen | |
DE102012100505B4 (de) | Anordnung zur Förderung von Flüssigentwickler aus mindestens einem Vorratsbehälter in einen Mischbehälter bei einer Entwicklerstation eines elektrophoretischen Druckgeräts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050722 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080227 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150729 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 771511 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015109 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160421 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160520 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502004015109 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: TECHNOTRANS AG Effective date: 20161019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: BE Effective date: 20170124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160723 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: TECHNOTRANS SE Effective date: 20161019 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230711 Year of fee payment: 20 Ref country code: CH Payment date: 20230801 Year of fee payment: 20 Ref country code: AT Payment date: 20230710 Year of fee payment: 20 |
|
27A | Patent maintained in amended form |
Effective date: 20231122 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502004015109 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230724 Year of fee payment: 20 Ref country code: DE Payment date: 20230710 Year of fee payment: 20 Ref country code: BE Payment date: 20230710 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004015109 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MK Effective date: 20240723 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20240722 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 771511 Country of ref document: AT Kind code of ref document: T Effective date: 20240723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240722 |