EP1497884A2 - Pile a combustible a electrolyte solide a haute temperature, comprenant un composite constitue d'electrodes en couche mince nanoporeuses et d'un electrolyte structure - Google Patents

Pile a combustible a electrolyte solide a haute temperature, comprenant un composite constitue d'electrodes en couche mince nanoporeuses et d'un electrolyte structure

Info

Publication number
EP1497884A2
EP1497884A2 EP03722484A EP03722484A EP1497884A2 EP 1497884 A2 EP1497884 A2 EP 1497884A2 EP 03722484 A EP03722484 A EP 03722484A EP 03722484 A EP03722484 A EP 03722484A EP 1497884 A2 EP1497884 A2 EP 1497884A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
electrolyte
temperature solid
layer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03722484A
Other languages
German (de)
English (en)
Inventor
Uwe Guntow
Ellen Ivers-Tiffee
Dirk Herbstritt
André Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10218074A external-priority patent/DE10218074A1/de
Priority claimed from DE10251263A external-priority patent/DE10251263A1/de
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1497884A2 publication Critical patent/EP1497884A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
  • the invention relates to a new high-temperature solid electrolyte fuel cell (SOFC) comprising a composite of nanoporous thin-film electrodes and a structured electrolyte.
  • SOFC solid electrolyte fuel cell
  • chemical energy of a fuel with high efficiency and minimal emissions is converted directly into electrical energy.
  • gaseous fuels e.g. hydrogen or natural gas
  • air are continuously added.
  • the basic principle is achieved by the spatial separation of the reactants using an ion-conductive electrolyte that is in contact with porous electrodes (anode and cathode) on both sides.
  • an ion-conductive electrolyte that is in contact with porous electrodes (anode and cathode) on both sides.
  • the exchange of electrons between the reaction partners takes place via an external circuit, so that ideally (loss-free cell) the free reaction enthalpy is converted directly into electrical energy.
  • Efficiency and power density are coupled in real cells by the internal resistance, which is largely determined by the polarization resistances of the electrodes. By reducing internal resistance, power density and efficiency can be increased.
  • the high-temperature fuel cell usually has an electrolyte made of zirconium dioxide (Zr0 2 ), which is stabilized with yttrium oxide (Y 2 0 3 ) (YSZ).
  • Zr0 2 zirconium dioxide
  • YSZ yttrium oxide
  • a sufficient oxygen ion conductivity for efficient energy conversion is achieved for this ceramic material at technically feasible electrolyte thicknesses at a temperature between 600 and 1000 ° C.
  • the partial electrochemical reactions take place on the reaction surfaces between the porous electrodes (cathode and anode) and the electrolyte.
  • the main task of porous electrodes is to provide large reaction areas with minimal impairment of gas transport. The larger the reaction area referred to as the three-phase boundary (tbp) between the gas space, electrolyte and electrode, the more current can be transported across the interface with a given loss of polarization.
  • a typical material for the cathode is strontium-doped lanthanum manganate ((La, Sr) n0 3 , LSM).
  • a cermet (ceramic metal) made of nickel and YSZ serves as the anode.
  • the advantages of the high-temperature fuel cell are that, due to the high operating temperatures, various fuels can be converted directly, the use of expensive precious metal catalysts can be dispensed with and the working temperature between 600 and 1000 ° C is suitable for technical use of the waste heat as process steam or in coupled gas and steam turbines ,
  • IP applications e.g. DE 43 14 323,
  • the invention has for its object to provide a high-temperature fuel cell with higher long-term stability, higher current density and lower polarization resistance.
  • the invention relates to a high-temperature solid electrolyte fuel cell, comprising an electrolyte layer between two electrode layers, obtainable by a method comprising the steps: (i) applying electrolyte particles in a screen printing paste to an unsintered electrolyte substrate and sintering the structure thus produced (ii) depositing a nanoporous electrode thin layer via a sol-gel process or a MOD process on the structure obtained in step (i) and temperature treatment of the structure coated in this way.
  • This temperature treatment can take place when the fuel cell is started up immediately.
  • the necessary heating of the fuel cell leads to a sufficient electrical conductivity of the structure.
  • This step prevents the formation of undesirable pyrochlore phases.
  • a separate sintering process can thus be dispensed with in the production of the fuel cell according to the invention.
  • the high-temperature solid electrolyte fuel cell according to the invention initially has an improved interface between the electrolyte and electrode layers compared to the fuel cells mentioned in the prior art.
  • the effectively usable surface of the Electrolyte substrate enlarged by structuring to achieve an increase in the electrochemically active three-phase boundary.
  • the structured surface is then coated with a nanoporous thin-film electrode that has a layer thickness of 50-500 nm. This layer can be applied by a sol-gel process or MOD process (Metal Organic Deposition) (FIG. 1).
  • an electrolyte layer can additionally be applied to the structured screen-printed electrolyte layer using a MOD method.
  • This layer can be applied to the cathode and anode side of the electrolyte.
  • a MOD layer consisting of doped zirconium dioxide (yttrium- or scandium-doped) or doped cerium oxide (yttrium-, gadolinium- or samarium-doped)
  • negative interactions between electrode and electrolyte can be prevented and the start-up process of the cell can be shortened or even skipped ,
  • the components mentioned above are preferably used in highly pure form to produce this electrolyte boundary layer.
  • the electrolyte boundary layer is preferably made very thin and its preferred thickness is 100 to 500 nm.
  • the high-temperature solid electrolyte fuel cell according to the invention has the advantage that, by enlarging the electrochemically active interface between the electrode and the electrolyte by structuring the electrolyte surface, a lower area-specific resistance, a higher efficiency with the same area-specific performance and a lower electrical load in relation to the electrochemical active interface is achieved.
  • the last-mentioned lower electrical load leads to a lower de- gradation of the cell and a performance increase by a factor of 2 to 3.
  • single cells with modified cathode at 400 mA / cm 2 with 4 mV / 100 H show a significantly lower voltage degradation than standard cells with 35 mV / 1000 h. They have a significantly higher stability in long-term operation than cells with standard cathodes (Figure 3).
  • the structuring of the electrolyte surface is carried out either directly when drawing the film or, in the case of a cell supported by one of the electrodes or by an electrochemically inactive substrate, by screen printing or spraying.
  • a green film or a green (unsintered) electrolyte layer made of yttrium-doped zirconium oxide (from a suitable solid electrolyte) is expediently used as the electrolyte substrate or supported thin-layer electrolyte.
  • a screen printing paste is applied to it.
  • the paste has a solids content in the range of 10-30%.
  • Higher solids contents in the screen printing paste lead to a reduction in the effective electrolyte surface and also to an increase in the mean electrolyte thickness. Both ultimately lead to a reduction in the electrical performance of a SOFC.
  • Be set in the screen-printing paste from these 'sake has the solid content in the above range.
  • the powder fraction of the paste has a particle size distribution in the range from 5 to a maximum of 20 ⁇ m.
  • the structure on the interface is sintered together with the electrolyte.
  • the advantages here are that only one sintering step is required and, due to the higher sintering activity of the powder constituents in the initial state, better structure adhesion is achieved.
  • the structuring can take place on the cathode and anode side. Due to different doping in the grains or material combinations in the grains (e.g. other yttrium doping in zirconium dioxide, scandium-doped zirconium dioxide (SzSZ), gadolinium-doped cerium oxide (GCO) etc.) and in the substrate (yttrium-doped zirconium dioxide, doped Ce0 2 or scandium-doped zirconium dioxide (SzSZ) on tetragonal (TZP) zirconium dioxide) lower ohmic losses and an improvement in material stability are achieved and high-purity, cost-intensive electrolyte materials are limited to the interface.
  • doping in the grains or material combinations in the grains e.g. other yttrium doping in zirconium dioxide, scandium-doped zirconium dioxide (SzSZ), gadolinium-doped cerium oxide (GCO) etc.
  • the grain size of the particles applied as structuring can be adapted to the respective requirements.
  • the structuring can be carried out with small or large, but also with small and large grains.
  • a nanoporous electrode thin layer is deposited by means of a sol-gel method or MOD method on the structured electrolyte surface, as described above.
  • the individual propionates of La, Sr, Co and Mn are first produced. These are solids by reacting La 2 (C0 3 ) 3 , elemental strontium, Co (0H) 2 or Mn (CH 3 C00H) 2 with excess propionic acid and in the presence of propionic acid. get reanhydride.
  • this kit it is possible to set any chemical composition and any end stoichiometry of the cathode MOD layer.
  • the individual components of the kit can be stored for years. It is also possible to replace some components with other carboxylates, e.g. As acetates, or by diketonate, for example in the form of acetylacetonates, to replace or supplement them and thus expand the construction kit by further elements.
  • a coating solution of the composition La 0. 5 Sr 0, 2 3 oMn0 the precursors in the appropriate stoichiometric ratio are dissolved in propionic acid.
  • the solids content is typically between 12 and 14% by mass, based on the oxide.
  • the composition of the coating solutions can be checked using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy) and the solids content can be checked thermogravimetrically.
  • the coating solutions can be stored at room temperature for several months.
  • the layers are then applied by spinning (2000 up for 60 sec) or dipping from the liquid phase and aged for 15 min at 170, 700 and 900 ° C.
  • the layer thickness of a simple coating is 80 to 100 nm. Higher layer thicknesses can be produced by repeating the coating procedure accordingly (FIG. 4).
  • nanoporous electrode thin layers deposited by means of the sol-gel method or MOD method described above have the advantage that the continuous nanoporosity in the MOD layer enables a large number of three-phase boundaries.
  • Material systems for the anode are, for example, Ni, Ni / YSZ, Ni / doped Ce0 2 and doped Ce0 2 .
  • the stoichiometry and the chemistry of the metal oxides used, in particular the perovskites, can be changed.
  • nanoporous MOD electrode thin films are their stability under the operating conditions of the fuel cell.
  • the nanoporous MOD electrode thin layers can also be used as intermediate layers.
  • an MOD thin-film electrolyte made of 10 mol% Y 2 0 3 or Sc 2 0 3 doped Zr0 2 IYSZ / IOSCSZ
  • an electrolyte substrate made of standard materials 3 or 8 mol% Y 2 0 3 dot. Zr0 2
  • This thin-layer electrolyte which has a higher purity and ionic conductivity, can be produced on the cathode and / or anode side.
  • the MOD electrolyte layer as an intermediate layer enables the use of a high-purity but cost-intensive electrolyte material in the area of the electrode / electrolyte interface and thus leads to lower ohmic losses due to current constriction and to lower Polarization resistances due to the formation of second phases.
  • FIG. 1 shows a schematic drawing of a standard cell (left) and a cell according to the invention (right) with a modified cathode / electrolyte interface.
  • FIG. 2 shows the current / voltage (I / V) characteristic of individual cells with different cathodes at 950 ° C.
  • FIG. 3 describes the current density as a function of the time during the long-term operation of a single cell with a modified ULSM-MOD cathode for 1800 hours at 950 ° C. (degradation rate: 4 mV / 1000 h).
  • FIG. 4 shows an SEM image of a nanoporous ULSM-MOD layer on a non-structured 8YSZ electrolyte.
  • Single cells with modified ULSM cathodes are manufactured as follows:
  • 8YSZ particles are applied to 8YSZ green films (8YSZ: Tosoh TZ-8Y) using a screen printing process.
  • the particle content in the screen printing paste is adjusted so that a surface enlargement of approx. 25% is achieved.
  • This structured electrolyte is sintered at 1550 ° C for one hour.
  • a 30 - 40 ⁇ m thick Ni / 8YSZ cermet is printed on the back as an anode and sintered at 1350 ° C for 5 hours.
  • the electrolyte is then MOD layer cathode of the composition La 0. 5 Sr 0/2 oMn0 3 (ULSM) is applied by spinning a simple and sintered for 15 min each at 170, 700 and 900 ° C on the structured side.
  • the layer thickness of this layer is approximately 80 nm.
  • a 30-40 ⁇ m thick ULSM layer is printed on this MOD cathode by screen printing.
  • Single cells with modified LSC cathodes are manufactured as follows:
  • 8YSZ particles are applied to 8YSZ green foils (8YSZ: Tosoh TZ-8Y) using a screen printing process and sintered for one hour at 1550 ° C.
  • a 30 - 40 ⁇ m thick Ni / 8YSZ cermet is printed on the back as anode and sintered for 5 hours at 1300 ° C.
  • a simple cathode MOD layer with the composition La 0 , 5 ⁇ Sr 0 , 5 ⁇ Co0 3 (LSC) is applied to the structured side of the electrolyte by spinning and sintered for 15 minutes at 170, 700 and 900 ° C.
  • the layer thickness of this layer is approximately 100 nm.
  • a 30-40 ⁇ m thick ULSM layer is printed on this MOD cathode by screen printing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une nouvelle pile à combustible à électrolyte solide à haute température comprenant une couche d'électrolyte prise entre deux couches d'électrode. Cette nouvelle pile à combustion s'obtient selon un procédé qui consiste (i) à appliquer des particules d'électrolyte dans une pâte sérigraphique sur un substrat d'électrolyte non fritté puis à fritter la structure ainsi obtenue, (ii) à déposer une couche mince d'électrode nanoporeuse par un procédé sol-gel ou un procédé MOD sur la structure obtenue à l'étape (i) puis à soumettre la structure, ainsi enduite, à un traitement thermique. Cette pile à combustible présente éventuellement une couche interfaciale appliquée par un procédé MOD sur la couche d'électrolyte structurée sérigraphiée.
EP03722484A 2002-04-23 2003-04-15 Pile a combustible a electrolyte solide a haute temperature, comprenant un composite constitue d'electrodes en couche mince nanoporeuses et d'un electrolyte structure Withdrawn EP1497884A2 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10218074A DE10218074A1 (de) 2002-04-23 2002-04-23 Hochtemperatur-Festelektrolyt-Brennstoffzelle umfassend einen Verbund aus nanoporösen Dünnschichtelektroden und einem strukturiertem Elektrolyt
DE10218074 2002-04-23
DE10251263 2002-11-04
DE10251263A DE10251263A1 (de) 2002-11-04 2002-11-04 Hochtemperatur-Festelektrolyt-Brennstoffzelle umfassend einen Verbund aus nanoporösen Dünnschichtelektroden und einem strukturiertem Elektrolyt
PCT/EP2003/003936 WO2003092089A2 (fr) 2002-04-23 2003-04-15 Pile a combustible a electrolyte solide a haute temperature, comprenant un composite constitue d'electrodes en couche mince nanoporeuses et d'un electrolyte structure

Publications (1)

Publication Number Publication Date
EP1497884A2 true EP1497884A2 (fr) 2005-01-19

Family

ID=29271564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03722484A Withdrawn EP1497884A2 (fr) 2002-04-23 2003-04-15 Pile a combustible a electrolyte solide a haute temperature, comprenant un composite constitue d'electrodes en couche mince nanoporeuses et d'un electrolyte structure

Country Status (7)

Country Link
US (1) US20060057455A1 (fr)
EP (1) EP1497884A2 (fr)
JP (1) JP2005531885A (fr)
AU (1) AU2003229677B2 (fr)
CA (1) CA2483815A1 (fr)
NO (1) NO20045079L (fr)
WO (1) WO2003092089A2 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715135B2 (ja) * 2004-09-08 2011-07-06 トヨタ自動車株式会社 燃料電池の製造方法および燃料電池
JP2006278017A (ja) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The 固体酸化物形燃料電池用セル及びその製造方法並びに固体酸化物形燃料電池
JP5107509B2 (ja) * 2005-06-02 2012-12-26 日本電信電話株式会社 固体酸化物形燃料電池の製造方法
JP5252362B2 (ja) * 2005-12-28 2013-07-31 独立行政法人産業技術総合研究所 セラミック電極
US7691284B2 (en) * 2006-08-29 2010-04-06 The Boeing Company Tunable variable emissivity materials and methods for controlling the temperature of spacecraft using tunable variable emissivity materials
JP5028063B2 (ja) * 2006-10-16 2012-09-19 行政院原子能委員會核能研究所 ナノチャネル複合薄膜を具えた陽極構造及びその大気プラズマ溶射法の製造方法
JP2010524166A (ja) * 2007-04-02 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気化学的エネルギー源、及び斯様な電気化学的エネルギー源を具備する電子デバイス
US20090297923A1 (en) * 2008-05-28 2009-12-03 Monika Backhaus-Ricoult Sol-gel derived high performance catalyst thin films for sensors, oxygen separation devices, and solid oxide fuel cells
KR101075422B1 (ko) * 2008-10-14 2011-10-24 한국과학기술연구원 금속 산화물 박막 구조체를 제조하는 방법 및 이에 의해 제조된 금속 산화물 박막 구조체를 포함하는 고체산화물 연료전지
GB2521193A (en) * 2013-12-12 2015-06-17 Nokia Technologies Oy Electronic apparatus and associated methods
JP6366054B2 (ja) * 2014-04-07 2018-08-01 一般財団法人電力中央研究所 複合層構造体の製造方法及び固体酸化物形燃料電池のカソード製造方法
JP6372742B2 (ja) * 2014-06-06 2018-08-15 国立大学法人山梨大学 固体酸化物形セル及びその製造方法
WO2016144067A1 (fr) 2015-03-06 2016-09-15 주식회사 엘지화학 Procédé de fabrication d'électrode, électrode fabriquée à l'aide de ce procédé, structure d'électrode comprenant l'électrode, pile à combustible ou batterie d'accumulateurs métal-air, module de batterie comprenant une pile à combustible ou batterie, et composition de fabrication d'électrode
CN110508818A (zh) * 2019-09-16 2019-11-29 东华大学 一种复杂形状硬质合金零件增材—减材综合制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3922673A1 (de) * 1989-07-10 1991-01-24 Siemens Ag Hochtemperaturbrennstoffzelle
JPH04190564A (ja) * 1990-11-22 1992-07-08 Tokyo Gas Co Ltd 固体電解質型燃料電池の製造方法
JPH05190180A (ja) * 1992-01-13 1993-07-30 Ngk Insulators Ltd 固体電解質型燃料電池の空気電極体、その製造方法及び固体電解質型燃料電池の製造方法
DE4314323C2 (de) * 1993-04-30 1998-01-22 Siemens Ag Hochtemperaturbrennstoffzelle mit verbesserter Festelektrolyt/Elektroden-Grenzfläche und Verfahren zur Herstellung eines Mehrschichtaufbaus mit verbesserter Festelektrolyt/Elektroden-Grenzfläche
JP3323029B2 (ja) * 1995-03-31 2002-09-09 京セラ株式会社 燃料電池セル
US5543239A (en) * 1995-04-19 1996-08-06 Electric Power Research Institute Electrode design for solid state devices, fuel cells and sensors
US5670270A (en) * 1995-11-16 1997-09-23 The Dow Chemical Company Electrode structure for solid state electrochemical devices
US5753385A (en) * 1995-12-12 1998-05-19 Regents Of The University Of California Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
ATE191815T1 (de) * 1996-02-02 2000-04-15 Sulzer Hexis Ag Hochtemperatur-brennstoffzelle mit einem dünnfilm-elektrolyten
DE19908213B4 (de) * 1998-07-27 2005-03-10 Mitsubishi Heavy Ind Ltd Basisrohr für eine Brennstoffzelle
JP3230156B2 (ja) * 1999-01-06 2001-11-19 三菱マテリアル株式会社 固体酸化物型燃料電池の電極とその製造方法
CN100385696C (zh) * 1999-01-12 2008-04-30 微涂技术股份有限公司 外延薄膜
JP2001256986A (ja) * 2000-03-10 2001-09-21 Mitsuru Sano 固体電解質型燃料電池
US6645656B1 (en) * 2000-03-24 2003-11-11 University Of Houston Thin film solid oxide fuel cell and method for forming
DE10026941A1 (de) * 2000-05-30 2001-12-06 Creavis Tech & Innovation Gmbh Verfahren zur selektiven elektrochemischen Oxidation von organischen Verbindungen
US6558831B1 (en) * 2000-08-18 2003-05-06 Hybrid Power Generation Systems, Llc Integrated SOFC
US6495279B1 (en) * 2001-10-02 2002-12-17 Ford Global Technologies, Inc. Ultrahigh power density miniaturized solid-oxide fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03092089A2 *

Also Published As

Publication number Publication date
AU2003229677A1 (en) 2003-11-10
NO20045079L (no) 2004-11-22
JP2005531885A (ja) 2005-10-20
CA2483815A1 (fr) 2003-11-06
WO2003092089A2 (fr) 2003-11-06
WO2003092089A3 (fr) 2004-10-21
US20060057455A1 (en) 2006-03-16
AU2003229677B2 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
Dwivedi Solid oxide fuel cell: Materials for anode, cathode and electrolyte
US6558831B1 (en) Integrated SOFC
DE60103347T2 (de) Festoxidbrennstoffzelle mit unterstütztem elektrolytischem Film
EP2036152B1 (fr) Matériau composite céramique destiné à une anode d'une pile à combustible haute température
JP5591526B2 (ja) 固体酸化物セル及び固体酸化物セルスタック
DE60120227T2 (de) Leitfähiges material mit mindestens zwei phasen
AU2001284851A1 (en) Integrated sofc
KR20090023255A (ko) 세리아 및 스테인리스 스틸 기재 전극
JP2009110934A5 (fr)
US11936080B2 (en) Alternative anode material for solid oxide fuel cells
WO2003092089A2 (fr) Pile a combustible a electrolyte solide a haute temperature, comprenant un composite constitue d'electrodes en couche mince nanoporeuses et d'un electrolyte structure
EP1271683A2 (fr) Pile à combustible
EP3309882A1 (fr) Composition de cathode, cathode et pile à combustible la comprenant
US20060280864A1 (en) Method for electrode deposition for solid oxide fuel cells
DE69108160T2 (de) Brennstoffelektroden für Festoxid-Brennstoffzellen und Verfahren zu ihrer Herstellung.
DE102013007637B4 (de) Kathoden-Elektrolyt-Anodeneinheit von Hochtemperatur-Brennstoffzellen
US7468218B2 (en) Composite solid oxide fuel cell anode based on ceria and strontium titanate
KR102261142B1 (ko) 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법
EP2669984B1 (fr) Système de couches d'anode pour applications electrochimiques et son procédé de fabrication
CN107646151A (zh) 氧化物颗粒、包含其的阴极和包含其的燃料电池
DE10218074A1 (de) Hochtemperatur-Festelektrolyt-Brennstoffzelle umfassend einen Verbund aus nanoporösen Dünnschichtelektroden und einem strukturiertem Elektrolyt
DE10251263A1 (de) Hochtemperatur-Festelektrolyt-Brennstoffzelle umfassend einen Verbund aus nanoporösen Dünnschichtelektroden und einem strukturiertem Elektrolyt
WO2013045230A1 (fr) Procédé de fabrication d'une pile à combustible à électrolyte solide
WO2018096022A1 (fr) Anode pour cellule électrochimique et procédé de fabrication d'une cellule électrochimique munie de ladite anode
JP5296516B2 (ja) 固体酸化物形燃料電池

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040927

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060922

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120112