EP1492895B1 - Produits en alliages al-zn-mg-cu - Google Patents

Produits en alliages al-zn-mg-cu Download PDF

Info

Publication number
EP1492895B1
EP1492895B1 EP03740568A EP03740568A EP1492895B1 EP 1492895 B1 EP1492895 B1 EP 1492895B1 EP 03740568 A EP03740568 A EP 03740568A EP 03740568 A EP03740568 A EP 03740568A EP 1492895 B1 EP1492895 B1 EP 1492895B1
Authority
EP
European Patent Office
Prior art keywords
alloy
elements
product according
mpa
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03740568A
Other languages
German (de)
English (en)
Other versions
EP1492895A2 (fr
Inventor
Timothy Warner
Christophe Sigli
Bernard Bes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Alcan Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=28052141&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1492895(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcan Rhenalu SAS filed Critical Alcan Rhenalu SAS
Publication of EP1492895A2 publication Critical patent/EP1492895A2/fr
Application granted granted Critical
Publication of EP1492895B1 publication Critical patent/EP1492895B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present invention relates to alloys of Al-Zn-Mg-Cu type with compromised static mechanical characteristics - improved damage tolerance, with a Zn content greater than 8.3%, as well as structural elements for aeronautical construction incorporating half wrought products made from these alloys.
  • Al-Zn-Mg-Cu alloys (belonging to the family of 7xxx alloys) are commonly used in aircraft construction, and in particular in the construction of civil aircraft wings.
  • alloy designations well known to the man of business, correspond to those of The Aluminum Association.
  • alloys 7075 and 7175 (zinc content between 5.1 and 6.1% by weight), 7050 (zinc content between 5.7 and 6.7%). , 7150 (zinc content between 5.9 and 6.9%) and 7049 (zinc content between 7.2 and 8.2%). They have a high yield strength, good toughness and good resistance to stress corrosion and exfoliating corrosion. More recently, it has been found that for certain applications, the use of an alloy with a higher zinc content may have advantages because it makes it possible to further increase the yield strength. Alloys 7349 and 7449 contain between 7.5 and 8.7% zinc. of the Wrought alloys richer in zinc have been described in the literature, but do not appear to be used in aeronautical construction.
  • the patent US5,560,789 discloses an alloy of composition Zn 10.7%, Mg 2.84%, Cu 0.92% which is processed by spinning. These alloys are not optimized specifically for a compromise static mechanical characteristics - toughness.
  • the patent US5,221,377 discloses several Al-Zn-Mg-Cu alloys with a zinc content up to 11.4%. These alloys, as will be explained below, do not meet the objectives of the present invention either.
  • the problem to which the present invention attempts to respond is therefore to propose new wrought products of high zinc content Al-Zn-Mg-Cu type alloy, greater than 8.3%, which are characterized by an improved compromise between toughness. and static mechanical characteristics (ultimate strength, yield strength), which have sufficient corrosion resistance and high elongation, and which can be industrially manufactured under conditions of reliability compatible with the high demands of the industry aeronautics.
  • the Applicant has found that the problem can be solved by adjusting the concentration of the Zn, Cu and Mg addition elements and certain impurities (especially Fe and Si) in a fine way, and possibly adding other elements.
  • a third object of the present invention is a structural element for aircraft construction which incorporates one of said products, including a structural element used in the construction of the wing boxes of civil aircraft, such as a wing extrados.
  • the figure 1 schematically shows a wing box of an airplane.
  • the landmarks are: 1, 4 extrados 2 intrados 3 spar 5 Stiffener 6 Box height 7 Width of the box
  • the figure 2 represents the mechanical resistance - damage tolerance compromise in an R p0.2 - K app diagram for the alloys of Example 3.
  • the figure 3 represents the mechanical resistance - damage tolerance compromise in an R p0.2 - K app diagram for the alloys of Example 5.
  • the K IC toughness in planar deformations was determined according to the ASTM E399 standard.
  • the K app parameter was measured according to ASTM E561 standard on CT type specimens of W width equal to 127 mm.
  • the term "spun product” includes so-called “stretched” products, i.e., products that are made by spinning followed by stretching.
  • the problem is solved by finely adjusting the contents of the alloying elements and certain impurities, and by adding a controlled concentration of certain other elements to the composition of the alloy.
  • the alloys according to the invention must contain at least 0.5% magnesium, since it is not possible to obtain satisfactory static mechanical characteristics with a lower magnesium content. According to the findings of the applicant, with a zinc content of less than 8.3%, one does not obtain a result that is better than those obtained with known alloys.
  • the zinc content is greater than 9.0%, and even more preferably greater than 9.5%. However, it is necessary to respect certain relationships between certain elements, as explained later.
  • the zinc content is between 9.0 and 11.0%. In any case, we do not want to exceed a zinc content of about 14%, because beyond this value, regardless of the magnesium and copper content, the results are not satisfactory.
  • the addition of at least 0.3% copper improves corrosion resistance. But to ensure a satisfactory dissolution, the Cu content should not exceed about 4%, and the Mg content should not exceed about 4.5%; maximum contents of 3.0% are preferred for each of these two elements.
  • the alloy must be sufficiently loaded with addition elements capable of precipitating during a maturation or a treatment of income, in order to be able to present interesting static mechanical characteristics.
  • addition elements capable of precipitating during a maturation or a treatment of income, in order to be able to present interesting static mechanical characteristics.
  • the content of these additive elements must fulfill the condition Mg + Cu> 6.4 0.4 Zn.
  • anti-recrystallizing elements More specifically, for alloys with more than 9.5% zinc, at least one element selected from the group comprising the elements Zr, Sc, Hf, La, Ti, Y, Ce, Nd, Eu, Gd, must be added. Tb, Dy, Ho, Er, Yb, Cr, Mn with, for each element present, a concentration of between 0.02 and 0.7%. It is preferable that the concentration of all the elements of said group does not exceed 1.5%.
  • zirconium with a content of between 0.03% and 0.15%, and in addition at least an element selected from the group comprising the elements Sc, Hf, La, Ti, Y, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Yb, with, for each element present, a concentration of between 0, 02 and 0.7%.
  • the plaintiff has found that for the said anti-recrystallizing elements, it is advantageous, irrespective of the zinc content, not to exceed the following maximum levels: Cr 0.40; Mn 0.60; Sc 0.50; Zr 0.15; Hf 0.60; Ti, 0.15; This 0.35 and preferably 0.30; Nd 0, 35 and preferably 0.30; Eu 0.35 and preferably 0.30; Gd 0.35; Tb 0.35; Ho, 0.40; Dy 0.40; Er 0.40; Yb 0.40; Y, 0.20; 0.35 and preferably 0.30.
  • the total of these elements does not exceed 1.5%.
  • Another technical characteristic is related to the need to be able to industrially produce wrought products under conditions of reliability compatible with the high requirements of the aeronautical industry, as well as under satisfactory economic conditions. It is therefore necessary to choose a chemical composition which minimizes the occurrence of cracks or cracks during the solidification of the plates or billets, said cracks or cracks being unacceptable defects leading to the scrapping of said plates or billets.
  • the Applicant has found in numerous tests that this occurrence of cracks or splits was much more likely when the 7000 alloys complete their solidification below 470 ° C.
  • Another technical feature of the invention is related to the need to minimize as much as possible the amount of insoluble precipitates after the homogenization and dissolution treatments, as this reduces the toughness; for this, we choose a content of Mg, Cu and Zn such that Mg + Cu ⁇ 7.7 - 0.4 Zn.
  • Said precipitates are typically ternary or quaternary phases Al-Zn-Mg-Cu type S, M or T.
  • the Applicant has found that the incorporation of a small amount, between 0.02 and 0.15% per element, of one or more elements selected from the group consisting of Sn, Cd, Ag, Ge, In allows to improve the response of the alloy to the treatment of income, and has beneficial effects on the mechanical strength and on the corrosion resistance of the product.
  • a content of between 0.05 and 0.10% is preferred.
  • money is the preferred element.
  • the products according to the invention are in particular rolled or spun products. They can be used advantageously for the manufacture of structural elements in aeronautical construction.
  • a preferred application of the products according to the invention is the application as a structural element in a wing box, and in particular in its upper part (extrados) which is first dimensioned in compressive strength.
  • the figure 1 schematically shows a section of the wing box of a civil aircraft.
  • a wing box typically has a length of between 10 m and 40 m and a width of between 2 m and 10 m; its height varies according to the place on the wing and is typically between 0.2 m and 2 m.
  • the box consists of the extrados (1) and the intrados (2).
  • the extrados (1) of a civil aircraft consists of a strong plate of a typical thickness during delivery between 15 mm and 60 mm, and stiffeners (5) which can be made from profiles and attached to the skin using mechanical fasteners (such as rivets or bolts) or welding techniques (such as arc welding, laser beam welding, or friction welding).
  • the extrados structure can also be obtained by assembling other aluminum alloy semi-finished products. It can also be obtained by integral machining of heavy plates or profiles, that is to say without assembly.
  • the length of the airplane wings may exceed 20 m and even 30 m, which requires the use of sheets or profiles longer than 20 m or 30 m, to minimize the assembly of the structural elements.
  • the manufacture of sheets or profiles of such a size in highly charged Al-Zn-Mg-Cu alloys requires excellent control of the casting, rolling and thermal and thermomechanical processes, and requires an adaptation of the chemical composition. according to the invention.
  • the products according to the invention can be used as structural elements in aeronautical construction.
  • a metallurgical state of T6 type for example T651
  • T7 state One can also consider the use in the T7 state.
  • Rolled, extruded or forged semi-finished products can be produced which have a very interesting compromise of properties, particularly for the aeronautical construction: a yield strength R p0.2 (L) greater than 630 MPa and even greater than 640 MPa, a toughness K IC (LT) greater than 23 MPa ⁇ m and even greater than 25 MPa ⁇ m, an elongation at break A% higher than 8% and even greater than 10%, while maintaining the resistance to exfoliating corrosion and stress corrosion at a level at least comparable to that of known Al-Zn-Mg-Cu alloys.
  • L yield strength
  • LT toughness K IC
  • the product according to the invention is particularly suitable for use as a structural element in a wing box, for example in the form of an extrados or a stiffener.
  • the advantages of the products according to the invention allow in particular their use as structural elements of very large aircraft, including civil aircraft, and especially in the form of rolled and spun products.
  • these structural elements are made from sheets with a thickness greater than 60 mm.
  • the addition of one or more anti-recrystallizing elements is particularly advantageous; such an effect is also observed in the case of heavy plates.
  • the added anti-recrystallizing element is scandium, a content of between 0.02 and 0.50% is advantageous.
  • Adding a small amount of money or some other element such as Cd, Ge, In, Sn improves income efficiency, and positive effects on the mechanical strength and stress corrosion resistance of the product.
  • the alloy A is a 7449 alloy according to the state of the art
  • the alloys B and C are alloys with a high Zn content, not respecting the technical characteristics of the invention
  • the alloy D is an alloy according to the invention. 'invention.
  • the alloy according to the invention has a better compromise static characteristics / toughness than the alloy 7449 according to the prior art (R p0.2 in tension and in higher compression and K IC similar), and that the alloys with a high zinc content which do not respect the technical characteristics of the invention are less efficient.
  • the alloy E is a 7449 alloy
  • the alloy F is an alloy according to the invention containing an addition of 0.083% Scandium.
  • Table 4 The static mechanical characteristics obtained in the T651 state are presented in Table 4 below. Toughness has been characterized using the Kahn indicator, well known to those skilled in the art and described in particular in the article by JG Kaufman and AH Knoll, "Kahn-Type Tear Tests and Crack Toughness of Aluminum Sheet", published in Materials Research & Standards, pp. 151-155, in 1964 .
  • the K app parameter was measured according to ASTM E561 standard on CT type specimens of W width equal to 127 mm.
  • the parameter K app is the stress intensity factor calculated using the maximum load measured during the test and the initial crack length (at the end of pre-cracking) in the formulas indicated by the standard. cited. These indicators are conventionally used to measure the toughness in plane stresses. The results of the tenacity measurements made during this test are shown in Table 5 below.
  • the alloy R is a 7449 alloy
  • the alloy S is an alloy according to the invention containing an addition of 0.078% of scandium.
  • the alloys G1, G2, G3 and G4 are outside the present invention, as well as the alloys B and C, described in Example 1.
  • the alloy D is an alloy according to the invention described in Example 1. All of these alloys showed satisfactory flowability during the tests, i.e. splits or cracks were not observed in the casting tests on an industrial scale.
  • the alloys G5, G6, G7, G8 are outside the present invention, and the alloy G9 is a 7060 alloy according to the state of the art; these alloys showed slits during casting tests.
  • the difficulties arising during the casting of these alloys do not necessarily make the wrought products obtained from these plates unsuitable for use, but are the cause of additional costs because the implementation (that is to say the quantity of salable metal relative to the quantity of metal fired, a parameter which is directly related to the quantity of scraped plates) will be greater than for the alloys corresponding to the preferred domain of the invention.
  • the propensity of these alloys for the formation of slits during their solidification makes it very difficult to make the casting process reliable in the context of a quality assurance program by statistical process control.
  • Rolling plates were developed by a process similar to that described in Example 1.
  • the chemical composition is given in Table 10.
  • it was prepared by hot rolling. 25 mm thick sheets. They were dissolved for 2 hours at a temperature of between 472 and 480 ° C. (these temperatures are determined by preliminary calorimetry tests on the raw rolling sheets, a procedure that is conventional for those skilled in the art), quenched by spraying. and tractionned with a permanent elongation of between 1.5 and 2%. Then the sheets were subjected to a tempering treatment at a temperature of 135 ° C.
  • Example 3 we have represented the mechanical resistance - damage tolerance compromise in an R p0.2 - K app diagram. This diagram is provided at figure 3 for the alloys of Example 5. With an equal zinc content, and an equal scandium content, the sheet K with a lower Mg / Cu ratio shows significantly better toughness values than the N sheet.
  • Spinning billets 291 mm in diameter with an alloy according to the invention were prepared by vertical casting, the composition of which is given in Table 12.
  • Table 12 Alloy Zn mg Cu Cr mn Yes Fe Zr Ti Mg / Cu T 9.43 1.96 1.67 - 0.01 0.05 0.07 0.12 0.03 1.17
  • the geometry of the profiles comprises a sole (thickness 15 mm, width 152 mm), a rib (thickness 15 mm, height 38 mm) and a reinforcement (thickness 23 mm, width 76 mm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Of Metal (AREA)
  • Conductive Materials (AREA)
  • Forging (AREA)
  • Contacts (AREA)

Description

    Domaine technique de l'invention
  • La présente invention concerne les alliages de type Al-Zn-Mg-Cu à compromis caractéristiques mécaniques statiques - tolérance aux dommages amélioré, avec une teneur en Zn supérieure à 8,3 %, ainsi que des éléments structuraux pour construction aéronautique incorporant des demi-produits corroyés élaborés à partir de ces alliages.
  • Etat de la technique
  • Les alliages de type Al-Zn-Mg-Cu (appartenant à la famille des alliages 7xxx) sont utilisés couramment en construction aéronautique, et notamment dans la construction des ailes d'avions civils. Pour les extrados des ailes on utilise par exemple une peau en tôles fortes en alliages 7150, 7055, 7449, et éventuellement des raidisseurs en profilés en alliages 7150, 7055, ou 7449. Ces désignations d'alliages, bien connues de l'homme du métier, correspondent à celles de l'organisation The Aluminum Association.
  • Certains de ces alliages sont connus depuis des décennies, comme par exemple les alliages 7075 et 7175 (teneur en zinc entre 5,1 et 6,1 % en poids), 7050 (teneur en zinc entre 5,7 et 6,7 %), 7150 (teneur en zinc entre 5,9 et 6,9 %) et 7049 (teneur en zinc entre 7,2 et 8,2 %). Ils présentent une haute limite d'élasticité, ainsi qu'une bonne ténacité et une bonne résistance à la corrosion sous contrainte et à la corrosion exfoliante. Plus récemment, il est apparu que pour certaines applications, l'utilisation d'un alliage à plus haute teneur en zinc peut présenter des avantages car cela permet d'augmenter encore la limite d'élasticité. Les alliages 7349 et 7449 contiennent entre 7,5 et 8,7 % de zinc. Des alliages de corroyage plus riches en zinc ont été décrits dans la littérature, mais ne semblent pas être utilisés en construction aéronautique.
    Le brevet US 5,560,789 (Pechiney Recherche) divulgue un alliage de composition Zn 10,7 %, Mg 2,84 %, Cu 0,92 % qui est transformé par filage. Ces alliages ne sont pas optimisés spécifiquement pour un compromis caractéristiques mécaniques statiques - ténacité.
    Le brevet US 5,221,377 (Aluminum Company of America) divulgue plusieurs alliages de type Al-Zn-Mg-Cu avec une teneur en zinc jusqu'à 11,4 %. Ces alliages, comme cela sera expliqué ci-dessous, ne répondent pas non plus aux objectifs de la présente invention.
  • Par ailleurs, il a été proposé d'utiliser des alliages Al-Zn-Mg-Cu à haute teneur en zinc pour la fabrication de corps creux destinés à résister à des pressions élevées, comme par exemple des bouteilles de gaz comprimés. La demande de brevet européen EP 020 282 A1 (Société Métallurgique de Gerzat) divulgue des alliages avec une teneur en zinc comprise entre 7,6 % et 9,5 %. La demande de brevet européen EP 081 441 A1 (Société Métallurgique de Gerzat) divulgue un procédé d'obtention de telles bouteilles. La demande de brevet européenne EP 257 167 A1 (Société Métallurgique de Gerzat) constate qu'aucun des alliages de type Al-Zn-Mg-Cu connus ne permet de satisfaire de manière sure et reproductible les exigences techniques sévères imposées par cette application spécifique ; elle propose de s'orienter vers une teneur en zinc moins élevée, à savoir comprise entre 6,25 % et 8,0 %.
    L'enseignement de ces brevets est spécifique à la problématique des bouteilles de gaz comprimés, notamment en ce qui concerne la maximisation de la pression d'éclatement de ces bouteilles, et ne peut être transféré à d'autres produits corroyés.
  • D'une façon générale, dans les alliages de type Al-Zn-Mg-Cu, une forte teneur en zinc, mais aussi en Mg et Cu est nécessaire pour obtenir de bonnes caractéristiques mécaniques statiques (limite d'élasticité, limite à rupture). Mais il est également bien connu (voir par exemple US 5,221,377 ) que lorsque l'on augmente la teneur en zinc dans un alliage de la famille 7xxx au-delà d'environ 7 à 8 %, on rencontre des problèmes liés à une résistance à la corrosion exfoliante et à la corrosion sous contrainte insuffisante. D'une façon plus générale, on sait que les alliages Al-Zn-Mg-Cu les plus chargés sont susceptibles de poser des problèmes en corrosion. Ces problèmes sont en général résolus à l'aide de traitements thermiques ou thermomécaniques particuliers, notamment en poussant le traitement de revenu au-delà du pic, par exemple lors d'un traitement de type T7. Mais ces traitements peuvent alors entraîner une baisse des caractéristiques mécaniques statiques. Autrement dit, pour un niveau minimal de résistance à la corrosion visé, l'optimisation d'un alliage de type Al-Zn-Mg-Cu doit rechercher un compromis entre les caractéristiques mécaniques statiques (limite d'élasticité Rp0,2, limite à rupture Rm, allongement à rupture A) et les caractéristiques de tolérance au dommage (ténacité, vitesse de propagation de fissures etc.). Selon le niveau minimal de résistance à la corrosion visé, on utilise un état proche du pic revenu (états T6), qui en général offre un compromis ténacité - Rp0,2 privilégiant les caractéristiques mécaniques statiques, ou on pousse le revenu au delà du pic (états T7), en recherchant un compromis privilégiant la ténacité. Ces états métallurgiques sont définis dans la norme EN 515.
  • Problème posé
  • Le problème auquel essaye de répondre la présente invention est donc de proposer de nouveaux produits corroyés en alliage de type AI-Zn-Mg-Cu à forte teneur en zinc, supérieure à 8,3 %, qui se caractérisent par un compromis amélioré entre ténacité et caractéristiques mécaniques statiques (limite à rupture, limite d'élasticité), qui présentent une résistance suffisante à la corrosion et un allongement à rupture élevé, et qui peuvent être fabriqués industriellement dans des conditions de fiabilité compatibles avec les hautes exigences de l'industrie aéronautique.
  • Objets de l'invention
  • La demanderesse a trouvé que le problème peut être résolu en ajustant la concentration des éléments d'addition Zn, Cu et Mg et de certaines impuretés (notamment Fe et Si) d'une façon fine, et en ajoutant éventuellement d'autres éléments.
  • Un premier objet de la présente invention est constitué par un produit laminé, filé ou forgé en alliage Al-Zn-Mg-Cu, caractérisé en ce qu'il contient (en pourcent massique) :
    1. a) Zn 8,3 - 14,0 Cu 0,3 - 4,0 et préférentiellement 0,3 - 3,0
      Mg 0,5 - 4,5 et préférentiellement 0,5 - 3,0
      Zr 0,03 - 0,15 Fe + Si < 0,25
    2. b) au moins un élément sélectionné dans le groupe composé de Sc, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, la teneur de chacun desdits éléments, s'il est sélectionné, étant comprise entre 0,02 et 0,7%,
    3. c) le reste aluminium et impuretés inévitables,
      et en qu'il satisfait aux conditions
    4. d) Mg / Cu < 2,4 et
    5. e) (7,7 - 0,4 Zn) > (Cu + Mg) > (6,4 - 0,4 Zn).
  • Un deuxième objet de la présente invention est constitué par un produit laminé, filé ou forgé en alliage Al-Zn-Mg-Cu, caractérisé en ce qu'il contient (en pourcent massique) :
    1. a) Zn 9,5 - 14,0 Cu 0,3 - 4,0 et préférentiellement 0,3 - 3,0
      Mg 0,5 - 4,5 et préférentiellement 0,5 - 3,0
      Fe + Si < 0,25
    2. b) au moins un élément sélectionné dans le groupe composé de Zr, Sc, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, Cr, Mn, la teneur de chacun desdits éléments, s'il est sélectionné, étant comprise entre 0,02 et 0,7 % ,
    3. c) le reste aluminium et impuretés inévitables,
      et en ce qu'il satisfait les conditions
    4. d) Mg / Cu < 2,4 et
    5. e) (7,7 - 0,4 Zn) > (Cu + Mg) > (6,4 - 0,4 Zn).
  • Un troisième objet de la présente invention est un élément structural pour construction aéronautique qui incorpore l'un des dits produits, et notamment un élément structural utilisé dans la construction des caissons de voilure d'avions civils, tel qu'un extrados d'aile.
  • Description des figures
  • La figure 1 montre schématiquement un caisson de voilure d'un avion.
  • Les repères sont les suivants :
    1, 4 Extrados
    2 Intrados
    3 Longeron
    5 Raidisseur
    6 Hauteur du caisson
    7 Largeur du caisson
  • La figure 2 représente le compromis résistance mécanique - tolérance aux dommages dans un diagramme Rp0,2- Kapp pour les alliages de l'exemple 3.
    La figure 3 représente le compromis résistance mécanique - tolérance aux dommages dans un diagramme Rp0,2 - Kapp pour les alliages de l'exemple 5.
  • Description détaillée de l'invention
  • Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Par conséquent, dans une expression mathématique, « 0,4 Zn » signifie : 0,4 fois la teneur en zinc, exprimée en pourcent massique ; cela s'applique mutatis mutandis aux autres éléments chimiques. La désignation des alliages suit les règles de The Aluminum Association. Les états métallurgiques sont définis dans la norme européenne EN 515. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1. Les caractéristiques mécaniques statiques en compression ont été déterminées selon la norme ASTM E9. La ténacité KIC en déformations planes a été déterminée selon la norme ASTM E399. Le paramètre Kapp a été mesuré selon la norme ASTM E561 sur des éprouvettes de type CT de largeur W égale à 127 mm. Le terme « produit filé » inclut les produits dits « étirés », c'est-à-dire des produits qui sont élaborés par filage suivi d'un étirage.
  • La demanderesse, au cours d'un certain nombre d'études préparatoires, est arrivée à la conclusion qu'un nouveau matériau présentant un compromis significativement meilleur devrait en tout état de cause présenter une teneur en zinc suffisante, typiquement supérieure à environ 8,3 %. Cette condition n'est toutefois pas suffisante.
  • Selon l'invention, le problème est résolu moyennant un ajustement fin des teneurs des éléments d'alliages et de certaines impuretés, et en ajoutant une concentration contrôlée de certains autres éléments à la composition de l'alliage.
  • La présente invention s'applique aux alliages Al-Zn-Mg-Cu contenant :
    • Zn 8,3-14,0   Cu 0,3-4,0   Mg 0,5-4,5
    ainsi que certains autres éléments spécifiés ci-dessous, et le reste étant l'aluminium avec ses impuretés inévitables.
  • Les alliages selon l'invention doivent contenir au moins 0,5 % de magnésium, car il n'est pas possible d'obtenir des caractéristiques mécaniques statiques satisfaisantes avec une teneur moins élevée en magnésium. Selon les constatations de la demanderesse, avec une teneur en zinc inférieure à 8,3 %, on n'obtient pas de résultat qui soit meilleur que ceux obtenus avec les alliages connus. De façon préférée, la teneur en zinc est supérieure à 9,0 %, et encore plus préférentiellement supérieure à 9,5 %. Toutefois, il est nécessaire de respecter certaines relations entre certains éléments, comme exposé par la suite. Dans un autre mode de réalisation avantageux, la teneur en zinc est comprise entre 9,0 et 11,0 %. En tout état de cause, on ne souhaite pas dépasser une teneur en zinc d'environ 14 %, car au-delà de cette valeur, quelle que soit la teneur en magnésium et cuivre, les résultats ne sont pas satisfaisants.
  • L'ajout d'au moins 0,3 % de cuivre améliore la résistance à la corrosion. Mais pour assurer une mise en solution satisfaisante, la teneur en Cu ne devrait pas dépasser environ 4 %, et la teneur en Mg ne devrait pas dépasser environ 4,5 % ; des teneurs maximales de 3,0 % sont préférées pour chacun de ces deux éléments.
  • La demanderesse a trouvé que pour résoudre le problème posé, il faut tenir compte, dans un alliage de type Al-Zn-Mg-Cu, de plusieurs caractéristiques techniques :
  • Tout d'abord, l'alliage doit être suffisamment chargé en éléments d'addition susceptibles de précipiter au cours d'une maturation ou d'un traitement de revenu, pour pouvoir présenter des caractéristiques mécaniques statiques intéressantes. Pour cela, selon les constatations de la demanderesse, en plus des limites minimales et maximales pour les teneurs en zinc, magnésium et cuivre indiquées ci-dessus, la teneur en ces éléments d'addition doit remplir la condition Mg + Cu > 6,4 - 0,4 Zn.
  • Par ailleurs, la demanderesse a constaté que pour obtenir un niveau de ténacité suffisant, il faut que Mg / Cu < 2,4 , préférentiellement < 2,0 et encore plus préférentiellement < 1,7.
  • Pour renforcer cet effet, il faut ajouter une teneur suffisante en éléments dits anti-recristallisants. Plus précisément, pour des alliages avec plus de 9,5 % de zinc, on doit ajouter au moins un élément sélectionné dans le groupe comprenant les éléments Zr, Sc, Hf, La, Ti, Y, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Yb, Cr, Mn avec, pour chaque élément présent, une concentration comprise entre 0,02 et 0,7 %. Il est préférable que la concentration de l'ensemble des éléments dudit groupe ne dépasse pas 1,5 %.
  • Ces éléments anti-recristallisants, sous forme de fins précipités formés lors de traitements thermiques ou thermomécaniques, bloquent la recristallisation. Toutefois, la demanderesse a trouvé que lorsque l'alliage est fortement chargé en zinc (Zn > 9,5 %) il faudra éviter une précipitation trop abondante lors de la trempe du produit corroyé. Un compromis doit donc être trouvé quant à la teneur en éléments anti-recristallisants qui influencent la précipitation au cours de la trempe.
  • Selon l'invention, pour des alliages avec une teneur en zinc comprise entre 8,3 % et 9,5 %, il faut ajouter du zirconium avec une teneur comprise entre 0,03 % et 0,15 %, et en plus au moins un élément sélectionné dans le groupe comprenant les éléments Sc, Hf, La, Ti, Y, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Yb, avec, pour chaque élément présent, une concentration comprise entre 0,02 et 0,7 %. La demanderesse a constaté que pour lesdits éléments anti-recristallisants, il est avantageux, quelle que soit la teneur en zinc, de ne pas dépasser les teneurs maximales suivantes : Cr 0,40 ; Mn 0,60 ; Sc 0,50 ; Zr 0,15 ; Hf 0,60 ; Ti 0,15 ; Ce 0,35 et préférentiellement 0,30 ; Nd 0, 35 et préférentiellement 0,30 ; Eu 0,35 et préférentiellement 0,30 ; Gd 0,35 ; Tb 0,35 ; Ho 0,40 ; Dy 0,40 ; Er 0,40 ; Yb 0,40 ; Y 0,20 ; La 0,35 et préférentiellement 0,30. Avantageusement, le total de ces éléments ne dépasse pas 1,5 %.
  • Une autre caractéristique technique est liée au besoin de pouvoir produire industriellement des produits corroyés dans des conditions de fiabilité compatibles avec les hautes exigences de l'industrie aéronautique, ainsi que dans des conditions économiques satisfaisantes. Il faut donc choisir une composition chimique qui minimise la survenance de criques ou fentes lors de la solidification des plaques ou billettes, lesditès criques ou fentes étant des défauts rédhibitoires conduisant à la mise au rebut desdites plaques ou billettes. La demanderesse a constaté au cours de nombreux essais que cette survenance de criques ou fentes était beaucoup plus probable lorsque les alliages 7000 terminaient leur solidification en dessous de 470°C. Pour réduire significativement la probabilité de survenance de criques ou fentes à la coulée jusqu'à un niveau industriellement acceptable, il vaut mieux choisir une composition chimique telle que

            Mg > 1.95 + 0,5 (Cu - 2,3) + 0,16 (Zn - 6) + 1,9 (Si - 0,04).

    Ce critère est appelé dans le cadre de la présente invention le « critère de coulabilité ». Les alliages élaborés selon cette variante de l'invention terminent leur solidification à une température comprise entre 473 °C et 478 °C, et permettent d'atteindre une fiabilité industrielle des procédés d'élaboration du métal (c'est-à-dire une constance de la qualité des plaques coulées) compatible avec les hautes exigences de l'industrie aéronautique.
  • Une autre caractéristique technique de l'invention est liée au besoin de minimiser autant que faire se peut la quantité de précipités insolubles après les traitements d'homogénéisation et de mise en solution, car cela diminue la ténacité ; pour cela, on choisit une teneur en Mg, Cu et Zn telle que Mg + Cu < 7,7 - 0,4 Zn. Les dits précipités sont typiquement des phases ternaires ou quaternaires Al-Zn-Mg-Cu de type S, M ou T.
  • Et finalement, la demanderesse a constaté que l'incorporation d'une faible quantité, comprise entre 0,02 et 0,15 % par élément, d'un ou plusieurs éléments choisis dans le groupe composé de Sn, Cd, Ag, Ge, In permet d'améliorer la réponse de l'alliage au traitement de revenu, et a des effets bénéfiques sur la résistance mécanique et sur la résistance à la corrosion du produit. Une teneur comprise entre 0,05 et 0,10 % est préférée. Parmi ces éléments, l'argent est l'élément préféré.
  • Les produits selon l'invention sont notamment des produits laminés ou filés. Ils peuvent être utilisés avantageusement pour la fabrication d'éléments structuraux en construction aéronautique. Une application préférée des produits selon l'invention est l'application comme élément structural dans un caisson de voilure, et en particulier dans sa partie supérieure (extrados) qui est en premier lieu dimensionnée en résistance à la compression. La figure 1 montre schématiquement une section du caisson de voilure d'un avion civil. Un tel caisson de voilure a typiquement une longueur comprise entre 10 m et 40 m et une largeur comprise entre 2 m et 10 m ; sa hauteur varie en fonction de l'endroit sur l'aile et se situe typiquement entre 0,2 m et 2 m. Le caisson est constitué de l'extrados (1) et de l'intrados (2). L'extrados (1) d'un avion civil est constitué d'une tôle forte d'une épaisseur typique lors de la livraison comprise entre 15 mm et 60 mm, et de raidisseurs (5) qui peuvent être fabriqués à base de profilés et fixés sur la peau à l'aide de moyens de fixation mécaniques (tels que rivets ou boulons) ou par des techniques de soudage (tels que le soudage à l'arc, le soudage par faisceau laser, ou le soudage par friction). La structure d'extrados (peau - raidisseurs) peut être obtenue également par assemblage d'autres semi-produits en alliage d'aluminium. Elle peut être obtenue également par usinage intégral de tôles fortes ou de profilés, c'est-à-dire sans assemblage.
  • D'une façon générale, afin de réduire autant que possible le poids d'une telle structure, il est souhaitable de réduire le nombre de moyens de fixations (rivets, boulons etc) ou de joints de soudure. Par conséquent, il est souhaitable d'utiliser des tôles ou produits filés dont les dimensions sont aussi proches que possible de celles du caisson de voilure fini. Ce besoin d'utiliser des demi-produits de très grandes dimensions, par exemple d'une largeur comprise entre 0,5 m et 4 m, d'une épaisseur comprise entre 10 mm et 60 mm ou même 100 mm, et d'une longueur comprise entre 6 m et plus que 20 m, limite le choix des matériaux utilisables. Plus particulièrement, dans le cas des produits laminés, il faut pouvoir obtenir ces tôles fortes de très grande dimensions avec une fiabilité industrielle suffisante. Pour des avions de très grande taille, la longueur des ailes d'avion peut dépasser 20 m et même 30 m, ce qui nécessite l'emploi de tôles ou de profilés d'une longueur supérieure à 20 m ou 30 m, afin de minimiser l'assemblage des éléments structuraux. La fabrication de tôles ou profilés d'une telle taille en alliages Al-Zn-Mg-Cu très chargés nécessite une excellente maîtrise des procédés de coulée, de laminage et de traitement thermique et thermo-mécanique, et requiert une adaptation de la composition chimique selon l'invention.
  • Il est à noter que les profilés de faible épaisseur ou largeur, bénéficient en plus d'une augmentation considérable des caractéristiques mécaniques statiques dues à l'effet de presse bien connu de l'homme de l'art. Cet effet n'est pas observé pour des profilés épais.
  • Les produits selon l'invention peuvent être utilisés comme éléments structuraux en construction aéronautique. Pour l'application comme extrados, on préfère un état métallurgique de type T6, par exemple T651. On peut également envisager l'utilisation à l'état T7.
  • On peut fabriquer des demi-produits laminés, filés ou forgés qui présentent un compromis de propriétés très intéressant notamment pour la construction aéronautique : une limite d'élasticité Rp0,2 (L) supérieure à 630 MPa et même supérieure à 640 MPa, une ténacité KIC(L-T) supérieure à 23 MPa√m et même supérieure à 25 MPa√m, un allongement à rupture A% supérieur à 8 % et même supérieur à 10 %, tout en gardant la résistance à la corrosion exfoliante et à la corrosion sous contrainte à un niveau au moins comparable à celui des alliages Al-Zn-Mg-Cu connus. Ces produits peuvent avoir une valeur de Kapp(L-T), mesurée selon ASTM E561 à T/2 sur une éprouvette de largeur W = 406 mm, d'au moins égal à 70 MPa√m, et de préférence d'au moins égal à 75 MPa√m.
  • Le produit selon l'invention est particulièrement adapté à l'utilisation comme élément structural dans un caisson de voilure, par exemple sous forme d'un extrados ou d'un raidisseur. Les avantages des produits selon l'invention permettent en particulier leur utilisation comme éléments structuraux d'avions de très grandes dimensions, notamment d'avions civil, et notamment sous forme de produits laminés et filés. Dans une application particulièrement avantageuse, ces éléments structuraux sont fabriqués à partir de tôles d'épaisseur supérieure à 60 mm.
  • Dans le cas d'un profilé, l'ajout d'un ou plusieurs éléments anti-recristallisants, tels que le scandium, est particulièrement avantageux ; un tel effet est aussi observé dans le cas de tôles fortes. Lorsque l'élément anti-recristallisant ajouté est le scandium, une teneur comprise entre 0,02 et 0,50 % est avantageuse. L'ajout d'une faible quantité d'argent ou d'un autre élément tel que Cd, Ge, In, Sn (de l'ordre de 0,05 à 0,10 %) améliore l'efficacité du revenu, et a des effets positifs sur la résistance mécanique et la tenue à la corrosion sous contrainte du produit.
  • L'invention sera mieux comprise à l'aide des exemples, qui n'ont toutefois pas de caractère limitatif.
  • Exemples Exemple 1 :
  • On a préparé plusieurs alliages Al-Zn-Mg-Cu par coulée semi-continue de plaques, et on leur a fait subir une gamme de transformation classique, comportant une étape d'homogénéisation, suivie d'un laminage à chaud, d'une étape de mise en solution suivie d'une trempe et d'opérations de détensionnement, et enfin d'un revenu à l'état T651. On a ainsi obtenu des tôles d'épaisseur 20 mm à l'état T651 1
    Les compositions des tôles composant cet essai sont indiquées dans le tableau 1. Tableau 1
    Alliage Zn Mg Cu Fe Si Zr Ti Mn Sc
    A 8,40 2,11 1,83 0,09 0,06 0,11 0,017 0 0
    B 10,27 3,2 0,71 0,08 0,03 0,11 0,017 0 0
    C 10,08 2,69 0,95 0,08 0,03 0,11 0,014 0 0
    D 9,97 2,14 1,32 0,09 0,03 0,11 0,017 0 0
  • L'alliage A est un alliage 7449 selon l'état de la technique, les alliages B et C sont des alliages à haute teneur en Zn, ne respectant pas les caractéristiques techniques de l'invention, l'alliage D est un alliage selon l'invention.
  • On a déterminé sur des éprouvettes prélevées à mi-épaisseur les caractéristiques mécaniques statiques en traction selon EN 10002-1, la limite d'élasticité en compression Rp0,2 C (une propriété dimensionnante pour l'extrados) selon ASTM E9, et la ténacité KIC en déformations planes selon ASTM E399. Les résultats sont indiqués dans le tableau 2 : Tableau 2
    Alliage Traction sens Long Traction sens TL Compression sens L Ténacité L-T
    Rp0,2 MPa Rm MPa A % Rp0,2 MPa Rm MPa A % Rp0,2 C MPa KIC MPa√m
    A 627 665 14,7 566 623 13,6 618 31,9
    B 716 726,5 6,5 640 696 5,2 703 21,1
    C 700 717 9,2 629 676 8,1 675 21
    D 665 685 12,2 608 649 11 656 26,8
  • Il apparaît clairement que l'alliage suivant l'invention présente un meilleur compromis caractéristiques statiques / ténacité que l'alliage 7449 selon l'art antérieur (Rp0.2 en traction et en compression plus élevé et KIC similaire), et que les alliages à haute teneur en zinc ne respectant pas les caractéristiques techniques de l'invention sont moins performants.
  • Exemple 2 :
  • On a coulé 2 alliages dont la composition chimique est indiquée dans le tableau 3, et on les a transformés en utilisant une gamme similaire à celle de l'exemple 1, à ceci près que les tôles obtenues sont d'épaisseur 6 mm. Tableau 3
    Alliage Zn Mg Cu Fe Si Zr Ti Mn Sc
    E 8,42 2,09 1,9 0,07 0,02 0,10 0,016 0 0
    F 8,34 2,11 1,84 0,07 0,03 0,11 0,018 0 0,083
  • L'alliage E est un alliage 7449, et l'alliage F est un alliage selon l'invention, contenant un ajout de 0,083 % de Scandium.
    Les caractéristiques mécaniques statiques obtenues à l'état T651 sont présentées dans le tableau 4 ci-dessous. La ténacité a été caractérisée en utilisant l'indicateur Kahn, bien connu de l'homme du métier et décrit notamment dans l'article de J.G. Kaufman et A.H. Knoll, « Kahn-Type Tear Tests and Crack Toughness of Aluminum Sheet », paru dans Materials Research & Standards, pp. 151-155, en 1964. Le paramètre Kapp a été mesuré selon la norme ASTM E561 sur des éprouvettes de type CT de largeur W égale à 127 mm. Le paramètre Kapp (« K apparent ») est le facteur d'intensité de contrainte calculé en utilisant la charge maximale mesurée durant l'essai et la longueur de fissure initiale (en fin de pré-fissuration) dans les formules indiquées par la norme citée. Ces indicateurs sont utilisés classiquement pour mesurer la ténacité en contraintes planes. Les résultats des mesures de ténacité effectuées lors de cet essai sont présentés dans le tableau 5 ci-après. Tableau 4
    Alliage Traction sens Long Traction sens TL
    Rp0,2 MPa Rm MPa A % Rp0,2 MPa Rm MPa A %
    E 615 649 13,7 588 646 13,3
    F 648 688 12,5 605 652 15,0
    Tableau 5
    Alliage Indicateur Kahn (L-T) MPa Indicateur Kahn (T-L) MPa Kapp (L-T) MPa√m Kapp (T-L) MPa√m
    E 231 212 58 37
    F 236 218 57 36
  • Les résultats des tableaux 4 et 5 montrent clairement l'amélioration des caractéristiques mécaniques statiques de l'alliage objet de l'invention pour une ténacité semblable, voire meilleure que celle de l'alliage sans scandium.
  • Exemple 3 :
  • On a coulé 2 alliages dont la composition chimique est indiquée dans le tableau 6, et on les a transformés en utilisant une gamme similaire à celle de l'exemple 1, à ceci près que les tôles obtenues sont d'épaisseurs 25 mm et 10 mm et que deux états de revenu ont été élaborés: l'état T651 (traitement de 48h à 120°C) défini comme le pic de résistance mécanique en traction et l'état T7x51 (24h 120°C + 17h 150C). Tableau 6
    Alliage Zn Mg Cu Fe Si Zr Ti Mn Sc
    R 8,3 2,13 1,85 0,030 0,032 0,11 0,017 0 0
    S 8,6 2,1 1,9 0,07 0,03 0,11 0,017 0 0,078
  • L'alliage R est un alliage 7449, et l'alliage S est un alliage selon l'invention, contenant un ajout de 0,078 % de scandium.
  • Les caractéristiques mécaniques statiques obtenues aux états T651 et T7951 et mesurées à mi-épaisseur sont présentées dans le tableau 7 ci-dessous.
    La ténacité en déformations planes KIC a été déterminée selon la norme ASTM E399, à mi-épaisseur. La ténacité en contraintes planes a été caractérisée à mi-épaisseur en utilisant le paramètre Kapp, mesuré selon la norme ASTM E561 sur des éprouvettes de type CCT de largeur W égale à 406 mm. Les résultats des mesures de ténacité effectuées lors de cet essai sont présentés dans le tableau 8 ci-après. Tableau 7
    Alliage Epaisseur Etat Traction sens Long Traction sens TL
    Rp0,2 MPa Rm MPa A % Rp0,2 MPa Rm MPa A %
    S-10 mm T651 632 655 7,9 612 649 9,6
    T7x51 598 619 8,6 601 622 7,5
    S-25 mm T651 647 681 12,8 606 649 13,2
    T7x51 611 644 12,4 588 622 11,9
    R-25 mm T651 601 637 10,4 584 620 10,2
    T7x51 584 622 10,9 565 597 10,8
    Tableau 8
    Alliage Epaisseur Etat KIC (L-T) MPa√m KIC (T-L) MPa√m Kapp (L-T) MPa√m
    S-10mm T651 Non mesurée 72,8
    T7x51 73,7
    S-25mm T651 24 24 81,6
    T7x51 25 22 72,6
    R-25mm T651 231 212 56,1
    T7x51 236 218 84,4
  • On a représenté sur la figure 2 le compromis résistance mécanique - tolérance aux dommages dans un diagramme Rp0,2 - Kapp pour les alliages de l'exemple 3. Il y apparaît que l'alliage de référence « R » présente le compromis habituel (la ténacité diminue lorsque la résistance mécanique augmente). A l'inverse, et de façon surprenante, l'alliage selon l'invention « S » présente une décroissance très faible (épaisseur 10 mm) voire une augmentation nette (épaisseur 25 mm) de la ténacité lorsque la résistance mécanique croît. Par ailleurs, l'alliage selon l'invention présente des niveaux de résistance mécanique nettement supérieurs à ceux de l'alliage de référence et une ténacité comparable voire supérieure.
  • Exemple 4 :
  • On a coulé plusieurs alliages dont la composition est indiquée dans le tableau 9, avec une teneur en Si approximativement égale à 0.04 % pour tous les alliages.
  • Les alliages G1, G2, G3 et G4 sont en dehors de la présente invention, ainsi que les alliages B et C, décrits dans l'exemple 1. L'alliage D est un alliage selon l'invention décrit dans l'exemple 1. Tous ces alliages ont présenté lors des essais une coulabilité satisfaisante, c'est-à-dire que l'on n'a pas observé des fentes ou criques lors des essais de coulée à l'échelle industrielle.
  • Les alliages G5, G6, G7, G8 sont en dehors de la présente invention, et l'alliage G9 est un alliage 7060 selon l'état de la technique ; ces alliages ont présenté des fentes lors des essais de coulée.
    Les difficultés apparaissant lors de la coulée de ces alliages ne rendent pas nécessairement les produits corroyés obtenus à partir de ces plaques impropres à l'utilisation, mais sont à l'origine de surcoûts car la mise en oeuvre (c'est-à-dire la quantité de métal vendable par rapport à la quantité de métal enfourné, un paramètre qui est directement lié à la quantité de plaques rebutées) sera plus grande que pour les alliages correspondant au domaine préférentiel de l'invention. De plus, la propension de ces alliages à la formation de fentes lors de leur solidification rend très difficile la fiabilisation du procédé de coulée dans le cadre d'un programme d'assurance de la qualité par la maîtrise statistique des procédés.
  • On constate que tous les alliages 7xxx présentant une propension très prononcée à la formation de fentes ou criques à la coulée ont une teneur en magnésium inférieure à la teneur critique en magnésium ; cette valeur critique a été obtenue en calculant la valeur limite en Mg définie par le critère de coulabilité. Tableau 9
    Alliage Zn (%) Mg (%) Cu (%) Criquabilité observée Teneur critique en Mg (%) Mg > Mg critique
    01 7.5 3 3 Faible 2.54 Oui
    G2 8.5 3 2,3 Faible 2.35 Oui
    G3 7.5 3 1.6 Faible 1.84 Oui
    G4 6.5 3 2.3 Faible 2.03 Oui
    B 10,27 3,2 0,71 Faible 1,82 Oui
    C 10,08 2,69 0,95 Faible 1,91 Oui
    D 9,97 2,14 1,32 Faible 2,08 Oui
    G5 8.5 2.3 3 Forte 2.7 Non
    G6 6.5 2.3 3 Forte 2.38 Non
    G7 8.5 1.6 2.3 Forte 2.35 Non
    G8 7.5 1.6 1.6 Forte 1.84 Non
    G9 7 1,65 2,1 Forte 2,01 Non
  • Exemple 5 :
  • On a élaboré des plaques de laminage par un procédé similaire à celui décrit dans l'exemple 1. La composition chimique est donnée dans le Tableau 10. Par un procédé similaire à celui décrit dans l'exemple 1, on a préparé par laminage à chaud des tôles d'une épaisseur de 25 mm. Elles ont été mises en solution pendant 2 heures à une température comprise entre 472 et 480 °C (ces températures sont déterminées par des essais préliminaires de calorimétrie sur les tôles brutes de laminage, procédure classique pour l'homme du métier), trempées par aspersion et tractionnées avec un allongement permanent compris entre 1,5 et 2 %. Ensuite, les tôles ont été soumises à un traitement de revenu à une température de 135 °C. Tableau 10
    Alliage Zn Mg Cu Fe Si Zr Ti Mn Sc Mg/Cu
    M 9,94 3,02 0,78 0,04 0,03 0,10 0,063 0 0 3,87
    N 10,00 2,72 0,77 0,06 0,04 0,10 0,055 0 0,10 3,53
    K 9,90 2,03 1,55 0,03 0,03 0,10 0,05 0 0,10 1,31
  • On a mesuré à mi-épaisseur les caractéristiques mécaniques statiques en traction et en compression ainsi que la ténacité Kapp comme spécifié dans les exemples précédents. Tableau 11
    Alliage Durée du revenu h Rp0,2 MPa Rm MPa A % Rp0,2 C MPa Kapp (L-T) MPa√m
    Traction sens L Compression sens L
    N 14,5 692 699 9,7 669 52,7
    N 35 657 672 11,2 634 61,9
    M 14,5 676 690 10,0 658 33,4
    M 35 648 658 9,9 635 47,0
    K 12,5 Non Mesuré 645 79,4
    K 14,5 671 689 11,7 649 76,2
    K 35 659 672 11,4 648 84,8
    K 120 Non mesuré 567 115,0
  • On a vérifié que pour les tôles N, M et K, le revenu de 14,5 h conduit à l'état T651. Pour des revenus significativement plus longs, les paramètres Rp0,2, Rp0,2 C et Rm se dégradent alors que la ténacité en contraintes planes Kapp augmente.
  • Comme dans l'exemple 3, nous avons représenté le compromis résistance mécanique - tolérance aux dommages dans un diagramme Rp0,2 - Kapp. Ce diagramme est fourni à la figure 3 pour les alliages de l'exemple 5.
    A teneur en zinc égale, et a teneur en scandium égale, la tôle K avec un rapport Mg/Cu plus faible montre des valeurs de ténacité significativement meilleures que la tôle N.
  • Exemple 6 :
  • On a préparé par coulée verticale des billettes de filage de diamètre 291 mm avec un alliage selon l'invention dont la composition est donnée dans le tableau 12. Tableau 12
    Alliage Zn Mg Cu Cr Mn Si Fe Zr Ti Mg/Cu
    T 9,43 1,96 1,67 - 0,01 0,05 0,07 0,12 0,03 1,17
  • Les billettes homogénéisées (7h 460°C + 23h 466°C) et écroûtées ont été extrudées, la température du conteneur et de l'outil étant supérieure à 400°C, et la vitesse de filage étant inférieure à 0,50 m/min. La géométrie des profilés comprend une semelle (épaisseur 15 mm, largeur 152 mm), une nervure (épaisseur 15 mm, hauteur 38 mm) et un renfort (épaisseur 23 mm, largeur 76 mm).
  • Après mise en solution (4h 472°C au palier), trempe et traction contrôlée, les profilés ont subi un traitement de revenu T7A511 (6h 120°C + 7h 135°C) et T7B511 (6h 120°C + 28h 135°C) ; le lettres A et B symbolisent ici ces différentes conditions de revenu.
  • Des profilés de géométrie similaire en alliage 7449, dont la composition précise ne correspond pas à la présente invention, ont également été élaborés à titre de référence à l'état T79511.
  • Les résultats de la caractérisation de ces profilés sont donnés dans le tableau 13 ci-après . (la lettre X indique que la caractéristique n'a pas été déterminée pour ce produit). Tableau 13
    Alliage (Position) Etat Caractéristiques Statiques Sens L Ténacité
    Traction Compression KIC KIC
    Rp0,2 Rm A Rp0,2 C (L-T) (T-L)
    MPa MPa % MPa MPa√m MPa√m
    7449 (Renfort) T79511 625 650 13,0 645 30 20
    T (Renfort) T7A511 694 707 11,5 712 46,8 20,4
    T (Semelle) 669 689 12,3 665 34,2 22,1
    T (Nervure) 664 678 11,6 659 X X
    T (Renfort) T7B511 681 685 10,6 707 37,0 20,3
    T (Semelle) 663 670 11,0 676 29,0 22,8
    T (Nervure) 661 666 10,2 666 X X
  • Il apparaît clairement que l'alliage « T » selon l'invention présente un bien meilleur compromis résistance mécanique - ténacité.

Claims (25)

  1. Produit laminé, filé ou forgé en alliage Al-Zn-Mg-Cu, caractérisé en ce qu'il contient (en pourcents massiques) :
    a) Zn 8,3 - 14,0 Cu 0,3-4,0 Mg 0,5-4,5
    Zr 0,03-0,14 Fe+Si<0,25
    b) au moins un élément sélectionné dans le groupe composé de Sc, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, la teneur de chacun desdit éléments, s'il est sélectionné, étant comprise entre 0,02 et 0,7 %,
    c) le reste aluminium et impuretés inévitables,
    et en qu'il satisfait aux conditions
    d) Mg / Cu < 2,4 et
    e) (7,7 - 0,4 Zn) > (Cu + Mg) > (6,4 - 0,4 Zn).
  2. Produit selon la revendication 1, caractérisé en ce que sa teneur maximale des éléments suivants est de (en pourcents massiques) :
    Sc 0,50 ; Hf 0,60 ; La 0,35 et préférentiellement 0,30 ; Ti 0,15 ;
    Ce 0,35 et préférentiellement 0,30 ; Nd 0,35 et préférentiellement 0,30 ;
    Eu 0,35 et préférentiellement 0,30 ; Gd 0,35 ; Tb 0,35 ; Dy 0,40 ; Ho 0,40 ; Er 0,40 ; Yb 0,40 ; Y 0,20.
  3. Produit selon la revendication 1 ou 2, caractérisé en ce que la concentration massique des éléments Sc, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, Cr, Mn ne dépasse pas 1,5 % au total.
  4. Produit laminé, filé ou forgé en alliage Al-Zn-Mg-Cu, caractérisé en ce qu'il contient (en pourcents massiques) :
    a) Zn 9,5 - 14,0 Cu 0,3 - 4,0 Mg 0,5 - 4,5
    Fe + Si < 0,25
    b) au moins un élément sélectionné dans le groupe composé de Zr, Sc, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, Cr, Mn, la teneur de chacun desdit éléments, s'il est sélectionné, étant comprise entre 0,02 et 0,7 % ,
    c) le reste aluminium et impuretés inévitables,
    et en ce qu'il satisfait les conditions
    d) Mg / Cu < 2,4 et
    e) (7,7 - 0,4 Zn) > (Cu + Mg) > (6,4 - 0,4 Zn).
  5. Produit selon la revendication 4, caractérisé en ce que sa teneur maximale des éléments suivants est de (en pourcents massiques) :
    Sc 0,50 ; Hf 0,60 ; La 0,35 et préférentiellement 0,30 ; Ti 0,15 ;
    Ce 0,35 et préférentiellement 0,30 ; Nd 0, 35 et préférentiellement 0,30 ;
    Eu 0,35 et préférentiellement 0,30 ; Gd 0,35 ; Tb 0,35 ; Dy 0,40 ; Ho 0,40 ; Er 0,40 ; Yb 0,40 ; Y 0,20 ; Cr 0,40 ; Mn 0,60.
  6. Produit selon la revendication 4 ou 5, caractérisé en ce que la concentration massique des éléments Zr, Sc, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, Cr, Mn ne dépasse pas 1,5 % au total.
  7. Produit selon une quelconque des revendications 1 à 4, caractérisé en ce que le rapport Mg / Cu est inférieur à 2,0 et préférentiellement inférieur à 1,7.
  8. Produit selon une quelconque des revendications 1 à 7, caractérisé en ce que Zn > 9,0 % et préférentiellement Zn > 9,5 %.
  9. Produit selon une quelconque des revendications 1 à 8, caractérisé en ce que la teneur en Cu et / ou la teneur en Mn ne dépassent pas 3,0 % chacun.
  10. Produit selon une quelconque des revendications 1 à 9, caractérisé en ce que la teneur en Zn est comprise entre 9,0 et 11,0 %.
  11. Produit selon une quelconque des revendications 1 à 10, caractérisé en ce que sa teneur en magnésium, cuivre, zinc et silicium est choisie de telle manière que

            Mg > 1.95 + 0,5 (Cu - 2,3) + 0,16 (Zn - 6) + 1,9 (Si - 0,04).

  12. Produit selon une quelconque des revendications 1 à 11, caractérisé en ce qu'il contient en plus au moins un élément sélectionné dans le groupe composé de Cd, Ge, In, Sn, Ag, à raison de 0,05 à 0,15 %, et préférentiellement 0,05 à 0,10 %, pour chaque élément sélectionné.
  13. Produit selon une quelconque des revendications 1 à 12, caractérisé en ce que la limite d'élasticité Rp0,2(L) > 630 MPa, et de préférence > 640 MPa.
  14. Produit selon une quelconque des revendications 1 à 13, caractérise en ce que KIC(L-T) > 23 MPa√m.
  15. Produit selon une quelconque des revendications 1 à 14, caractérisé en ce que Kapp(L-T) mesurée selon ASTM E561 à mi-épaisseur sur une éprouvette de largeur W = 406 mm est au moins égal à 70 MPa√m, et de préférence au moins égal à 75 MPa√m.
  16. Produit selon la revendication 15, caractérisé en ce que KIC(L-T) > 25 MPa√m.
  17. Produit selon l'une quelconque des revendications 1 à 16, caractérisé en ce que l'allongement à rupture A%(L) > 8%.
  18. Elément structural pour construction aéronautique, incorporant au moins un produit laminé ou filé en alliage Al-Zn-Mg-Cu, caractérisé en ce que ledit produit laminé ou filé contient (en pourcent massique) :
    a) Zn 8,3 - 14,0 Cu 0,3 - 4,0 et préférentiellement 0,3 - 3,0
    Mg 0,5 - 4,5 et préférentiellement 0,5 - 3,0
    Zr 0,03 - 0,15 Fe + Si < 0,15
    b) au moins un élément sélectionné dans le groupe composé de Sc, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, la teneur de chacun des dit éléments, s'il est sélectionné, étant comprise entre 0,02 et 0,7 %,
    c) le reste aluminium et impuretés inévitables,
    et en que ledit produit laminé ou filé satisfait aux conditions
    d) Mg / Cu < 2,4 et préférentiellement < 1,7 ; et
    e) (7,7 - 0,4 Zn) > (Cu + Mg) > (6,4 - 0,4 Zn).
  19. Caisson de voilure, dans lequel l'extrados est fabriqué à partir d'une tôle en alliage Al-Zn-Mg-Cu, caractérisé en ce que ladite tôle (en pourcent massique) :
    a) Zn 8,3 - 14,0 Cu 0,3 - 4,0 et préférentiellement 0,3 - 3,0
    Mg 0,5 - 4,5 et préférentiellement 0,5 - 3,0
    Zr 0,03-0,15 Fe+Si<0,15
    b) au moins un élément sélectionné dans le groupe composé de Sc, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, la teneur de chacun des dit éléments, s'il est sélectionné, étant comprise entre 0,02 et 0,7 %,
    c) le reste aluminium et impuretés inévitables,
    et en que ladite tôle satisfait aux conditions
    d) Mg / Cu < 2,4 et préférentiellement < 1,7 ; et
    e) (7,7 - 0,4 Zn) > (Cu + Mg) > (6,4 - 0,4 Zn).
  20. Caisson de voilure selon la revendication 19, caractérisé en ce que ledit extrados est fabriqué à par usinage intégral à partir d'une tôle d'une épaisseur supérieure à 60 mm.
  21. Caisson de voilure selon une des revendications 19 ou 20, caractérisé en ce que ladite tôle contient entre 0,02 et 0,50 % de scandium.
  22. Caisson de voilure, dans lequel au moins un des raidisseurs est fabriqué à partir d'un produit filé en alliage Al-Zn-Mg-Cu, caractérisé en ce que ledit produit filé contient (en pourcents massiques) :
    a) Zn 8,3 - 14,0 Cu 0,3 - 4,0 et préférentiellement 0,3 - 3,0
    Mg 0,5 - 4,5 et préférentiellement 0,5 - 3,0
    Zr 0,03-0,15 Fe+Si<0,15
    b) au moins un élément sélectionné dans le groupe composé de Sc, Hf, La, Ti, Ce,
    Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, la teneur de chacun des dit éléments, s'il est sélectionné, étant comprise entre 0,02 et 0,7 %,
    c) le reste aluminium et impuretés inévitables,
    et en que ladite tôle satisfait aux conditions
    d) Mg / Cu < 2,4
    e) (7,7 - 0,4 Zn) > (Cu + Mg) > (6,4 - 0,4 Zn).
  23. Caisson de voilure selon la revendication 22, caractérisé en ce que le dit produit filé contient entre 0,02 et 0,50 % de scandium.
  24. Caisson de voilure selon une quelconque des revendications 19 à 24, caractérisé en ce que ladite tôle ou ledit profilé est utilisé à l'état métallurgique T6 ou T651.
  25. Caisson de voilure selon une quelconque des revendications 19 à 24, caractérisé en ce que ladite tôle ou ledit profilé est utilisé à l'état métallurgique T7.
EP03740568A 2002-04-05 2003-04-04 Produits en alliages al-zn-mg-cu Revoked EP1492895B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0204257A FR2838136B1 (fr) 2002-04-05 2002-04-05 PRODUITS EN ALLIAGE A1-Zn-Mg-Cu A COMPROMIS CARACTERISTIQUES STATISTIQUES/TOLERANCE AUX DOMMAGES AMELIORE
FR0204257 2002-04-05
PCT/FR2003/001062 WO2003085145A2 (fr) 2002-04-05 2003-04-04 Produits en alliages al-zn-mg- cu

Publications (2)

Publication Number Publication Date
EP1492895A2 EP1492895A2 (fr) 2005-01-05
EP1492895B1 true EP1492895B1 (fr) 2009-12-16

Family

ID=28052141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03740568A Revoked EP1492895B1 (fr) 2002-04-05 2003-04-04 Produits en alliages al-zn-mg-cu

Country Status (9)

Country Link
US (1) US7550110B2 (fr)
EP (1) EP1492895B1 (fr)
JP (1) JP4535731B2 (fr)
AT (1) ATE452216T1 (fr)
AU (1) AU2003260001A1 (fr)
DE (2) DE03740568T1 (fr)
ES (1) ES2338314T3 (fr)
FR (1) FR2838136B1 (fr)
WO (1) WO2003085145A2 (fr)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838135B1 (fr) * 2002-04-05 2005-01-28 Pechiney Rhenalu PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D'AERONEF
US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
WO2004090185A1 (fr) 2003-04-10 2004-10-21 Corus Aluminium Walzprodukte Gmbh Alliage al-zn-mg-cu
US20050217770A1 (en) * 2004-03-23 2005-10-06 Philippe Lequeu Structural member for aeronautical construction with a variation of usage properties
US7883591B2 (en) * 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
DE102005045341A1 (de) * 2004-10-05 2006-07-20 Corus Aluminium Walzprodukte Gmbh Hochfestes, hochzähes Al-Zn-Legierungsprodukt und Verfahren zum Herstellen eines solches Produkts
ES2292075T5 (es) * 2005-01-19 2010-12-17 Otto Fuchs Kg Aleacion de aluminio no sensible al enfriamiento brusco, asi como procedimiento para fabricar un producto semiacabado a partir de esta aleacion.
US8133331B2 (en) * 2005-02-01 2012-03-13 Surface Treatment Technologies, Inc. Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
US9410229B2 (en) * 2005-03-24 2016-08-09 Kaiser Aluminum Fabricated Products, Llc High strength aluminum alloys and process for making the same
US8157932B2 (en) * 2005-05-25 2012-04-17 Alcoa Inc. Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings
US20070151636A1 (en) * 2005-07-21 2007-07-05 Corus Aluminium Walzprodukte Gmbh Wrought aluminium AA7000-series alloy product and method of producing said product
US20070204937A1 (en) * 2005-07-21 2007-09-06 Aleris Koblenz Aluminum Gmbh Wrought aluminium aa7000-series alloy product and method of producing said product
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
EP2049696B1 (fr) * 2006-06-30 2016-03-02 Constellium Rolled Products Ravenswood, LLC Alliage d'aluminium à haute résistance pouvant être traité thermiquement
US8002913B2 (en) * 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8608876B2 (en) * 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8002912B2 (en) 2008-04-18 2011-08-23 United Technologies Corporation High strength L12 aluminum alloys
US7875131B2 (en) 2008-04-18 2011-01-25 United Technologies Corporation L12 strengthened amorphous aluminum alloys
US8017072B2 (en) 2008-04-18 2011-09-13 United Technologies Corporation Dispersion strengthened L12 aluminum alloys
US8409373B2 (en) 2008-04-18 2013-04-02 United Technologies Corporation L12 aluminum alloys with bimodal and trimodal distribution
US7871477B2 (en) 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys
US20090263273A1 (en) 2008-04-18 2009-10-22 United Technologies Corporation High strength L12 aluminum alloys
US7875133B2 (en) 2008-04-18 2011-01-25 United Technologies Corporation Heat treatable L12 aluminum alloys
US7879162B2 (en) * 2008-04-18 2011-02-01 United Technologies Corporation High strength aluminum alloys with L12 precipitates
US7811395B2 (en) 2008-04-18 2010-10-12 United Technologies Corporation High strength L12 aluminum alloys
RU2503735C2 (ru) * 2008-06-24 2014-01-10 Алерис Алюминум Кобленц Гмбх ИЗДЕЛИЕ ИЗ Al-Zn-Mg СПЛАВА С ПОНИЖЕННОЙ ЧУВСТВИТЕЛЬНОСТЬЮ К ЗАКАЛКЕ
US8778098B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
US8778099B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Conversion process for heat treatable L12 aluminum alloys
US9611522B2 (en) 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys
US9127334B2 (en) 2009-05-07 2015-09-08 United Technologies Corporation Direct forging and rolling of L12 aluminum alloys for armor applications
US8728389B2 (en) 2009-09-01 2014-05-20 United Technologies Corporation Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding
US8409496B2 (en) 2009-09-14 2013-04-02 United Technologies Corporation Superplastic forming high strength L12 aluminum alloys
US9194027B2 (en) 2009-10-14 2015-11-24 United Technologies Corporation Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling
US8409497B2 (en) 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys
CN102108463B (zh) * 2010-01-29 2012-09-05 北京有色金属研究总院 一种适合于结构件制造的铝合金制品及制备方法
US9551050B2 (en) * 2012-02-29 2017-01-24 The Boeing Company Aluminum alloy with additions of scandium, zirconium and erbium
DE102013012259B3 (de) * 2013-07-24 2014-10-09 Airbus Defence and Space GmbH Aluminium-Werkstoff mit verbesserter Ausscheidungshärtung, Verfahren zu dessen Herstellung und Verwendung des Aluminium-Werkstoffes
WO2015132932A1 (fr) * 2014-03-06 2015-09-11 株式会社Uacj Alliage d'aluminium structural et son procédé de production
CN105349852A (zh) * 2015-10-28 2016-02-24 无棣向上机械设计服务有限公司 高强度铝合金
CN105401026B (zh) * 2015-12-08 2017-12-26 艾瑞福斯特(北京)技术开发有限公司 一种超高强铝合金粉
CN105609751A (zh) * 2016-03-15 2016-05-25 江苏中科亚美新材料有限公司 一种用于电池负极的镁合金
CN105838947B (zh) * 2016-06-02 2017-05-10 薛元良 一种超高强度抗耐磨铝合金材料及其生产工艺
CA3032261A1 (fr) 2016-08-26 2018-03-01 Shape Corp. Procede de formage a chaud et appareil de pliage transversal d'une poutre d'aluminium profilee pour former a chaud un composant structural de vehicule
EP3305926B1 (fr) * 2016-10-05 2019-07-24 Aleris Rolled Products Germany GmbH Élément structurel soudé et procédé de fabrication et d'utilisation de celui-ci
EP3529394A4 (fr) 2016-10-24 2020-06-24 Shape Corp. Procédé de formage et de traitement thermique d'un alliage d'aluminium en plusieurs étapes pour la production de composants pour véhicules
CN107475572A (zh) * 2017-08-16 2017-12-15 吴振江 超细铝合金线材及其制造方法以及相应的衍生品
CN109161743A (zh) * 2018-09-28 2019-01-08 武汉理工大学 一种耐腐蚀稀土微合金化铝合金及其制备方法
KR102203716B1 (ko) * 2019-03-08 2021-01-15 한국생산기술연구원 압출성 및 강도가 향상된 고열전도도 알루미늄 합금, 상기 알루미늄 합금 제조 방법 및 상기 알루미늄 합금 압출성형제품 제작 방법
CN110331319B (zh) * 2019-05-27 2020-06-30 中国航发北京航空材料研究院 一种含钪和铒的高强、高塑性耐蚀铝合金及其制备方法
WO2021029925A1 (fr) * 2019-06-03 2021-02-18 Novelis Inc. Produits en alliage d'aluminium à ultra-haute résistance et leurs procédés de fabrication
CN110669968A (zh) * 2019-09-23 2020-01-10 山东南山铝业股份有限公司 一种耐热稀土铝合金及其制备方法
CN110846525B (zh) * 2019-11-29 2020-10-23 内蒙古工业大学 一种铝-硅-镁铸造合金力学性能的改善方法
CN111101033A (zh) * 2019-12-20 2020-05-05 山东南山铝业股份有限公司 一种低合金化铝合金及其多级热处理强化工艺
CN111020315A (zh) * 2019-12-20 2020-04-17 山东南山铝业股份有限公司 一种稀土耐热铝合金及其制备方法
CN111057920B (zh) * 2020-01-07 2022-05-06 西南交通大学 一种超高强铝合金及其制备方法
CN111959608B (zh) * 2020-08-14 2021-06-29 福建祥鑫股份有限公司 一种铝合金轻卡大梁及其制备方法
CN113215458B (zh) * 2021-07-02 2023-02-24 中国航发北京航空材料研究院 一种铝合金及铝合金的制作方法
CN114134375B (zh) * 2021-11-01 2022-09-27 湖南中创空天新材料股份有限公司 一种耐应力腐蚀Al-Zn-Mg-Cu合金及其制备方法
CN114990395B (zh) * 2022-04-13 2024-01-16 山东南山铝业股份有限公司 一种含稀土元素的高强度变形铝合金及其制备方法
CN115961191B (zh) * 2022-04-25 2024-06-21 江苏大学 一种锶锆钛钇四元复合微合金化的800MPa强度级高性能铝合金及制备方法
CN115710661B (zh) * 2022-10-31 2024-04-09 中国航发北京航空材料研究院 一种Al-Zn-Mg-Cu系铝合金及提高其应力腐蚀性能的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457908A1 (fr) * 1979-06-01 1980-12-26 Gerzat Metallurg Procede de fabrication de corps creux en alliage d'aluminium et produits ainsi obtenus
FR2517702B1 (fr) * 1981-12-03 1985-11-15 Gerzat Metallurg
US4713216A (en) * 1985-04-27 1987-12-15 Showa Aluminum Kabushiki Kaisha Aluminum alloys having high strength and resistance to stress and corrosion
JPH07821B2 (ja) * 1986-03-07 1995-01-11 昭和アルミニウム株式会社 高強度アルミニウム合金
JPS6244550A (ja) * 1985-08-22 1987-02-26 Showa Alum Corp 冷間加工性に優れたアルミニウム合金
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
JPH03140433A (ja) * 1989-10-27 1991-06-14 Nkk Corp 耐食性にすぐれた高強度アルミニウム合金
FR2716896B1 (fr) * 1994-03-02 1996-04-26 Pechiney Recherche Alliage 7000 à haute résistance mécanique et procédé d'obtention.
JPH08295977A (ja) * 1995-04-21 1996-11-12 Sumitomo Light Metal Ind Ltd 疲労強度に優れた高強度アルミニウム合金押出材および該押出材からなるオートバイフロントフォークアウターチューブ材
JP3834076B2 (ja) * 1995-04-21 2006-10-18 昭和電工株式会社 押出材の製造方法
FR2744136B1 (fr) * 1996-01-25 1998-03-06 Pechiney Rhenalu Produits epais en alliage alznmgcu a proprietes ameliorees
AU2001264646A1 (en) * 2000-05-18 2001-11-26 Smith And Wesson Corp. Scandium containing aluminum alloy firearm
IL156386A0 (en) * 2000-12-21 2004-01-04 Alcoa Inc Aluminum alloy products and artificial aging method
US6627012B1 (en) * 2000-12-22 2003-09-30 William Troy Tack Method for producing lightweight alloy stock for gun frames
FR2820438B1 (fr) * 2001-02-07 2003-03-07 Pechiney Rhenalu Procede de fabrication d'un produit corroye a haute resistance en alliage alznmagcu
US20040099352A1 (en) * 2002-09-21 2004-05-27 Iulian Gheorghe Aluminum-zinc-magnesium-copper alloy extrusion
US7060139B2 (en) * 2002-11-08 2006-06-13 Ues, Inc. High strength aluminum alloy composition

Also Published As

Publication number Publication date
ATE452216T1 (de) 2010-01-15
DE03740568T1 (de) 2005-07-14
WO2003085145A3 (fr) 2004-04-01
EP1492895A2 (fr) 2005-01-05
WO2003085145A2 (fr) 2003-10-16
US7550110B2 (en) 2009-06-23
JP2005528521A (ja) 2005-09-22
AU2003260001A1 (en) 2003-10-20
ES2338314T3 (es) 2010-05-06
JP4535731B2 (ja) 2010-09-01
FR2838136B1 (fr) 2005-01-28
FR2838136A1 (fr) 2003-10-10
DE60330547D1 (de) 2010-01-28
US20030219353A1 (en) 2003-11-27

Similar Documents

Publication Publication Date Title
EP1492895B1 (fr) Produits en alliages al-zn-mg-cu
EP2449142B1 (fr) Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
EP1966402B1 (fr) Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d&#39;avion
EP1492896B1 (fr) Produits corroyes en alliages al-zn-mg-cu a tres hautes caracteristiques mecaniques, et elements de structure d aeronef
EP1766102B1 (fr) Procede de fabrication de produits en alliage d&#39;aluminium a haute tenacite et haute resistance a la fatigue
EP2766503B1 (fr) Procédé de transformation amélioré de tôles en alliage al-cu-li
EP2655680B1 (fr) Alliage aluminium cuivre lithium à résistance en compression et ténacité améliorées
EP2364378B1 (fr) Produits en alliage aluminium-cuivre-lithium
EP3384061B1 (fr) Alliage aluminium cuivre lithium à resistance mécanique et tenacité ameliorées
FR2907796A1 (fr) Produits en alliage d&#39;aluminium de la serie aa7000 et leur procede de fabrication
FR2907467A1 (fr) Procede de fabrication de produits en alliage d&#39;aluminium de la serie aa2000 et produits fabriques selon ce procede
EP2981632B1 (fr) Tôles minces en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
FR2853667A1 (fr) Alliage al-an-mg-cu ameliore en ce qui concerne ses proprietes combinees de tolerance aux dommages et de resistance mecanique
EP2569456B1 (fr) Alliage aluminium-cuivre-lithium pour element d&#39;intrados
EP1644546B1 (fr) Utilisation de tubes en alliages al-zn-mg-cu ayant un compromis ameliore entre des caracteristiques mecaniques statiques et la tolerance aux dommages
EP3201371A1 (fr) Procédé de fabrication de produits en alliage aluminium, magnésium, lithium
EP3728667B1 (fr) Procede de fabrication ameliore de tôles en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselage d&#39;avion et tôle correspondante
EP1382698A1 (fr) Produit corroyé en alliage Al-Cu-Mg pour élément de structure d&#39;avion
EP3635146B1 (fr) Alliage d&#39;aluminium comprenant du lithium a proprietes en fatigue ameliorees
EP3788178B1 (fr) Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
EP3610048B1 (fr) Produits en alliage aluminium-cuivre-lithium a faible densite
EP3610047B1 (fr) Produits en alliage aluminium-cuivre-lithium
FR3026411A1 (fr) Procede de fabrication de produits en alliage aluminium magnesium lithium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041020

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GBC Gb: translation of claims filed (gb section 78(7)/1977)
DET De: translation of patent claims
17Q First examination report despatched

Effective date: 20071113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: AL-ZN-MG-CU ALLOY PRODUCTS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60330547

Country of ref document: DE

Date of ref document: 20100128

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF INTERNATIONAL SA

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2338314

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ALCAN RHENALU

Free format text: ALCAN RHENALU#17, PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR) -TRANSFER TO- ALCAN RHENALU#17, PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100416

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALCOA INC.

Effective date: 20100914

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

Effective date: 20100915

Opponent name: ALCOA INC.

Effective date: 20100914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONSTELLIUM FRANCE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CONSTELLIUM FRANCE SAS

Free format text: ALCAN RHENALU#17, PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR) -TRANSFER TO- CONSTELLIUM FRANCE SAS#40-44, RUE WASHINGTON#75008 PARIS (FR)

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF INTERNATIONAL SA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330547

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330547

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 60330547

Country of ref document: DE

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, COURBEVOIE, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330547

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 60330547

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, COURBEVOIE, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330547

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330547

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091216

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALERIS ALUMINUM GMBH

Effective date: 20100915

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALERIS ROLLED PRODUCTS GERMANY GMBH

Effective date: 20100915

RIC2 Information provided on ipc code assigned after grant

Ipc: C22C 21/10 20060101AFI20141126BHEP

Ipc: C22F 1/053 20060101ALI20141126BHEP

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE SAS, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONSTELLIUM ISSOIRE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330547

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60330547

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330547

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALCOA INC.

Effective date: 20100914

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170105

Year of fee payment: 17

Ref country code: DE

Payment date: 20170427

Year of fee payment: 15

Ref country code: CH

Payment date: 20170427

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170503

Year of fee payment: 15

Ref country code: BE

Payment date: 20170427

Year of fee payment: 15

Ref country code: IT

Payment date: 20170421

Year of fee payment: 15

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 60330547

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 60330547

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

R26 Opposition filed (corrected)

Opponent name: ARCONIC INC.

Effective date: 20100914

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLX

27W Patent revoked

Effective date: 20180227

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20180227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20091216

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20091216

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: CONSTELLIUM ISSOIRE; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT NOM PROPRIETAIRE, NOM + ADRESSE; FORMER OWNER NAME: CONSTELLIUM FRANCE

Effective date: 20160225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180427

Year of fee payment: 16