EP3610047B1 - Produits en alliage aluminium-cuivre-lithium - Google Patents

Produits en alliage aluminium-cuivre-lithium Download PDF

Info

Publication number
EP3610047B1
EP3610047B1 EP18724941.2A EP18724941A EP3610047B1 EP 3610047 B1 EP3610047 B1 EP 3610047B1 EP 18724941 A EP18724941 A EP 18724941A EP 3610047 B1 EP3610047 B1 EP 3610047B1
Authority
EP
European Patent Office
Prior art keywords
weight
product
content
aluminium
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18724941.2A
Other languages
German (de)
English (en)
Other versions
EP3610047A1 (fr
Inventor
Juliette CHEVY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Priority to DE18724941.2T priority Critical patent/DE18724941T1/de
Publication of EP3610047A1 publication Critical patent/EP3610047A1/fr
Application granted granted Critical
Publication of EP3610047B1 publication Critical patent/EP3610047B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc

Definitions

  • the invention relates in general to wrought products in aluminium-copper-lithium alloys, and more particularly to such products in the form of sections intended to produce stiffeners in aeronautical construction.
  • Aluminum alloys containing lithium are very attractive in this regard, as lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.
  • their performance must match that of commonly used alloys, particularly in terms of the trade-off between static strength properties (yield strength, fracture toughness) and damage tolerance properties ( toughness, resistance to the propagation of fatigue cracks), these properties generally being contradictory.
  • These alloys must also have sufficient corrosion resistance, be able to be shaped according to the usual methods and have low residual stresses so that they can be machined integrally.
  • the patent US 5,198,045 describes a family of Weldalite TM alloys comprising (wt%) (2.4-3.5)Cu, (1.35-1.8)Li, (0.25-0.65)Mg, (0 ,25-0.65)Ag, (0.08-0.25)Zr. THE Wrought products made with these alloys combine a density of less than 2.64 g/cm 3 and an interesting compromise between mechanical strength and toughness.
  • the patent US 7,229,509 describes a family of Weldalite TM alloys comprising (wt%) (2.5-5.5)Cu, (0.1-2.5)Li, (0.2-1.0)Mg, (0 ,2-0.8) Ag, (0.2-0.8) Mn, (up to 0.4) Zr or other elements such as Cr, Ti, Hf, Sc and V.
  • the examples shown have a compromise between mechanical strength and improved toughness but their density is greater than 2.7 g/cm 3 .
  • the patent application WO2007/080267 discloses a zirconium-free Weldalite TM alloy for use in fuselage sheets comprising (wt%) (2.1-2.8)Cu, (1.1-1.7)Li, (0.2- 0.6) Mg, (0.1-0.8) Ag, (0.2-0.6) Mn.
  • the AA2196 alloy is also known, comprising (in % by weight) (2.5-3.3) Cu, (1.4-2.1) Li, (0.25-0.8) Mg, (0 .25-0.6) Ag, (0.04-0.18) Zr and at most 0.35 Mn.
  • Yet another object of the invention is a structural element incorporating at least one product according to the invention.
  • the static mechanical characteristics in other words the breaking strength R m , the conventional yield strength at 0.2% elongation R p0.2 ("yield strength") and l elongation at break A, are determined by a tensile test according to standard EN 10002-1 (2001), the sampling and direction of the test being defined by standard EN 485-1 (2016).
  • K Q The stress intensity factor
  • the thickness of the sections is defined according to standard EN 2066:2001: the cross section is divided into elementary rectangles of dimensions A and B; A always being the largest dimension of the elementary rectangle and B being able to be considered as the thickness of the elementary rectangle.
  • structural element or "structural element” of a mechanical construction is used here to mean a mechanical part for which the static and/or dynamic mechanical properties are particularly important for the performance of the structure, and for which a structural calculation is usually prescribed or performed. These are typically elements whose failure is likely to endanger the safety of the said construction, of the users, of the users or of others.
  • these elements of structure include in particular the elements that make up the fuselage (such as the fuselage skin), the fuselage stiffeners or stringers, the bulkheads (bulkheads), the fuselage frames (circumferential frames), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars (spars) and the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as floor beams, seat tracks and doors.
  • a selected class of aluminum alloys containing specific and critical contents of copper, lithium, magnesium, zinc, manganese and zirconium but containing essentially no silver makes it possible to prepare products wrought having in particular an improved compromise between toughness and mechanical strength compared to that of products containing essentially no silver.
  • the present inventors have found that, surprisingly, it is possible for products to obtain a compromise that is at least equivalent between the properties of static mechanical strength and the properties of tolerance to damage than that obtained with an aluminum-copper-lithium alloy containing silver, such as in particular the AA2196 alloy, by making a narrow selection of the quantities of lithium, copper, magnesium, manganese, zinc and zirconium.
  • the copper content of the products according to the invention is between 2.5 and 3.4% by weight. In an advantageous embodiment of the invention, the copper content is at least 2.8 or preferably at least 2.9% by weight and/or at most 3.2 and preferably at most 3.1% by weight. weight.
  • the lithium content of the products according to the invention is between 1.6 and 2.2% by weight.
  • the lithium content is between 1.65% and 1.8% by weight.
  • the lithium content is at most 1.75% by weight.
  • the magnesium content of the products according to the invention is between 0.4 and 0.9% by weight and preferably it is at least 0.5% by weight and, more preferably still greater than 0.6% in weight.
  • the magnesium content is at plus 0.8% by weight.
  • the present inventors have found that when the magnesium content is less than 0.30% by weight the advantageous compromise between mechanical strength and damage tolerance is not obtained.
  • the manganese content of the products according to the invention is between 0.2 and 0.6% by weight and, preferably, it is at least 0.3% by weight and, even more preferably at least 0.33% by weight and more preferably at least 0.4% by weight. In another embodiment, the manganese content is between 0.2 and 0.4% by weight, preferably between 0.25 and 0.35% by weight.
  • the present inventors have found that when the manganese content is less than 0.2% by weight, the tenacity KQ (L-T), in the L-T direction, advantageous according to the invention is not obtained.
  • the zirconium content of the products according to the invention is between 0.08 and 0.18% by weight and, preferably, it is from 0.12 to 0.16% by weight and, even more preferably, 0 .14 to 0.15% by weight. In another embodiment, the zirconium content is advantageously between 0.09 and 0.12% by weight, preferably between 0.09 and 0.11% by weight, or even between 0.09 and 0.10% in weight.
  • the zinc content is less than 0.4% by weight, preferably it is 0.05 and 0.35% by weight.
  • the zinc content is 0.2 to 0.3% by weight, which can contribute to achieving the desired compromise between toughness and mechanical strength.
  • the silver content is less than 0.15% by weight, preferably less than 0.10% by weight and, more preferably still, less than 0.05% by weight.
  • the present inventors have found that the advantageous compromise between strength and damage tolerance known for alloys typically containing 0.2 to 0.4% by weight silver can be obtained for alloys containing essentially no silver. with the composition selection made.
  • the sum of the iron content and the silicon content is at most 0.20% by weight.
  • the iron and silicon contents are each at most 0.08% by weight.
  • the iron and silicon contents are at most 0.06% and 0.04% by weight, respectively.
  • the alloy also contains at least one element which can contribute to the control of the grain size chosen from among Ti, Sc, Cr, Hf and V, the content of the element, if chosen, being from 0.01 to 0 .15% by weight, preferably 0.01 to 0.05% by weight for Ti; from 0.01 to 0.15% by weight, preferably 0.02 to 0.1% by weight for Sc; 0.01 to 0.5% by weight, preferably 0.02 to 0.1% by weight for Hf and 0.01 to 0.3% by weight, preferably 0.02 to 0.1% by weight for Cr and from 0.01 to 0.3% by weight, preferably 0.01 to 0.05% by weight for V.
  • the alloy according to the invention is particularly intended for the manufacture of rolled, extruded and/or forged products and, even more particularly, extruded products.
  • the products according to the invention have a particularly advantageous compromise between mechanical strength and toughness.
  • the products according to the invention have, in a spun, solution-treated, tempered, drawn and tempered state, in particular for thicknesses up to 50 mm or even between 8 and 50 mm, or even between 15 and 35 mm, a yield strength measured at 0.2% elongation in the L direction, Rp0.2 (L), of at least 510 MPa and a toughness KQ (LT), in the LT direction, of at least 21 MPa ⁇ m and such that KQ (LT) > - 0.2667*Rp0.2 (L) + 169.
  • the specimens used for the KQ measurements are of the CT type with a thickness of 20 mm and a width of 50 mm.
  • the process for manufacturing the products according to the invention comprises steps of production, casting, rolling, extrusion and/or forging, solution treatment, quenching, stress relieving and tempering.
  • a bath of liquid metal is prepared so as to obtain an aluminum alloy of composition according to the invention.
  • the liquid metal bath is then cast in a raw form, typically a rolling plate, an extrusion billet or a forging blank.
  • the raw form is then homogenized at a temperature of between 450° C. and 550° and preferably between 520° C. and 530° C. for a period of between 6 and 15 hours.
  • the raw form is optionally cooled down to room temperature before being preheated with a view to being hot deformed.
  • the hot deformation is carried out by rolling, extrusion and/or forging so as to obtain a rolled, extruded and/or forged product, preferably an extruded product.
  • the product thus obtained is then placed in solution by heat treatment between 490 and 550° C. for 15 min to 8 h, then quenched typically with water at room temperature.
  • the product then undergoes controlled stress relief, preferably by traction, with a permanent deformation of 1 to 15% and preferably of 2 to 4%.
  • the extruded product has, at the end of the process steps detailed above, a thickness ranging up to 50 mm or even between 8 and 50 mm, or even between 15 and 35 mm.
  • Tempering is carried out comprising heating at a temperature of between 140 and 170°C for 5 to 70 hours so that said product has a conventional yield strength measured at 0.2% elongation in the L direction, R p0.2 (L), of at least 510 MPa and a toughness K Q (LT), in the LT direction, of at least 21 MPa m and such that K Q (LT) > -0.2667 ⁇ R p0.2 (L) + 169.
  • the extruded product with a conventional yield strength measured at 0.2% elongation in the L direction, Rp0.2 (L), of at least 525 MPa and a tenacity KQ ( L-T), in the L-T direction, of at least 23 MPa ⁇ m and such that KQ (L-T) > -0.2667*Rp0.2 (L) + 171.
  • the spun product advantageously has a thickness, up to 50 mm or between 8 and 50 mm, or even between 15 and 35 mm.
  • an object of the invention is a structural element incorporating at least one product according to the invention or a product manufactured using a process according to the invention.
  • a structural element incorporating at least one product according to the invention or made from such a product is advantageous, in particular for aeronautical construction.
  • the products according to the invention are particularly advantageous for the production of structural elements such as stiffeners or frames for the manufacture of intrados or extrados elements of an aircraft wing, preferably stiffeners, spars and ribs, or also floor beams and seat rails.
  • the alloy billets 67, 74 a and b, 66, 68 and 69 were then homogenized for 8 to 10 hours at 524°C.
  • the billet in alloy 2 was homogenized for 8 hours at 500°C then 24 hours at 527°C while that in alloy 5 was homogenized for 8 hours at 520°C.
  • the billets were reheated to 450°C +/- 40°C then hot-spinned to obtain W profiles according to the figure 1 for alloy 2, 67, 74 a and b, 66, 68 and 69 and Z according to picture 2 for alloys 5.
  • the profiles thus obtained were put in solution at 524°C, quenched and stretched with a permanent elongation of between 2 and 5%.
  • Samples taken from the end of the section were tested to determine their static mechanical properties as well as their toughness (K Q ).
  • the location of the samples is indicated in dotted lines on the figure 1 And 2 .
  • the test pieces used for measuring the static properties were 10 mm in diameter and taken so that the direction of the axis of the test piece corresponded to the direction of spinning (direction L).

Description

    Domaine de l'invention
  • L'invention concerne en général les produits corroyés en alliages aluminium-cuivre-lithium, et plus particulièrement de tels produits sous la forme de profilés destinés à réaliser des raidisseurs en construction aéronautique.
  • Etat de la technique
  • Un effort de recherche continu est réalisé afin de développer des matériaux qui puissent simultanément réduire le poids et augmenter l'efficacité des structures d'avions à hautes performances. Les alliages d'aluminium contenant du lithium sont très intéressants à cet égard, car le lithium peut réduire la densité de l'aluminium de 3 % et augmenter le module d'élasticité de 6 % pour chaque pourcent en poids de lithium ajouté. Pour que ces alliages soient sélectionnés dans les avions, leur performance doit atteindre celle des alliages couramment utilisés, en particulier en terme de compromis entre les propriétés de résistance mécanique statique (limite élastique, résistance à la rupture) et les propriétés de tolérance aux dommages (ténacité, résistance à la propagation des fissures en fatigue), ces propriétés étant en général antinomiques. Ces alliages doivent de plus présenter une résistance à la corrosion suffisante, pouvoir être mis en forme selon les procédés habituels et présenter de faibles contraintes résiduelles de façon à pouvoir être usinés de façon intégrale.
  • On connait plusieurs alliages Al-Cu-Li pour lesquels une addition d'argent est effectuée.
  • Le brevet US 5,032,359 décrit une vaste famille d'alliages aluminium-cuivre-lithium dans lesquels l'addition de magnésium et d'argent, en particulier entre 0,3 et 0,5 pourcent en poids, permet d'augmenter la résistance mécanique. Ces alliages sont souvent connus sous le nom commercial « Weldalite ».
  • Le brevet US 5,198,045 décrit une famille d'alliages Weldalite comprenant (en % en poids) (2,4-3,5)Cu, (1,35-1,8)Li, (0,25-0,65)Mg, (0,25-0,65)Ag, (0,08-0,25) Zr. Les produits corroyés fabriqués avec ces alliages combinent une densité inférieure à 2,64 g/cm3 et un compromis entre la résistance mécanique et la ténacité intéressant.
  • Le brevet US 7,229,509 décrit une famille d'alliages Weldalite comprenant (en % en poids) (2,5-5,5)Cu, (0,1-2,5) Li, (0,2-1,0) Mg, (0,2-0,8) Ag, (0,2-0,8) Mn, (jusque 0,4) Zr ou d'autres éléments tels que Cr, Ti, Hf, Sc et V. Les exemples présentés ont un compromis entre la résistance mécanique et la ténacité amélioré mais leur densité est supérieure à 2,7 g/cm3.
  • La demande de brevet WO2007/080267 décrit un alliage Weldalite ne contenant pas de zirconium destiné à des tôles de fuselage comprenant (en % en poids) (2,1-2,8)Cu, (1,1-1,7) Li, (0,2-0,6) Mg, (0,1-0,8) Ag, (0,2-0,6) Mn.
  • On connait par ailleurs l'alliage AA2196 comprenant (en % en poids) (2,5-3,3)Cu, (1,4-2,1) Li, (0,25-0,8) Mg, (0,25-0,6) Ag, (0,04-0,18) Zr et au plus 0,35 Mn.
  • La limitation de la quantité d'argent est économiquement très favorable. Cependant, on constate que les produits selon l'art antérieur faits en alliage ne contenant essentiellement pas d'argent ne permettent pas d'obtenir des propriétés aussi avantageuses que celles des produits faits avec des alliages contenant de l'argent tels que l'alliage AA2196.
  • Il existe un besoin pour des produits en alliage aluminium-cuivre-lithium, notamment des produits filés, présentant une densité réduite et des propriétés sensiblement équivalentes à celles de produits connus contenant de l'argent, en particulier en termes de compromis entre les propriétés de résistance mécanique statique et les propriétés de tolérance aux dommages. La stabilité thermique, la résistance à la corrosion, l'aptitude à l'usinage et la densité de ces produits notamment doivent également être satisfaisantes par rapport à celles de produits connus contenant de l'argent tout en ayant une faible densité.
  • Objet de l'invention
  • Un premier objet de l'invention est un produit en alliage à base d'aluminium comprenant, en % en poids,
    • Cu : 2,5-3,4 ; préférentiellement 2,8-3,2 ;
    • Li : 1,6-2,2 ; préférentiellement 1,65-1,8 ;
    • Mg : 0,4-0,9 ; préférentiellement 0,5-0,8 ;
    • Mn : 0,2 - 0,6 ; préférentiellement 0,3-0,6 ;
    • Zr : 0,08 - 0,18 ; préférentiellement 0,12-0,16 ;
    • Zn : < 0,4 préférentiellement 0,05-0,4 ; plus préférentiellement de 0,2-0,4 ;
    • Ag : < 0,15 ; préférentiellement <0,1 ; plus préférentiellement encore <0,05 ;
    • Fe + Si ≤ 0,20 ;
    • au moins un élément choisi parmi
      • Ti : 0,01 - 0,15 ; préférentiellement 0,01-0,05 ;
      • Sc : 0,01 - 0,15, préférentiellement 0,02-0,1 ;
      • Cr : 0,01 - 0,3, préférentiellement 0,02-0,1 ;
      • Hf : 0,01 - 0,5 ; préférentiellement 0,02-0,1 ;
      • V : 0,01 - 0,3, préférentiellement 0,01-0,05 ;
    • autres éléments ≤ 0,05 chacun et ≤ 0,15 au total, reste aluminium.
  • Un deuxième objet de l'invention est un procédé de fabrication d'un produit filé, laminé et/ou forgé à base d'alliage d'aluminium comprenant les étapes :
    1. a) élaboration d'un bain de métal liquide comprenant, en pourcentage en poids, Cu :
      • 2,5-3,4 ; Li : 1,6-2,2 ; Mg : 0,4-0,9 ; Mn : 0,2 - 0,6 ; Zr : 0,08 - 0,18 ; Zn : < 0,4 ;
      • Ag : < 0,15 ; Fe + Si ≤ 0,20 ; au moins un élément choisi parmi Ti, Sc, Cr, Hf et V, la teneur dudit élément, s'il est choisi, étant Ti : 0,01 - 0,15 ; Sc : 0,01 - 0,15 ; Cr :
      • 0,01 - 0,3 ; Hf : 0,01 - 0,5 ; V : 0,01 - 0,3 ; autres éléments ≤ 0,05 chacun et ≤ 0,15 au total, reste aluminium
    2. b) coulée d'une forme brute à partir dudit bain de métal liquide ;
    3. c) homogénéisation ladite forme brute ;
    4. d) déformation à chaud et, optionnellement, à froid de la forme brute en un produit filé, laminé et/ou forgé ;
    5. e) mise en solution et trempe dudit produit ;
    6. f) traction de façon contrôlée dudit produit avec une déformation permanente de 1 à 15%, préférentiellement de 2 à 4% ;
    7. g) revenu dudit produit par chauffage à 140 à 170°C pendant 5 à 70 heures. Avantageusement, le revenu est réalisé de façon à ce que ledit produit ait une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L, Rp0,2 (L), d'au moins 510 MPa et une ténacité KQ (L-T), dans le sens L-T, d'au moins 21 MPa m
      Figure imgb0001
      et telle que KQ(L-T) > -0,2667Rp0,2(L) + 169.
  • Encore un autre objet de l'invention est un élément de structure incorporant au moins un produit selon l'invention.
  • Description des figures
    • Figure 1 : Forme du profilé W de l'exemple (on entend par « forme » la section transversale dudit profilé). Les cotes sont indiquées en mm. Les échantillons utilisés pour les caractérisations mécaniques ont été prélevés dans la zone indiquée par les pointillés.
    • Figure 2 : Forme du profilé Z de l'exemple (on entend par « forme » la section transversale dudit profilé). Les cotes sont indiquées en mm. Les échantillons utilisés pour les caractérisations mécaniques ont été prélevés dans la zone indiquée par les pointillés.
    • Figure 3 : Compromis entre ténacité et résistance mécanique obtenu pour les profilés de l'exemple.
    Description de l'invention
  • Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure de poids. Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2.13 de « Aluminum Standards and Data ». Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515 (2009).
  • Sauf mention contraire, les caractéristiques mécaniques statiques, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 (« limite d'élasticité ») et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1 (2001), le prélèvement et le sens de l'essai étant définis par la norme EN 485-1 (2016).
  • Le facteur d'intensité de contrainte (KQ) est déterminé selon la norme ASTM E 399 (2012). Ainsi, la proportion des éprouvettes définie au paragraphe 7.2.1 de cette norme est toujours vérifiée de même que la procédure générale définie au paragraphe 8. La norme ASTM E 399 (2012) donne aux paragraphes 9.1.3 et 9.1.4 des critères qui permettent de déterminer si KQ est une valeur valide de K1C. Ainsi, une valeur K1C est toujours une valeur KQ la réciproque n'étant pas vraie. Dans le cadre de l'invention, les critères des paragraphes 9.1.3 et 9.1.4 de la norme ASTM E399 (2012) ne sont pas toujours vérifiés, cependant pour une géométrie d'éprouvette donnée, les valeurs de KQ présentées sont toujours comparables entre elles, la géométrie d'éprouvette permettant d'obtenir une valeur valide de K1C n'étant pas toujours accessible compte tenu des contraintes liées aux dimensions des tôles ou profilés.
  • Sauf mention contraire, les définitions de la norme EN 12258 (2012) s'appliquent. L'épaisseur des profilés est définie selon la norme EN 2066 :2001 : la section transversale est divisée en rectangles élémentaires de dimensions A et B ; A étant toujours la plus grande dimension du rectangle élémentaire et B pouvant être considéré comme l'épaisseur du rectangle élémentaire.
  • On appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique pour laquelle les propriétés mécaniques statiques et/ou dynamiques sont particulièrement importantes pour la performance de la structure, et pour laquelle un calcul de structure est habituellement prescrit ou réalisé. Il s'agit typiquement d'éléments dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de scs utilisateurs, des scs usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.
  • Selon l'invention, une classe sélectionnée d'alliages d'aluminium contenant des teneurs spécifiques et critiques de cuivre, de lithium, de magnésium, de zinc, de manganèse et de zirconium mais ne contentant essentiellement pas d'argent permet de préparer des produits corroyés présentant notamment un compromis amélioré entre ténacité et résistance mécanique par rapport à celui de produits ne contenant essentiellement pas d'argent.
  • Les présents inventeurs ont constaté que de manière surprenante, il est possible pour des produits d'obtenir un compromis au moins équivalent entre les propriétés de résistance mécanique statique et les propriétés de tolérance aux dommages que celui obtenu avec un alliage aluminium-cuivre-lithium contenant de l'argent, tels que notamment l'alliage AA2196, en réalisant une sélection étroite des quantités de lithium, de cuivre, de magnésium, de manganèse, de zinc et de zirconium .
  • La teneur en cuivre des produits selon l'invention est comprise entre 2,5 et 3,4 % en poids. Dans une réalisation avantageuse de l'invention, la teneur en cuivre est au moins de 2,8 ou préférentiellement au moins de 2,9 % en poids et/ou au plus de 3,2 et préférentiellement au plus de 3,1 % en poids.
  • La teneur en lithium des produits selon l'invention est comprise entre 1,6 et 2,2 % en poids. Avantageusement, la teneur en lithium est comprise entre 1,65 % et 1,8 % en poids. De manière préférée, la teneur en lithium est au plus de 1,75 % en poids.
  • La teneur en magnésium des produits selon l'invention est comprise entre 0,4 et 0,9 % en poids et de manière préférée elle est d'au moins 0,5% en poids et, plus préférentiellement encore supérieure à 0,6 % en poids. Avantageusement, la teneur en magnésium est d'au plus 0,8% en poids. Les présents inventeurs ont constaté que lorsque la teneur en magnésium est inférieure à 0,30 % en poids le compromis avantageux entre la résistance mécanique et la tolérance aux dommages n'est pas obtenu.
  • La teneur en manganèse des produits selon l'invention est comprise entre 0,2 et 0,6 % en poids et, de manière préférée, elle est d'au moins 0,3% en poids et, plus préférentiellement encore d'au moins 0,33% en poids et plus préférentiellement d'au moins 0,4% en poids. Dans un autre mode de réalisation, la teneur en manganèse est comprise entre 0,2 et 0,4% en poids, préférentiellement entre 0,25 et 0,35% en poids. Les présents inventeurs ont constaté que lorsque la teneur en manganèse est inférieure à 0,2 % en poids, la ténacité KQ (L-T), dans le sens L-T, avantageuse selon l'invention n'est pas obtenue.
  • La teneur en zirconium des produits selon l'invention est comprise entre 0,08 et 0,18 % en poids et, de manière préférée, elle est de 0,12 à 0,16% en poids et, plus préférentiellement encore, de 0,14 à 0,15% en poids. Dans un autre mode de réalisation, la teneur en zirconium est avantageusement comprise entre 0,09 et 0,12% en poids, préférentiellement entre 0,09 et 0,11 % en poids, voire même entre 0,09 et 0,10% en poids.
  • La teneur en zinc est inférieure à 0,4% en poids, préférentiellement elle est de 0,05 et 0,35 % en poids. Avantageusement, la teneur en zinc est 0,2 à 0,3 % en poids ce qui peut contribuer à atteindre le compromis recherché entre la ténacité et la résistance mécanique.
  • La teneur en argent est inférieure à 0,15 % en poids, de préférence inférieure à 0,10 % en poids et, plus préférentiellement encore inférieure à 0,05 % en poids. Les présents inventeurs ont constaté que le compromis avantageux entre la résistance mécanique et la tolérance aux dommages connu pour des alliages contenant typiquement 0,2 à 0,4 % en poids d'argent peut être obtenu pour des alliages ne contenant essentiellement pas d'argent avec la sélection de composition effectuée.
  • La somme de la teneur en fer et de la teneur en silicium est au plus de 0,20 % en poids. De préférence, les teneurs en fer et en silicium sont chacune au plus de 0,08 % en poids. Dans une réalisation avantageuse de l'invention, les teneurs en fer et en silicium sont au plus de 0,06 % et 0,04 % en poids, respectivement.
  • L'alliage contient également au moins un élément pouvant contribuer au contrôle de la taille de grain choisi parmi Ti, Sc, Cr, Hf et V, la teneur de l'élément, s'il est choisi, étant de 0,01 à 0,15 % en poids, préférentiellement 0,01 à 0,05% en poids pour Ti ; de 0,01 à 0,15 % en poids, préférentiellement 0,02 à 0,1% en poids pour Sc ; 0,01 à 0,5 % en poids, préférentiellement 0,02 à 0,1% en poids pour Hf et de 0,01 à 0,3 % en poids, préférentiellement de 0,02 à 0,1% en poids pour Cr et de 0,01 à 0,3% en poids, préférentiellement 0,01 à 0,05% en poids pour V. De manière préférée, on choisit entre 0,02 et 0,04 % en poids de titane.
  • L'alliage selon l'invention est particulièrement destiné à la fabrication de produits laminés, filés et/ou forgés et, plus particulièrement encore, de produits filés. Les produits selon l'invention présentent un compromis entre résistance mécanique et ténacité particulièrement avantageux.
  • Les produits selon l'invention, présentent dans un état filé, mis en solution, trempé, tractionné et revenu, notamment pour des épaisseurs jusqu'à 50 mm ou encore comprises entre 8 et 50 mm, ou même entre 15 et 35 mm, une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L, Rp0,2 (L), d'au moins 510 MPa et une ténacité KQ (L-T), dans le sens L-T, d'au moins 21 MPa√m et telle que KQ (L-T) > - 0,2667*Rp0,2 (L) + 169. Selon un mode de réalisation particulièrement avantageux, ils présentent, dans les conditions ci-avant décrites, une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L, Rp0,2 (L), d'au moins 525 MPa et une ténacité KQ (L-T), dans le sens L-T, d'au moins 23 MPa√m et telle que KQ (L-T) > - 0,2667*Rp0,2 (L) + 171. Dans la présente invention, les éprouvettes utilisées pour les mesures de KQ sont de type CT d'épaisseur 20mm et de largeur 50mm.
  • Le procédé de fabrication des produits selon l'invention comprend des étapes d'élaboration, coulée, laminage, extrusion et/ou forgeage, mise en solution, trempe, détensionnement et revenu.
  • Dans une première étape, on élabore un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition selon l'invention.
  • Le bain de métal liquide est ensuite coulé sous une forme brute typiquement une plaque de laminage, une billette d'extrusion ou une ébauche de forge.
  • La forme brute est ensuite homogénéisée à une température comprise entre 450°C et 550° et de préférence entre 520°C et 530°C pendant une durée comprise entre 6 et 15 heures.
  • Après homogénéisation, la forme brute est optionnellement refroidie jusqu'à température ambiante avant d'être préchauffée en vue d'être déformée à chaud. La déformation à chaud est effectuée par laminage, extrusion et/ou forgeage de façon à obtenir un produit laminé, filé et/ou forgé, préférentiellement un produit filé.
  • Le produit ainsi obtenu est ensuite mis en solution par traitement thermique entre 490 et 550 °C pendant 15 min à 8 h, puis trempé typiquement avec de l'eau à température ambiante.
  • Le produit subit ensuite un détensionnement contrôlé, préférentiellement par traction, avec une déformation permanente de 1 à 15 % et préférentiellement de 2 à 4%. Avantageusement, le produit filé présente à l'issue des étapes de procédé ci-dessus détaillées une épaisseur allant jusqu'à 50 mm ou encore comprise entre 8 et 50 mm, ou même entre 15 et 35 mm.
  • Un revenu est réalisé comprenant un chauffage à une température comprise entre 140 et 170°C pendant 5 à 70 heures de façon à ce que ledit produit ait une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L, Rp0,2 (L), d'au moins 510 MPa et une ténacité KQ (L-T), dans le sens L-T, d'au moins 21 MPa m
    Figure imgb0002
    et telle que KQ (L-T) > -0,2667Rp0,2 (L) + 169. Les présents inventeurs ont constaté que le compromis entre résistance mécanique et ténacité peut être amélioré en réalisant le revenu à une température comprise entre 150 à 165 °C pendant un temps à équivalent t i à 160°C compris entre 15 et 28h, préférentiellement entre 20 et 27h, t i étant défini par la formule : t i = exp 16400 / T dt exp 16400 / T ref
    Figure imgb0003
    où T (en Kelvin) est la température instantanée de traitement du métal, qui évolue avec le temps t (en heures), et Tref est une température de référence fixée à 433 K.
  • Selon un mode de réalisation particulièrement avantageux, le produit filé avec une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L, Rp0,2 (L), d'au moins 525 MPa et une ténacité KQ (L-T), dans le sens L-T, d'au moins 23 MPa√m et tel que KQ (L-T) > -0,2667*Rp0,2 (L) + 171. Dans ledit mode de réalisation, le produit filé présente avantageusement une épaisseur, jusqu'à 50 mm ou encore comprises entre 8 et 50 mm, ou même entre 15 et 35 mm.
  • Les produits selon l'invention peuvent de manière avantageuse être utilisés dans des éléments de structure, en particulier d'avion. Ainsi, un objet de l'invention est un élément de structure incorporant au moins un produit selon l'invention ou un produit fabriqué à partir d'un procédé selon l'invention.
  • L'utilisation, d'un élément de structure incorporant au moins un produit selon l'invention ou fabriqué à partir d'un tel produit est avantageux, en particulier pour la construction aéronautique. Les produits selon l'invention sont particulièrement avantageux pour la réalisation d'éléments de structure tels que les raidisseurs ou les cadres pour la fabrication d'éléments intrados ou extrados d'aile d'avion, préférentiellement des raidisseurs, des longerons et des nervures, ou également les poutres de plancher et les rails de siège.
  • Ces aspects, ainsi que d'autres de l'invention sont expliqués plus en détails à l'aide des exemples illustratifs et non limitants suivants.
  • Exemple
  • Dans cet exemple, plusieurs billettes (384 mm de diamètre) en alliage Al-Cu-Li dont la composition est donnée dans le tableau 1 ont été coulées (alliages 67, 74 a et b, 66, 68 et 69). La composition de deux alliages de l'art antérieur AA2196 ont également été données dans le tableau 1 ci-après. Tableau 1. Composition en % en poids et densité des alliages Al-Cu-Li utilisés
    Alliage Cu Li Mg Zn Ag Mn Zr Ti
    67 3.02 1.68 0.60 0.25 0.04 0.33 0.14 0.04
    74a 2.98 1.67 0.56 0.05 0.03 0.32 0.15 0.04
    74b 2.98 1.67 0.70 0.05 0.03 0.32 0.15 0.04
    66 3.00 1.69 0.60 0.47 0.04 0.32 0.13 0.04
    68 3.00 1.67 0.35 0.52 0.02 0.06 0.14 0.04
    69 3.00 1.66 0.33 0.52 0.05 0.31 0.144 0.04
    2 (Art antérieur) 2.83 1.59 0.36 0.02 0.38 0.33 0.11 0.02
    5 (Art antérieur) 2.90 1.67 0.40 0.01 0.38 0.31 0.1 0.03
    Pour tous les alliages 67, 74a et b, 66, 68 et 69, Fe et Si < 0.20% en poids et autres éléments inférieurs à 0.05% en poids chacun, 0.15% en poids total.
  • Les billettes en alliage 67, 74 a et b, 66, 68 et 69 ont ensuite été homogénéisées de 8 à 10h à 524°C. La billette en alliage 2 a été homogénéisée 8h à 500 °C puis 24h à 527 °C tandis que celle en alliage 5 a été homogénéisée 8h à 520 °C.
  • Après homogénéisation, les billettes ont été réchauffées à 450 °C +/- 40 °C puis filées à chaud pour obtenir des profilés W selon la figure 1 pour l'alliage 2, 67, 74 a et b, 66, 68 et 69 et Z selon la figure 2 pour les alliages 5. Les profilés ainsi obtenus ont été mis en solution à 524 °C, trempés et tractionnés avec un allongement permanent compris entre 2 et 5%.
  • Les profilés ont été soumis à un revenu tel qu'indiqué dans le tableau 2 : 30h à 152°C, 48h à 152°C, 30h à 160°C. Pour les alliages 2 et 5, le revenu a été effectué pendant 48h à 152 °C. Les temps équivalents ti à 160°C ont été calculés en prenant en compte le temps de montée jusqu'au palier de revenu et en considérant une vitesse de montée de 20°C/h.
  • Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques de même que leur ténacité (KQ). La localisation des prélèvements est indiquée en pointillés sur les figures 1 et 2. Les éprouvettes utilisées pour la mesure des propriétés statiques étaient de diamètre 10mm et prélevées de telle sorte que la direction de l'axe de l'éprouvette corresponde à la direction de filage (sens L). Les éprouvettes utilisées pour les mesures de ténacité étaient de type CT et avaient pour caractéristiques B=20 mm et W = 50 mm et ont été usinées de telle façon que la direction de chargement corresponde à la direction de filage et la direction de propagation soit perpendiculaire à la direction de filage et contenue dans le plan des figures 1 et 2 (configuration L-T).
  • Les résultats obtenus sont donnés dans le tableau 2 ci-dessous et illustrés par la figure 3 pour les alliages du tableau 1. Tableau 2. Conditions de revenu et propriétés Rp0.2 (L) et Kq (L-T) des alliages
    Revenu teq 160°C (h) Rp0.2 (L) (MPa) Kq (L-T) (MPa√m)
    66 30h - 152°C 16.8 506 27.3
    48h - 152°C 26.7 541 18.8
    30h - 160°C 30.6 545 16.6
    67 30h - 152°C 16.8 517 37.8
    48h - 152°C 26.7 564 24.8
    30h - 160°C 30.6 569 20.2
    30h -155°C 21 545 33.1
    40h - 152°C 22.2 548 29.0
    21h - 160°C 21.6 542 27.7
    68 30h - 152°C 16.8 524 17.3
    48h - 152°C 26.7 548 15.1
    30h - 160°C 30.6 545 14.9
    69 30h - 152°C 16.8 551 20.9
    48h - 152°C 26.7 566 16.6
    30h - 160°C 30.6 560 15.7
    74a 30h - 152°C 16.8 518 32.4
    48h - 152°C 26.7 552 22.0
    30h - 160°C 30.6 552 18.4
    74b 30h - 152°C 16.8 515 38.7
    48h - 152°C 26.7 550 23.0
    30h - 160°C 30.6 557 18.5
    2 48h - 152°C 26.7 522 37.6
    5 48h - 152°C 26.7 536 38.2

Claims (11)

  1. Produit en alliage à base d'aluminium comprenant, en % en poids,
    Cu : 2,5-3,4 ; préférentiellement 2,8-3,2 ;
    Li : 1,6-2,2 ; préférentiellement 1,65-1,8 ;
    Mg : 0,4-0,9 ; préférentiellement 0,5-0,8 ;
    Mn : 0,2 - 0,6 ; préférentiellement 0,3-0,6 ;
    Zr : 0,08 - 0,18 ; préférentiellement 0,12-0,16 ;
    Zn : < 0,4 préférentiellement 0,05-0,4 ; plus préférentiellement de 0,2-0,4 ;
    Ag : < 0,15 ; préférentiellement <0,1 ; plus préférentiellement encore <0,05 ;
    Fe + Si ≤ 0,20 ;
    au moins un élément choisi parmi Ti, Sc, Cr, Hf et V, la teneur de l'élément, s'il est choisi, étant :
    Ti : 0,01 - 0,15 ; préférentiellement 0,01-0,05 ;
    Sc : 0,01 - 0,15, préférentiellement 0,02-0,1 ;
    Cr : 0,01 - 0,3, préférentiellement 0,02-0,1 ;
    Hf : 0,01 - 0,5 ; préférentiellement 0,02-0,1 ;
    V : 0,01 - 0,3, préférentiellement 0,01-0,05 ;
    autres éléments ≤ 0,05 chacun et ≤ 0,15 au total, reste aluminium.
  2. Produit selon la revendication 1 dans lequel la teneur en cuivre est de 2,9 à 3,1% en poids.
  3. Produit selon une quelconque des revendications 1 à 2 dans lequel la teneur en lithium est de 1,65 à 1,75% en poids.
  4. Produit selon une quelconque des revendications 1 à 3 dans lequel la teneur en manganèse est de 0,4 à 0,6% en poids.
  5. Produit selon une quelconque des revendications 1 à 3 dans lequel la teneur en zirconium est de 0,14 à 0,15% en poids.
  6. Procédé de fabrication d'un produit filé, laminé et/ou forgé à base d'alliage d'aluminium comprenant les étapes :
    a) élaboration d'un bain de métal liquide comprenant, en pourcentage en poids, Cu : 2,5-3,4 ; Li : 1,6-2,2 ; Mg : 0,4-0,9 ; Mn : 0,2 - 0,6 ; Zr : 0,08 - 0,18 ; Zn : < 0,4 ; Ag : < 0,15 ; Fe + Si ≤ 0,20 ; au moins un élément choisi parmi Ti, Sc, Cr, Hf et V, la teneur dudit élément, s'il est choisi, étant Ti : 0,01 - 0,15 ; Sc : 0,01 - 0,15 ; Cr : 0,01 - 0,3 ; Hf : 0,01 - 0,5 ; V : 0,01 - 0,3 ; autres éléments ≤ 0,05 chacun et ≤ 0,15 au total, reste aluminium
    b) coulée d'une forme brute à partir dudit bain de métal liquide ;
    c) homogénéisation ladite forme brute ;
    d) déformation à chaud et, optionnellement, à froid de la forme brute en un produit filé, laminé et/ou forgé ;
    e) mise en solution et trempe dudit produit ;
    f) traction de façon contrôlée dudit produit avec une déformation permanente de 1 à 15%, préférentiellement de 2 à 4% ;
    g) revenu dudit produit par chauffage à 140 à 170°C pendant 5 à 70 heures de façon à ce que ledit produit ait une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L, Rp0,2 (L), d'au moins 510 MPa et une ténacité KQ (L-T), dans le sens L-T, d'au moins 21 MPa m
    Figure imgb0004
    et telle que KQ (L-T) > -0,2667Rp0,2 (L) + 169.
  7. Procédé selon la revendication 6 dans lequel la température d'homogénéisation est comprise entre 520 °C et 530°C et la durée de traitement est comprise entre 6 et 15 heures.
  8. Procédé selon une quelconque des revendications 6 à 7 dans lequel le revenu est réalisé une température comprise entre 150 à 165 °C pendant un temps à équivalent t, à 160°C compris entre 15 et 28h, préférentiellement entre 20 et 27h, t i étant défini par la formule : t i = exp 16400 / T dt exp 16400 / T ref
    Figure imgb0005
    où T (en Kelvin) est la température instantanée de traitement du métal, qui évolue avec le temps t (en heures), et Tref est une température de référence fixée à 433 K.
  9. Produit obtenu selon l'une quelconque des revendications 6 à 8 caractérisé en ce qu'il présente une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L, Rp0,2 (L), d'au moins 525 MPa et une ténacité KQ (L-T), dans le sens L-T, d'au moins 23 MPaVm et telle que KQ (L-T) > -0,2667*Rp0,2 (L) + 171.
  10. Elément de structure incorporant au moins un produit selon une quelconque des revendications 1 à 5 ou fabriqué à partir d'un produit obtenu selon l'une quelconque des revendications 6 à 8.
  11. Utilisation d'un élément de structure selon la revendication 10 comme un raidisseur ou un cadre d'éléments intrados ou extrados d'aile d'avion, ou une poutre de plancher ou un rail de siège.
EP18724941.2A 2017-04-10 2018-04-09 Produits en alliage aluminium-cuivre-lithium Active EP3610047B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE18724941.2T DE18724941T1 (de) 2017-04-10 2018-04-09 Aluminium-Kupfer-Lithium-Legierungsprodukte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753133A FR3065011B1 (fr) 2017-04-10 2017-04-10 Produits en alliage aluminium-cuivre-lithium
PCT/FR2018/050886 WO2018189471A1 (fr) 2017-04-10 2018-04-09 Produits en alliage aluminium-cuivre-lithium

Publications (2)

Publication Number Publication Date
EP3610047A1 EP3610047A1 (fr) 2020-02-19
EP3610047B1 true EP3610047B1 (fr) 2023-08-23

Family

ID=59811392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18724941.2A Active EP3610047B1 (fr) 2017-04-10 2018-04-09 Produits en alliage aluminium-cuivre-lithium

Country Status (8)

Country Link
US (1) US20210087665A1 (fr)
EP (1) EP3610047B1 (fr)
CN (1) CN110536972B (fr)
BR (1) BR112019021170B1 (fr)
CA (1) CA3058021A1 (fr)
DE (1) DE18724941T1 (fr)
FR (1) FR3065011B1 (fr)
WO (1) WO2018189471A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249665A (zh) * 2021-07-02 2021-08-13 中国航发北京航空材料研究院 一种铝合金构件的成形方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032359A (en) 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5198045A (en) 1991-05-14 1993-03-30 Reynolds Metals Company Low density high strength al-li alloy
US7229509B2 (en) 2003-05-28 2007-06-12 Alcan Rolled Products Ravenswood, Llc Al-Cu-Li-Mg-Ag-Mn-Zr alloy for use as structural members requiring high strength and high fracture toughness
FR2894985B1 (fr) * 2005-12-20 2008-01-18 Alcan Rhenalu Sa Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion
FR2938553B1 (fr) * 2008-11-14 2010-12-31 Alcan Rhenalu Produits en alliage aluminium-cuivre-lithium
FR3004464B1 (fr) * 2013-04-12 2015-03-27 Constellium France Procede de transformation de toles en alliage al-cu-li ameliorant la formabilite et la resistance a la corrosion
FR3014448B1 (fr) * 2013-12-05 2016-04-15 Constellium France Produit en alliage aluminium-cuivre-lithium pour element d'intrados a proprietes ameliorees
FR3014905B1 (fr) * 2013-12-13 2015-12-11 Constellium France Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees
FR3014904B1 (fr) * 2013-12-13 2016-05-06 Constellium France Produits files pour planchers d'avion en alliage cuivre lithium
CN106521270B (zh) * 2016-12-07 2018-08-03 中国航空工业集团公司北京航空材料研究院 一种改善铝锂合金耐腐蚀性能的热处理工艺

Also Published As

Publication number Publication date
WO2018189471A1 (fr) 2018-10-18
US20210087665A1 (en) 2021-03-25
CN110536972A (zh) 2019-12-03
BR112019021170B1 (pt) 2023-05-09
FR3065011A1 (fr) 2018-10-12
BR112019021170A2 (pt) 2020-04-28
CN110536972B (zh) 2022-01-25
DE18724941T1 (de) 2020-06-04
FR3065011B1 (fr) 2019-04-12
CA3058021A1 (fr) 2018-10-18
EP3610047A1 (fr) 2020-02-19

Similar Documents

Publication Publication Date Title
EP2364378B1 (fr) Produits en alliage aluminium-cuivre-lithium
EP2449142B1 (fr) Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
EP2710163B1 (fr) Alliage aluminium magnésium lithium à ténacité améliorée
EP2766503B1 (fr) Procédé de transformation amélioré de tôles en alliage al-cu-li
EP3201371B1 (fr) Procédé de fabrication d&#39;un produit corroyé en alliage aluminium- magnésium-lithium, produit corroyé et utilisation du produit corroyé
EP2655680B1 (fr) Alliage aluminium cuivre lithium à résistance en compression et ténacité améliorées
EP1492896B1 (fr) Produits corroyes en alliages al-zn-mg-cu a tres hautes caracteristiques mecaniques, et elements de structure d aeronef
EP2569456B1 (fr) Alliage aluminium-cuivre-lithium pour element d&#39;intrados
EP3384061B1 (fr) Alliage aluminium cuivre lithium à resistance mécanique et tenacité ameliorées
EP3610047B1 (fr) Produits en alliage aluminium-cuivre-lithium
EP3788178B1 (fr) Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
CA3001519C (fr) Toles minces en alliage aluminium-magnesium-zirconium pour applications aerospatiales
WO2019211546A1 (fr) Procede de fabrication d&#39;un alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
FR3026411A1 (fr) Procede de fabrication de produits en alliage aluminium magnesium lithium
FR3026410B1 (fr) Produit corroye en alliage aluminium magnesium lithium

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: AT

Ref legal event code: EECC

Ref document number: AT T

Effective date: 20200415

REG Reference to a national code

Ref document number: 602018055901

Country of ref document: DE

Ref country code: DE

Ref legal event code: R210

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602018055901

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018055901

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823