EP1488018B1 - Produits en alliages al-mg pour construction soudee - Google Patents

Produits en alliages al-mg pour construction soudee Download PDF

Info

Publication number
EP1488018B1
EP1488018B1 EP03738175A EP03738175A EP1488018B1 EP 1488018 B1 EP1488018 B1 EP 1488018B1 EP 03738175 A EP03738175 A EP 03738175A EP 03738175 A EP03738175 A EP 03738175A EP 1488018 B1 EP1488018 B1 EP 1488018B1
Authority
EP
European Patent Office
Prior art keywords
product according
preferentially
mpa
less
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03738175A
Other languages
German (de)
English (en)
Other versions
EP1488018A2 (fr
Inventor
Ronan Dif
Christine Henon
Jérôme GUILLEMENET
Hervé Ribes
Georges Pillet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Alcan Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Rhenalu SAS filed Critical Alcan Rhenalu SAS
Publication of EP1488018A2 publication Critical patent/EP1488018A2/fr
Application granted granted Critical
Publication of EP1488018B1 publication Critical patent/EP1488018B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates to alloys of Al-Mg type with high mechanical strength, and more particularly alloys for welded constructions such as automobile bodies, industrial vehicles and fixed or mobile tanks.
  • the parameters that govern the user's choice are essentially the static mechanical characteristics: the tensile strength R m , the elastic limit R p0 , 2 , and the elongation at break A.
  • Other parameters that come into play, depending on the specific needs of the intended application, are the mechanical characteristics of the welded joint, the corrosion resistance of the sheet and the welded joint, the fatigue strength of the sheet and of the welded joint, resistance to crack propagation, toughness, bendability, weldability, propensity for the formation of residual stresses under conditions of manufacture and use of the specified sheets, and the ease of producing regular quality sheet metal with a production cost as low as possible.
  • the state of the art offers several ways to improve the mechanical characteristics of Al-Mg type alloys.
  • EP 769 564 A1 discloses an alloy of composition (in percent by mass): Mg 4.2 - 4.8 Mn ⁇ 0.5 Zn ⁇ 0.4 Fe ⁇ 0.45 If ⁇ 0.30 with Mn + Zn ⁇ 0.7 and Fe> 0.5 Mn which may also contain certain other elements, which makes it possible to manufacture sheets having in a low-wrought state a value of R m > 275 MPa, a value of A> 17.5% and a product R m ⁇ A>6500; a better controlled composition makes it possible to bring this product R m x A to a value greater than 7000 and even greater than 7500. Alloys of this type are used under the designation 5186 in construction of welded road tanks.
  • the product R m x A is used as a parameter to estimate the behavior of the structures under a large plastic deformation, for example in case of damage.
  • the person skilled in the art knows how to increase in one of the known Al-Mg alloys one of the two parameters R m and A to the detriment of the other; said patent application teaches that sheets with a better compromise between these two parameters can be obtained if the sheet has a very particular microstructure.
  • the sheets 5186 alloy are characterized not only by a product R m x A high, but also by a high value of A, which promotes the folding of said sheets and facilitated their use in mechanical engineering.
  • compositional products 3.0 ⁇ Mg ⁇ 6.5 0.2 ⁇ Mn ⁇ 1.0 Fe ⁇ 0.8 0.05 ⁇ Si ⁇ 0.6 Zn ⁇ 1.3 may also contain some other elements, and characterized by a very particular microstructure; these products have not been designed for use in the construction of tanks but for welded constructions used in contact with seawater or in the maritime environment.
  • the problem addressed by the present invention is to improve the mechanical characteristics of Al-Mg alloy products, in particular with a view to their use for producing welded constructions, such as tanks for road or rail transport of hazardous materials, while keeping the other characteristics of the material at a level at least comparable to that of existing materials.
  • the object of the invention is a wrought product of Al-Mg alloy, characterized in that it contains (in mass percents) Mw 4.85 - 5.35 Mn 0.20 - 0.50 Zn 0.20 - 0.45 If ⁇ 0.20 Fe ⁇ 0.30 Cu ⁇ 0.25 Cr ⁇ 0.15 Ti ⁇ 0.15 Zr ⁇ 0.15 the rest of the aluminum with its inevitable impurities.
  • Another subject of the invention is a road or rail tank made at least partially with sheet metal (in percent by mass) Mg 4.90 - 5.35 Mn 0.20 - 0.50 Zn 0.25 - 0.45 If 0.05 - 0.20 Fe 0.10 - 0.30 Cu ⁇ 0.25 Cr ⁇ 0.15 Ti ⁇ 0.15 Zr ⁇ 0.10 the rest of the aluminum with its inevitable impurities, said sheets having a product R m (TL) x A (TL) of at least 8500, and preferably at least 9000.
  • the designation of the alloys follows the rules of The Aluminum Association. Unless otherwise stated, the chemical compositions are indicated in percent by weight.
  • the Applicant has surprisingly found that in order to solve the problem, it is necessary to select a very narrow Al-Mg-Mn-Zn composition range which is distinctly different from that of alloy 5186. In particular, it is necessary to increase the content of magnesium, add a small amount of zinc, and reduce the levels of minor addition elements, Fe, Si, and Mn, while keeping them above a minimum level.
  • magnesium is well known to increase the mechanical characteristics (R 0 , 2 and R m ) of certain types of aluminum alloys; the Applicant has found that a magnesium content of at least 4.85%, preferably greater than 4.90% and even more preferably greater than 4.95% or even 5.00%, makes it possible to obtain the level of characteristics mechanical requirements. However, beyond 5.35% magnesium, the corrosion resistance begins to degrade; a maximum value of 5.30% is preferred.
  • the addition of zinc in sufficient quantity is found to have a beneficial effect on the mechanical characteristics of the sheets and on the limit of elasticity at the welded joints. Moreover, it improves the resistance to corrosion. In the context of the present invention, it is preferred not to exceed a content of 0.45%. A content of between 0.25% and 0.40% is preferred.
  • the Applicant has found that a minimum content of 0.20% of manganese must be maintained to control the granular structure, but it must remain below 0.50% and preferably 0.40%, in order to avoid the formation of coarse intermetallic phases and to facilitate recrystallization in the final state.
  • the preferred range is from 0.25 to 0.35%.
  • the presence of manganese in sufficient quantity also contributes to obtaining the mechanical characteristics.
  • copper is known to degrade the general corrosion behavior.
  • the applicant has found that it is preferable to maintain the copper content below 0.25%; a content of less than 0.20%, less than 0.15% or even less than 0.10% is preferred.
  • Iron and silicon are the usual impurities of aluminum.
  • the iron content must not exceed 0.30% and the silicon content 0.20%.
  • the Applicant has surprisingly found that the presence of a certain amount of iron and silicon contributes to achieving the objective of the present invention: by way of example, a content of at least 0.05% of Silicon promotes a finely recrystallized granular microstructure.
  • a content of at least 0.10% is preferred.
  • the product according to the invention may contain a small amount of chromium, titanium and zirconium.
  • the content of each of these elements must not exceed 0.15%, and more preferably 0.10%, because a too high content of these elements limits the recrystallization and leads to a fall in the value of A.
  • the products according to the invention are always produced by semi-continuous casting, followed by the conversion steps which correspond to the desired product shape: spinning for spun or drawn products (bars, tubes, profiles, wires); rolling for rolled products (sheets, strips, thick plates).
  • the rolling plates produced by semi-continuous casting are hot-rolled, then possibly cold-rolled.
  • the strips are then glued and cut into sheets.
  • the hot mill outlet temperature and the winding temperature as well as the rate of work hardening which affect the mechanical characteristics of the product must be carefully adjusted.
  • the preferred final thickness is between 3 and 12 mm.
  • the sheet is obtained directly at the final thickness by hot rolling. In this case, an outlet temperature of the hot rolling mill of between 260 ° C.
  • This particular embodiment of the invention namely the direct obtaining of the sheets at the final thickness not hot rolling, also facilitates the manufacture of sheets of very large width, for example greater than 3000 mm, and preferably higher at 3300 mm and even more preferably above 3500 mm.
  • the product according to the invention is characterized by an elongation at rupture A of at least 24%, and preferably at least 27%. This feature facilitates the implementation of the product. For example, it gives the rolled sheets an excellent ability to bend and shape.
  • a product which has a yield strength R p0 , 2 (TL) of at least 145 MPa, preferably at least 150 MPa and even more preferably at least 170 MPa, a breaking strength R m (TL) of at least 290 MPa and preferably at least 300 MPa, and an elongation at break A (TL) of at least 24% and preferably at least 27%.
  • Mn 0.20-0.40 Zn> 0.25 and preferably> 0.30, an iron content of at least 0.10% iron, and a content of silicon of at least 0.10%.
  • R m (TL) x A (TL) it is sought essentially to optimize the product R m (TL) x A (TL) .
  • This product, especially in the form of sheets, is particularly suitable for the manufacture of tanks, particularly for the road or rail transport of hazardous materials.
  • the products according to the invention show a corrosion resistance at least as good as the comparable Al-Mg alloy products which are known, and this, despite a significantly higher magnesium content.
  • this corrosion resistance is preferably characterized, either by the loss of mass and by the maximum depth of metal having defects due to intergranular corrosion after an intergranular corrosion test ( Official Journal of the European Communities, 19/11/1984, N ° L300-35 to 43 ), or by a stress corrosion test performed according to ASTM G 30, G39, G44 and G49.
  • the stress corrosion test can advantageously be carried out with reference to the ASTM G 129 standard, the applicant having established in the past the good correlation between these standards and ASTM G 129 (cf. R.
  • the selected intergranular corrosion test is considered representative of a natural exposure in a marine atmosphere ( R.Dif et al., Proceedings of the EUROCORR Conference, 1999, Aachen, Germany ).
  • the corrosion behavior is evaluated in the initial state but also after artificial aging treatments whose conditions may vary.
  • a treatment of 7 days at 100 ° C is conventionally used on the alloys of the 5xxx series in order to reproduce the natural aging at room temperature during about twenty years ( EHDix et al., Proceedings of the 4th Annual Conference of NACE, San Francisco, USA, 1958 ).
  • the structures can be subjected to relatively high temperatures (above 60 ° C).
  • temperatures above 60 ° C.
  • certain alloys of the 5xxx series can develop, beyond a certain duration of exposure, a certain sensitivity to corrosion.
  • sensitization phenomenon it is advisable to carry out thermal treatments more advanced than 7 days at 100 ° C.
  • the concept of equivalent time is usually used to limit the number and duration of treatments to be performed.
  • Q represents the thermal activation energy of the magnesium diffusion (in J / mol).
  • R is the constant of perfect gases.
  • the value of the report Q R from the literature is of the order of 10,000K to 13,500K.
  • the products according to the invention show, during the intergranular test, an intergranular corrosion resistance which is characterized by at least a loss of mass of less than 20 mg / cm 2 after an aging of 7. days at 100 ° C., and with a maximum attack depth of less than 130 ⁇ m, and preferably less than 70 ⁇ m.
  • said products also show, after aging for 20 days at 100 ° C., a mass loss of less than 50 mg / cm 2 and preferably less than 30 mg / cm 2 , and a maximum attack depth of less 250 microns, and preferably less than 100 microns.
  • the most preferred products in the context of the present invention show, after an aging of 20 days at 120 ° C., a loss of mass of less than 95 mg / cm 2 , and preferably less than 80 mg / cm 2 , and even more preferentially less at 60 mg / cm 2 , with a maximum attack depth of less than 450 ⁇ m and preferentially less than 400 ⁇ m, it being understood that this characteristic is added to at least one of the characteristics mentioned above, namely after aging for 20 days at 100 ° C or 20 days at 120 ° C.
  • These products, if they possess in addition to excellent mechanical characteristics for example a product R m x A of at least 8500 or even 9000 are particularly suitable for the manufacture of welded constructions, such as road or rail tanks, as explained below.
  • the Applicant prefers the Slow Strain Rate Testing method described for example in the ASTM G129 standard. This test is faster and has been shown to be more discriminating than the conventional methods of determining the non-breaking stress stress corrosion stress, provided that the experimental conditions are well controlled.
  • the principle of the slow tensile test consists in comparing the tensile properties in an inert medium (laboratory air) and in an aggressive medium.
  • the decrease in static mechanical properties in a corrosive environment corresponds to the sensitivity to stress corrosion.
  • the features of the most sensitive tensile test are elongation at break A and maximum stress (at necking) R m .
  • the Applicant has found that the elongation at break is a parameter much more discriminating than the maximum stress. It is necessary to ensure that the reduction of the static mechanical characteristics corresponds effectively to stress corrosion, defined as synergistic and simultaneous action of the mechanical stress and the environment.
  • the critical aspects of the slow tensile test are the selection of the tensile specimen, the rate of deformation and the corrosive solution.
  • the Applicant has used a specimen (taken in the Travers-Long direction), having an indented shape with a radius of curvature of 100 mm, which makes it possible to locate the deformation and make the test even more severe. Concerning the speed of stress, too fast a speed does not allow the phenomena of stress corrosion to develop, but a speed too slow mask the corrosion under stress.
  • the Applicant has used a deformation speed of 5.10 -5 s -1 (corresponding to a traverse displacement speed of 4.5 ⁇ 10 -2 mm / min) which makes it possible to maximize the effects of stress corrosion cracking ( R.Dif et al., Proceedings of the 6th International Conference on Aluminum Alloys, 1998, Toyohashi, Japan, pp. 1615-1620 ).
  • the products according to the invention can advantageously be used for welded constructions, for the construction of road or rail tanks or for the construction of industrial vehicles. They can also be used for the construction of automobile bodies, especially as reinforcements. They show good fitness skills.
  • the products according to the invention are used in the form of rolled sheets in a slightly hardened metallurgical state, such as the O state or the H111 state, with a thickness of between 3 mm and 12 mm, and preferably between 4.5 mm and 10 mm, for the construction of road or rail tanks, said sheets being characterized by a product R m (TL) x A (TL) greater than 8200, preferably greater than 8500 and even more preferably greater than 9000 and good corrosion resistance.
  • a slightly hardened metallurgical state such as the O state or the H111 state
  • the weight loss during an intergranular corrosion resistance test is less than 30 mg / cm 2 after aging for 20 days at 100 ° C.
  • the CSC index in Slow traction is less than 50% after 20 days aging at 100 ° C.
  • the products according to the invention can be welded by all the welding processes that can be used for Al-Mg type alloys, such as MIG or TIG welding, friction welding, laser welding, electron beam welding. . More particularly, the Applicant has found that the MIG welding of the products according to the invention leads to welded joints characterized by a breaking limit at least as high as with known alloys such as 5186. These welding tests were carried out in the Travers-Long direction on H111 butt-welded metal plates with a V-chamfer by semi-automatic smooth-flow MIG welding with a 5183 alloy filler wire.
  • the rolling plates were heated and then hot rolled.
  • the plate corresponding to Example H1 was heated in three stages: 10 h at 490 ° C, 10 h at 510 ° C, 3 h 45 min at 490 ° C and then hot rolled with a temperature of inlet at 490 ° C and a winding temperature of 310 ° C.
  • the heating was done in two stages (21h at 510 ° C + 2h at 490 ° C), the rolling inlet temperatures were 477 respectively.
  • Alloys A, B, C, D, E and F are alloys according to the state of the art. Alloys G, H and I are alloys according to the invention. The properties of the sheets made from these alloys are shown in Table 2. The sheets bear the same reference letter as the alloy in which they were made.
  • test piece was taken in the long direction through the welded joint so that the seal is in the middle. With the cord trimmed symmetrically, we found a value of R m of 285 MPa, and with an unstressed cord a value of 311 MPa.
  • LDH Limit Dome Height
  • LDH is a peripherally locked blank coining test ( R. Thompson, "The LDH test to evaluate the sheet metal formability-Final report of the LDH Committee of the North American Deep Drawing Research Group, SAE Conference, Detroit, 1993, SAE Paper No. 93-0815 ).
  • the blank size 490 mm x 490 mm is solicited in equiaxed bi-expansion. Lubrication between the punch (diameter 250 mm) and the sheet is ensured by a plastic film and grease.
  • the value LDH is the displacement of the punch at break, the limit depth of the stamping.
  • a value of 101 mm is obtained for the sheet H1, and a value of 94.1 mm for the sheet H2.
  • an alloy of the prior art with a comparable thickness had obtained the LDH value of 94.3 mm (cf. L. Cottignies et al., "AA 5186: a new aluminum alloy for welded constructions", Journal of Light Metal Welding and Construction, 1999 ).
  • the alloy according to the invention has a better resistance to corrosion under stress after aging, especially for intermediate levels of aging, despite a higher magnesium content.
  • the alloy according to the invention has a level of resistance to intergranular corrosion comparable to or better than that of the prior art.
  • a rolling plate with a composition of: Mg 5.0%, Zn 0.30%, Mn 0.35%, Si 0.01%, Fe 0.15%, Cu 0.03% was produced by semi-continuous casting. , Zr 0.02%, Cr 0.03%, Ni ⁇ 0.01%, Ti 0.02%. After homogenization for 19 h at 505 ° C, the plate was hot rolled to a thickness of 7 mm. After a slight leveling, the sheets were annealed with a rise in temperature at 378 ° C for 8 h, followed by a hold for 30 minutes at a temperature between 378 ° C and 390 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Powder Metallurgy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

    Domaine technique de l'invention
  • La présente invention concerne les alliages de type Al-Mg à haute résistance mécanique, et plus particulièrement les alliages destinés à des constructions soudées telles que les carrosseries d'automobiles, les véhicules industriels et les réservoirs fixes ou mobiles.
  • Etat de la technique
  • Pour augmenter la résistance mécanique des constructions soudées tout en diminuant leur poids, il est intéressant de disposer par rapport aux alliages 5083, 5086, 5182, 5186 ou 5383 actuellement utilisés, de caractéristiques mécaniques améliorées sans rien perdre sur les autres propriétés d'emploi telles que la soudabilité, la résistance à la corrosion ou la formabilité, notamment dans les états peu écrouis tels que l'état O et l'état H111. La désignation de ces alliages suit les règles de The Aluminum Association, et celle des états métallurgiques est définie dans la norme européenne EN 515.
  • Pour le dimensionnement d'une structure, les paramètres qui gouvernent le choix de l'utilisateur sont essentiellement les caractéristiques mécaniques statiques : la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A. D'autres paramètres qui entrent en jeu, en fonction des besoins spécifiques de l'application visée, sont les caractéristiques mécaniques du joint soudé, la résistance à la corrosion de la tôle et du joint soudé, la résistance à la fatigue de la tôle et du joint soudé, la résistance à la propagation de fissures, la ténacité, l'aptitude au pliage, l'aptitude au soudage, la propension à la formation de contraintes résiduelles dans des conditions de fabrication et d'utilisation des tôles déterminées, et la facilité de produire des tôles de qualité régulière avec un coût de production aussi bas que possible.
    L'état de la technique propose plusieurs voies pour améliorer les caractéristiques mécaniques des alliages de type Al-Mg.
  • La demande de brevet européen EP 769 564 A1 (Pechiney Rhenalu) divulgue un alliage de composition (en pourcent massique) :
    Mg 4,2 - 4,8 Mn < 0,5 Zn < 0,4 Fe < 0,45 Si < 0,30
    avec Mn + Zn < 0,7 et Fe > 0,5 Mn
    pouvant contenir également certains autres éléments, qui permet de fabriquer des tôles présentant dans un état peu écroui une valeur de Rm > 275 MPa, une valeur de A > 17,5 % et un produit Rm x A > 6500 ; une composition mieux contrôlée permet de porter ce produit Rm x A à une valeur supérieure à 7000 et même supérieure à 7500.
    Des alliages de ce type sont utilisés sous la désignation 5186 en construction de citernes routières soudés. Pour cette application, le produit Rm x A est utilisé comme paramètre pour estimer le comportement des structures sous une grande déformation plastique, par exemple en cas d'avarie. L'homme du métier sait comment augmenter dans un des alliages de type Al-Mg connus l'un des deux paramètres Rm et A au détriment de l'autre ; ladite demande de brevet enseigne que des tôles avec un meilleur compromis entre ces deux paramètres peuvent être obtenues si la tôle présente une microstructure très particulière. Les tôles en alliage 5186 se caractérisent non seulement par un produit Rm x A élevé, mais aussi par une valeur de A élevée, ce qui favorise le pliage desdites tôles et facilité leur utilisation en construction mécanique.
  • Une autre voie est proposée par la demande de brevet JP 62-207850 (Sky ) qui divulgue des alliages de composition (en pourcent massique) :
    Mg 2 - 6 Mn 0,05 - 1,0 Cr 0,03 - 0,3 Zr 0,03 - 0,3 V 0,03 - 0,3
    pouvant contenir en plus Cu 0,05 - 2,0 et / ou Zn 0,1- 2,0
    élaborés par coulée continue et dont la taille de particules intermétalliques est inférieure ou égale à 5 µm. Ces alliages seraient aptes à la fabrication de tôles pour carrosserie d'automobiles, car ils permettraient d'élaborer, moyennant des gammes de traitement thermo-mécanique très particulières, des tôles d'une épaisseur de 1 mm qui ne montrent pas de lignes de Lüders.
  • Une autre voie est proposée par le brevet EP 0 892 858 B1 (Hoogovens Aluminium Walzprodukte GmbH) qui divulgue des alliages de composition
    Mg 5 - 6 Mn 0,6 - 1,2 Zn 0,4 - 1.5 Zr 0,05 - 0,25
    pouvant contenir également certains autres éléments, qui permettent de fabriquer des alliages très durs, notamment avec une teneur en zinc de l'ordre de 0,8 %. Ces produits montrent un allongement à la rupture ne dépassant pas une valeur de l'ordre de 10 % à l'état H321 et de 20 % à l'état O.
  • Le brevet EP 823 489 B1 (Pechiney Rhenalu) divulgue des produits de composition
    3,0 < Mg < 6,5 0,2 < Mn < 1,0 Fe < 0,8 0,05 < Si < 0,6 Zn < 1,3
    pouvant contenir également certains autres éléments, et caractérisés par une microstructure très particulière ; ces produits n'ont pas été conçus pour être utilisés pour la construction de citernes mais pour les constructions soudées utilisées en contact avec l'eau de mer ou en milieu maritime.
  • Problème posé
  • Le problème auquel essaye de répondre la présente invention est d'améliorer les caractéristiques mécaniques de produits en alliage Al-Mg, notamment en vue de leur utilisation pour réaliser des constructions soudées, telles que des citernes pour transport routier ou ferroviaire de matières dangereuses, tout en gardant les autres caractéristiques du matériau à un niveau au moins comparable à celui des matériaux existants.
  • Objet de l'invention
  • L'objet de l'invention est un produit corroyé en alliage Al-Mg, caractérisé en ce qu'il contient (en pourcents massiques)
    Mg 4,85 - 5,35 Mn 0,20 - 0,50 Zn 0,20 - 0,45
    Si < 0,20 Fe < 0,30 Cu < 0,25 Cr < 0,15
    Ti < 0,15 Zr < 0,15
    le reste de l'aluminium avec ses inévitables impuretés.
  • Un autre objet de l'invention est une citerne routière ou ferroviaire réalisée au moins partiellement avec des tôles de composition (en pourcent massique)
    Mg 4,90 - 5,35 Mn 0,20 - 0,50 Zn 0,25 - 0,45
    Si 0,05 - 0,20 Fe 0,10 - 0,30 Cu < 0,25 Cr < 0,15
    Ti < 0,15 Zr < 0,10
    le reste de l'aluminium avec ses inévitables impuretés,
    lesdites tôles ayant un produit Rm(TL) x A(TL) d'au moins 8500, et préférentiellement d'au moins 9000.
  • Description détaillée de invention
  • La désignation des alliages suit les règles the The Aluminum Association. Sauf mention contraire, les compositions chimiques sont indiquées en pourcent massique. Les états métallurgiques sont définis dans la norme européenne EN 515. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2 et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, sur des éprouvettes proportionnelles (et caractérisées par une longueur initiale entre repères Lo = 5,65 √So où So représente l'aire de la section initiale) prélevées au sens TL (travers-long).
  • La demanderesse a trouvé de façon surprenante que pour résoudre le problème posé, il faut sélectionner un domaine de composition Al-Mg-Mn-Zn très étroit qui se distingue nettement de celui de l'alliage 5186. Notamment, il faut augmenter la teneur en magnésium, ajouter une faible quantité de zinc, et réduire les teneurs en éléments d'addition mineurs, Fe, Si, et Mn, tout en les gardant au dessus d'un niveau minimum.
  • En effet, le magnésium est bien connu pour augmenter les caractéristiques mécaniques (R0,2 et Rm) de certains types d'alliages d'aluminium ; la demanderesse a constaté qu'une teneur en magnésium d'au moins 4,85 %, préférentiellement supérieure à 4,90 % et encore plus préférentiellement supérieure à 4,95 % ou même 5,00 % permet d'obtenir le niveau de caractéristiques mécaniques requis. Cependant, au delà de 5,35 % de magnésium, la résistance à la corrosion commence à se dégrader ; une valeur maximale de 5,30 % est préférée.
  • L'addition de zinc en quantité suffisante (minimum 0,20 %, préférentiellement au moins 0,25 % et encore plus préférentiellement au moins 0,30 %) se révèle avoir un effet bénéfique sur les caractéristiques mécaniques des tôles et sur la limite d'élasticité au niveau des joints soudés. Par ailleurs, il améliore la résistance à la corrosion. Dans le cadre de la présente invention, on préfère ne pas dépasser une teneur de 0,45 %. On préfère une teneur comprise entre 0,25 % et 0,40 %.
  • La demanderesse a constaté qu'une teneur minimale de 0,20 % de manganèse doit être maintenue pour contrôler la structure granulaire, mais qu'elle doit rester inférieure à 0,50 % et de préférence 0,40 %, afin d'éviter la formation de phases intermétalliques grossières et de faciliter la recristallisation à l'état final. Le domaine préféré est de 0,25 à 0,35 %. La présence de manganèse en quantité suffisante contribue également à l'obtention des caractéristiques mécaniques.
  • Dans les alliages 5xxx, le cuivre est connu pour dégrader la tenue générale en corrosion. La demanderesse a trouvé qu'il est préférable de maintenir la teneur en cuivre inférieure à 0,25 % ; une teneur inférieure à 0,20 %, inférieure à 0,15 % ou même inférieure à 0,10 % est préférée.
  • Le fer et le silicium sont des impuretés habituelles de l'aluminium. Dans le cadre de la présente invention, la teneur en fer ne doit pas dépasser 0,30 % et la teneur en silicium 0,20 %. Toutefois, la demanderesse a constaté de façon surprenante que la présence d'une certaine quantité de fer et de silicium contribue à atteindre l'objectif de la présente invention : à titre d'exemple, une teneur d'au moins 0,05 % de silicium favorise une microstructure granulaire finement recristallisée. Pour le fer, on préfère une teneur d'au moins 0,10 %.
  • Le produit selon l'invention peut contenir une faible quantité de chrome, de titane et de zirconium. La teneur en chacun de ces éléments ne doit pas dépasser 0,15 %, et plus préférentiellement 0,10 %, car une teneur trop élevée en ces éléments limite la recristallisation et conduit à une baisse de la valeur de A.
  • Les produits selon l'invention sont toujours élaborés par coulée semi-continue, suivie des étapes de transformation qui correspondent à la forme de produit souhaitée : filage pour les produits filés ou étirés (barres, tubes, profilés, fils) ; laminage pour les produits laminés (tôles, bandes, tôles épaisses). Dans le cas des produits laminés, les plaques de laminage élaborées par coulée semi-continue sont laminées à chaud, puis éventuellement à froid. Les bandes sont ensuite planées et débitées en tôles. Dans ce procédé de fabrication, on doit ajuster soigneusement la température de sortie du laminoir à chaud et la température de bobinage ainsi que le taux d'écrouissage qui influent sur les caractéristiques mécaniques du produit. L'épaisseur finale préférée est comprise entre 3 et 12 mm. Dans un mode de réalisation préférée de l'invention, on obtient directement la tôle à l'épaisseur finale par laminage à chaud. Dans ce cas, on choisira avantageusement une température de sortie du laminoir à chaud comprise entre 260 °C et 330 °C, et préférentiellement comprise entre 290 °C et 330 °C. Au-dessous de 260 °C, la microstructure obtenue ne convient pas bien à l'application visée, et au-dessus de 330 °C, on observe parfois un grossissement du grain qui dégrade les caractéristiques mécaniques recherchées. Ce mode d'exécution particulier de l'invention, à savoir l'obtention directe des tôles à l'épaisseur finale pas laminage à chaud, facilite également la fabrication de tôles de très grande largeur, par exemple supérieure à 3000 mm, et préférentiellement supérieure à 3300 mm et encore plus préférentiellement supérieur à 3500 mm.
  • Dans un mode de réalisation préféré, le produit selon l'invention se caractérise par un allongement à rupture A d'au moins 24 %, et préférentiellement d'au moins 27 %. Cette caractéristique facilite la mise en oeuvre du produit. A titre d'exemple, elle confère aux tôles laminées une excellente aptitude au pliage et à la mise en forme.
  • Dans un autre mode de réalisation préféré, on cherche à optimiser les trois paramètres Rp0,2(TL), Rm(TL) et A(TL). L'indice "TL" indique que ces caractéristiques mécaniques sont mesurées sur des éprouvettes de traction prélevées dans le sens Travers-Long (perpendiculaire au sens de laminage) des tôles. En ajustant de façon appropriée la composition chimique à l'intérieur des zones indiquées, on obtient un produit qui présente une limite d'élasticité Rp0,2(TL) d'au moins 145 MPa, préférentiellement d'au moins 150 MPa et encore plus préférentiellement au moins 170 MPa, une résistance à la rupture Rm(TL) d'au moins 290 MPa et préférentiellement au moins 300 MPa, et un allongement à la rupture A(TL) d'au moins 24 % et préférentiellement d'au moins 27 %.
  • A titre d'exemple, on peut choisir avantageusement Mn 0,20 - 0,40, Zn > 0,25 et préférentiellement > 0,30, une teneur en fer d'au moins 0,10 % de fer, et une teneur en silicium d'au moins 0,10 %.
  • Dans un autre mode de réalisation préféré, on cherche à optimiser essentiellement le produit Rm(TL) x A(TL). En ajustant de façon appropriée la composition chimique à l'intérieur des zones indiquées, on obtient un produit présentant un produit Rm(TL) x A(TL), dans lequel Rm(TL) est exprimé en MPa et A(TL) en pourcent, mesuré sur des éprouvettes prélévés au sens TL, est supérieur à 8200, préférentiellement supérieur à 8500 et encore plus préférentiellement supérieur à 9000, tout en gardant un niveau suffisant de Rp0,2(TL). Ce produit, notamment sous forme de tôles, est particulièrement apte à la fabrication de citernes, notamment pour le transport routier ou ferroviaire de matières dangereuses.
  • Les produits selon l'invention montrent une résistance à la corrosion au moins aussi bonne que les produits en alliages Al-Mg comparables qui sont connus, et ce, malgré une teneur en magnésium notablement plus élevée. Dans le cadre de la présente invention, cette résistance à la corrosion est caractérisée de façon préférée, soit par la perte de masse et par la profondeur maximale de métal présentant des défauts dus à la corrosion intergranulaire après un test de corrosion intergranulaire (Journal Officiel des Communautés Européennes, 19/11/1984, N°L300-35 à 43), soit par un essai de corrosion sous contrainte réalisé suivant la norme ASTM G 30, G39, G44 et G49. L'essai de corrosion sous contrainte peut être réalisé avantageusement en se référant à la norme ASTM G 129, la demanderesse ayant établi par le passé la bonne corrélation entre ces normes et la norme ASTM G 129 (voir R. Dif et al., Proceedings of the 6th International Conference on Aluminium Alloys, 1998, Toyohashi, Japon, pp. 1615-1620, ainsi que R. Dif et al., Proceedings of the Eurocorr Conference 1997, Trondheil, Norvège, pp. 259 - 264).
  • L'essai de corrosion intergranulaire choisi est réputé représentatif d'une exposition naturelle en atmosphère marine (R.Dif et al., Proceedings of the EUROCORR Conference, 1999, Aix-la-Chapelle, Allemagne).
  • Le comportement en corrosion est évalué à l'état initial mais également après des traitements de vieillissement artificiel dont les conditions peuvent varier. Un traitement de 7 jours à 100 °C est classiquement utilisé sur les alliages de la série 5xxx afin de reproduire le vieillissement naturel à température ambiante pendant une vingtaine d'années (E.H.Dix et al., Proceedings of the 4th annual Conference of NACE, San Francisco, USA, 1958).
  • Dans des cas d'utilisation très particuliers, les structures peuvent être soumises à des températures relativement élevées (au delà de 60°C). L'homme du métier sait que dans ces conditions, certains alliages de la série 5xxx peuvent développer au delà d'une certaine durée d'exposition, une certaine sensibilité à la corrosion. Afin d'étudier ce phénomène dit de sensibilisation, il convient de pratiquer des traitements thermiques plus poussés que 7 jours à 100°C. On utilise habituellement le concept du temps équivalent afin de limiter le nombre et la durée des traitements à effectuer. Plus précisément, un traitement de durée t1 effectué à une température T1 sera équivalent à un traitement de durée t2 effectué à une température T2, donné par l'équation (R.Dif et al., Proceedings of the 6th International Conference on Aluminium Alloys, 1998, Toyohashi, Japon, pp. 1489-1494) : t 1 . exp - Q R . T 1 = t 2 . exp - Q R . T 2
    Figure imgb0001

    où les températures sont exprimées en Kelvin. Q représente l'énergie d'activation thermique de la diffusion du magnésium (en J / mol). R est la constante des gaz parfaits.
    La valeur du rapport Q R
    Figure imgb0002
    issue de la littérature est de l'ordre de 10 000K à 13 500K.
  • Dans un mode de réalisation particulier de la présente invention, les produits selon l'invention montrent lors du test intergranulaire une résistance à la corrosion intergranulaire qui est caractérisée au moins par une perte de masse inférieure à 20 mg/cm2 après un vieillissement de 7 jours à 100 °C, et par une profondeur maximale d'attaque de moins de 130 µm, et préférentiellement moins de 70 µm.
  • De façon préférentielle, lesdits produits montrent également, après un vieillissement de 20 jours à 100 °C, une perte de masse inférieure à 50 mg/cm2 et préférentiellement inférieure à 30 mg/cm2, et une profondeur maximale d'attaque de moins de 250 µm, et préférentiellement moins de 100 µm. Les produits les plus préférés dans le cadre de la présente invention montrent après un vieillissement de 20 jours à 120 °C une perte de masse inférieure à 95 mg/cm2, et préférentiellement inférieure à 80 mg/cm2, et encore plus préférentiellement inférieure à 60 mg/cm2, avec une profondeur maximale d'attaque de moins de 450 µm et préférentiellement moins de 400 µm, étant entendu que cette caractéristique s'ajoute à au moins l'une des caractéristiques mentionnées ci-dessus, à savoir après vieillissement de 20 jours à 100 °C ou de 20 jours à 120 °C. Ces produits, s'ils possèdent en plus d'excellentes caractéristiques mécaniques (par exemple un produit Rm x A d'au moins 8500 voire 9000) se prêtent particulièrement bien à la fabrication de constructions soudées, telles que de citernes routières ou ferroviaires, comme expliqué ci-dessous.
  • Concernant l'étude de la résistance à la corrosion sous contrainte, la demanderesse préfère la méthode de la traction lente (« Slow Strain Rate Testing »), décrite par exemple dans la norme ASTM G129. Cet essai est plus rapide et s'est révélé être plus discriminant que les méthodes classiques consistant à déterminer la contrainte seuil de non rupture en corrosion sous contrainte, à condition de bien contrôler les conditions expérimentales.
  • Le principe de l'essai en traction lente consiste à comparer les propriétés de traction en milieu inerte (air du laboratoire) et en milieu agressif. La baisse des propriétés mécaniques statiques en milieu corrosif correspond à la sensibilité à la corrosion sous contrainte. Les caractéristiques de l'essai de traction les plus sensibles sont l'allongement à rupture A et la contrainte maximale (à striction) Rm. La demanderesse a constaté que l'allongement à rupture est un paramètre nettement plus discriminant que la contrainte maximale. Il est nécessaire de s'assurer que la diminution des caractéristiques mécaniques statiques correspond effectivement à de la corrosion sous contrainte, définie comme action synergique et simultanée de la sollicitation mécanique et de l'environnement. La demanderesse a donc effectué également des essais de traction en milieu inerte (air du laboratoire), après une pré-exposition préalable de l'éprouvette, sans contrainte, au milieu agressif, pendant la même durée que l'essai de traction effectué dans ce milieu. Si les caractéristiques de traction obtenues ne diffèrent pas de celles que l'on obtient en milieu inerte, la sensibilité à la corrosion sous contrainte peut alors être définie à l'aide d'un indicé 1 de « sensibilité à la CSC » défini comme : I = A % MilieuInerte - A % MilieuAgressif A % MilieuInerte x 100
    Figure imgb0003
    Les aspects critiques de l'essai de traction lente concernent le choix de l'éprouvette de traction, de la vitesse de déformation et de la solution corrosive. La demanderesse a utilisé une éprouvette (prélevée dans le sens Travers-Long), présentant une forme échancrée avec un rayon de courbure de 100 mm, ce qui permet de localiser la déformation et de rendre l'essai encore plus sévère.
    Concernant la vitesse de sollicitation, une vitesse trop rapide ne permet pas aux phénomènes de corrosion sous contrainte de se développer, mais une vitesse trop lente masque la corrosion sous contrainte. La demanderesse a utilisé une vitesse de déformation de 5.10-5 s-1 (correspondant à une vitesse de déplacement de la traverse de 4,5.10-2 mm/min) qui permet de maximiser les effets de la corrosion sous contrainte (R.Dif et al., Proceedings of the 6th International Conference on Aluminium Alloys, 1998, Toyohashi, Japon, pp. 1615-1620).
    Concernant l'environnement agressif à utiliser, le même type de problème se pose dans la mesure où un milieu trop agressif masque la corrosion sous contrainte, mais où un environnement trop peu sévère ne permet pas de mettre en évidence de phénomène de corrosion. Une solution de 3%NaCl+0.3%H2O2 a été utilisé avec succès dans le cadre de la présente invention.
  • Les produits selon l'invention peuvent être utilisés avantageusement pour la constructions soudée, pour la construction de citernes routières ou ferroviaires ou pour la construction de véhicules industriels. Ils peuvent également être utilisés pour la construction de carrosseries d'automobiles, notamment comme pièces de renfort. Elles montre une bonne aptitude à la mise en forme.
  • Dans une utilisation préférée, on utilise les produits selon l'invention sous forme de tôles laminés dans un état métallurgique peu écroui, tel que l'état O ou l'état H111, d'épaisseur comprise entre 3 mm et 12 mm, et préférentiellement entre 4,5 mm et 10 mm, pour la construction de citernes routières ou ferroviaires, lesdites tôles étant caractérisées par un produit Rm(TL) x A(TL) supérieur à 8200, préférentiellement supérieur à 8500 et encore plus préférentiellement supérieur à 9000, et par une bonne résistance à corrosion. Pour cette utilisation, d'une façon préférée, la perte de masse lors d'un essai de résistance à la corrosion intergranulaire est inférieure à 30 mg/cm2 après un vieillissement de 20 jours à 100 °C, et l'indice CSC en traction lente est inférieur à 50 % après un vieillissement de 20 jours à 100°C.
  • Les produits selon l'invention peuvent être soudés par tous les procédés de soudage utilisables pour les alliages de type Al-Mg, tels que le soudage MIG ou TIG, le soudage par friction, le soudage par laser, le soudage par faisceau d'électrons. Plus particulièrement, la demanderesse a constaté que le soudage MIG des produits selon l'invention conduit a des joints soudés caractérisés par une limite à rupture au moins aussi élevée qu'avec les alliages connus tels que le 5186. Ces essais de soudage ont été effectués dans le sens Travers-Long sur des tôles à l'état H111 soudée bout à bout avec un chanfrein en V par soudage MIG semi-automatique en courant lisse, avec un fil d'apport en alliage 5183. Les essais mécaniques ont été effectués sur des éprouvettes de traction prélevées dans le sens Long (perpendiculairement au cordon de soudure) avec cordon arasé symétriquement et avec cordon non arasé, ou dans le sens TL. On trouve sur éprouvette prélevée dans le sens Long une valeur de Rm d'au moins 275 MPa, ce qui souligne l'excellente aptitude du matériau à l'utilisation dans des constructions soudées.
  • L'invention sera mieux comprise à l'aide des exemples, qui n'ont toutefois pas de caractère limitatif.
  • Exemples Exemple 1 :
  • On a élaboré par coulée semicontinue des plaques de laminage en différents alliages. Leur composition est indiquée au tableau 1. L'analyse chimique des éléments a été effectué par spectroscopie à étincelle sur un pion de spectrométrie obtenu à partir de métal liquide prélevé dans le chenal de coulée.
  • Les plaques de laminage ont été réchauffées puis laminées à chaud. A titre d'exemple, la plaque correspondant à l'exemple H1 a été réchauffée en trois paliers : 10 h à 490 °C, 10 h à 510 °C, 3h 45 min à 490 °C puis laminée à chaud avec une température d'entrée de 490 °C et une température de bobinage de 310°C. Pour les plaques correspondant aux exemples H2, I1, I2, I3 et I4, le réchauffage s'est fait en deux paliers (21h à 510°C + 2h à 490°C), les températures d'entrée au laminage étaient respectivement de 477°C, 480°C, 479°C, 474°C et 478°C alors que les températures de bobinage étaient respectivement de 290°C, 300°C, 270°C, 310°C et 300°C. Après le bobinage, toutes les tôles ont été planées et débitées. Tableau 1
    Alliage Mg Zn Mn Si Fe Cu Zr Ti Cr
    A 4,28 0,06 0,31 0,11 0,26 0,04 < 0,01 0,02 0,08
    B 4,45 0,12 0,43 0,14 0,28 0,06 < 0,01 0,02 0,09
    C 4,68 0,02 0,26 0,09 0,25 0,06 < 0,01 0,03 0,01
    D 4,54 0,03 0,27 0,10 0,23 0,04 < 0,01 0,01 0,01
    E 4,42 0,07 0,28 0,13 0,25 0,07 < 0,01 0,02 0,03
    F 4,31 0,04 0,32 0,13 0,27 0,05 < 0,01 0,02 0,07
    G 5,05 0,38 0,29 0,12 0,22 < 0,01 < 0,01 0,02 0,01
    H1, H2 5,19 0,38 0,31 0,08 0,15 0,01 < 0,01 0,02 0,01
    I1 à I4 5,30 0,26 0,33 0,10 0,16 0,05 <0,02 0,02 0,02
  • Les alliages A, B, C, D, E et F sont des alliages selon l'état de la technique. Les alliages G, H et I sont des alliages selon l'invention.
    Les propriétés des tôles élaborées à partir de ces alliages sont indiquées dans le Tableau 2. Les tôles portent la même lettre de référence que l'alliage dans lequel elles ont été élaborées. Tableau 2
    Propriétés des tôles
    tôle Etat Epaisseur [mm] Rm (TL) [MPa] Rp0,2 (TL) [MPa] A (TL) [%] Rm(TL) x A(TL)
    A H111 6,5 278 170 23 6394
    B H111 5,1 300 177 23 6900
    C O 5,4 290 149 26,5 7685
    D H111 6,2 274 138 28 7672
    E O 4,9 287 147 27 7749
    F H111 5,3 294 170 23,5 6909
    G H 111 4,7 300 180 27,7 8310
    H1 H111 5,0 308 154 28,5 8778
    H2 H111 5,0 309 176 29 8961
    I1 H111 6,1 301 148 28,1 8458
    I2 H111 8.1 321 182 26,8 9602
    I3 H111 6,1 300 149 29,6 8880
    I4 H111 5.1 310 164 28,3 8773
  • Exemple 2 :
  • Deux tôles correspondant à l'exemple H1 d'épaisseur 5,0 mm à l'état H111 ont été soudées bout-à bout dans le sens Travers-Long avec un chanfrein en V (angle 45°) par soudage MIG semi-automatique en courant lisse. Un fil d'apport en alliage 5183 (Mg 4,81 %, Mn 0,651 %, Ti 0,120 %, Si 0,035 %, Fe 0,130 %, Zn 0,001 %, Cu 0,001 %, Cr 0,075 %) d'épaisseur 1,2 mm fourni par la société Soudure Autogène Française a été utilisé.
  • L'éprouvette a été prélevée dans le sens Long à travers le joint soudé de façon à ce que le joint se trouve au milieu. Avec le cordon arasé symétriquement, on a trouvé une valeur de Rm de 285 MPa, et avec un cordon non arasé une valeur de 311 MPa.
  • Le même essai a été réalisé sur deux tôles correspondant à la tôle H2. Avec le cordon de soudure arasé symétriquement, on a trouvé une valeur de Rm de 290 MPa. Avec un cordon non arasé, on trouve une valeur de 318 MPa. A titre de comparaison, on obtient 283 MPa avec un cordon arase sur des tôles selon l'art antérieur d'épaisseur comparable (voir L. Cottignies et, al., «AA 5186: a new aluminium alloy for welded constructions », Journal of Light Metal Welding and Construction, 1999).
  • Le même essai a été réalisé sur deux tôles correspondant aux tôles I2 et I4 ; pour cet essai, les éprouvettes ont été prélevées dans le sens TL à travers le joint soudé. On trouve les résultats suivants :
    Tôle Sens de sollicitation Sens de soudure Cordon arasé ou non Rp0.2 [MPa] Rm [MPa] A [%]
    I4 TL L Arasé 153 291 13,0
    I2 TL L Arasé 156 293 16,8
    I4 TL L Non arasé 155 312 18,4
    I2 TL L Non arasé 163 323 21,3
  • Exemple 3 :
  • Sur des tôles réalisées comme décrit dans l'exemple 1, on a effectué des essais de LDH (Limit Dome Height). Le LDH est un essai d'emboutissage à flan bloqué en périphérie (R.Thompson, « The LDH test to evaluate sheet metal formability-Final report of the LDH committee of the North American Deep Drawing Research Group », SAE Conference, Detroit, 1993, SAE Paper N°93-0815). Le flan de taille 490 mm x 490 mm, est sollicité en bi-expansion équiaxe. La lubrification entre le poinçon (diamètre 250 mm) et la tôle est assurée par un film plastique et de la graisse. La valeur LDH est le déplacement du poinçon à rupture, soit la profondeur limite de l'emboutissage.
  • On obtient une valeur de 101 mm pour la tôle H1, et une valeur de 94,1 mm pour la tôle H2. A titre de comparaison, on avait obtenu pour un alliage de l'art antérieur avec une épaisseur comparable la valeur de LDH de 94,3 mm (voir L. Cottignies et al., « AA 5186 : a new aluminium alloy for welded constructions », Journal of Light Metal Welding and Construction, 1999).
  • Exemple 4 :
  • Sur une tôle de l'art antérieur et la tôle correspondant à l'exemple H1, nous avons réalisé des essais de traction lente selon la méthode et avec les paramètres décrits dans le paragraphe « Description détaillée de l'invention ». Les valeurs d'allongement obtenues pour les deux alliages et les différentes conditions de vieillissement sont données dans le tableau 3. Tableau 3
    Résultats de Traction Lente
    Alliage Vieillissement A% Air A% NaCl+H2O2 A% Pré-Exposition I% Indice CSC
    Art Antérieur Aucun 22.8 22.8 Non testé 0%
    7 j 100°C 24.2 24.0 Non testé 1%
    20 j 100°C 25.0 10.5 24.4 58%
    20 j 120°C 24.6 5.4 24.4 78%
    Invention (ex. H1) Aucun 28.9 29.8 Non testé 0%
    7 j 100°C 30.4 30.5 Non testé 0%
    20 j 100°C 30.7 21.3 30.8 31%
    20 j 120°C 30.3 7.7 30.6 75%
  • On observe que l'alliage selon l'invention présente une meilleure tenue en corrosion sous contrainte après vieillissement, notamment pour des niveaux de vieillissement intermédiaires, malgré une teneur en magnésium plus élevée.
  • Des essais de corrosion intergranulaire ont été réalisés sur les tôles H1, H2, I2 et I4, correspondant à l'invention, ainsi que sur une tôle en alliage 5186 selon l'état de la technique, selon les préconisations du Journal Officiel de Communautés Européennes; 19/11/84, N° L300, 35 à 43, en utilisant la solution B (NaCl 30 g/l + HCl 5 g/l), sur des échantillons de taille 30 mm * 30 mm * 5 mm. Les résultats obtenus lors de ces essais sont reportés dans le Tableau 4, en référence aux résultats de l'art antérieur. Tableau 4
    Tôle Perte de masse [mg/cm2] Profondeur maximale de piqûre [µm]
    Non vieilli 7 j à 100°C 20 j à 100°C 20 j à 120°C 40 j à 120°C Non vieilli 7 j à 100°C 20 j à 100°C 20 j à 120°C 40 j à 120°C
    5186 20 47 77 101,5 122,5 100 220 400 550 650
    H1 3,5 19 17,5 66 94 40 50 90 280 420
    H2 3,5 6 12 54 75,5 30 130 110 350 450
    I4 9,5 18,5 35,5 93,5 60 120 250 450
    I2 7,5 9,5 11 31 50 50 50 150
  • L'alliage selon l'invention présente un niveau de résistance à la corrosion intergranulaire comparable, voire meilleur à celui de l'art antérieur.
  • Exemple 5 :
  • On a élaboré par coulée semi-continue une plaque de laminage de composition : Mg 5,0 %, Zn 0,30 %, Mn 0,35 %, Si 0,01 %, Fe 0,15 %, Cu 0,03 %, Zr 0,02 %, Cr 0,03 %, Ni < 0,01 %, Ti 0,02 %. Après homogénéisation pendant 19 h à 505°C, la plaque a été laminée à chaud jusqu'à une épaisseur de 7 mm. Après un léger planage, les tôles ont été recuites avec une montée en température à 378 °C pendant 8 h, suivi d'un maintien pendant 30 minutes à une température comprise entre 378 °C et 390 °C.
  • Les tôles ainsi obtenues ont les caractéristiques mécaniques moyennes (sens T-L) suivantes :
    Rm = 297 MPa, Rp0.2 = 139 MPa, A = 28,9%.

Claims (32)

  1. Produit corroyé en alliage Al-Mg, caractérisé en ce qu'il contient (en pourcents massiques) Mg 4,85 - 5,35 Mn 0,20 - 0,50 Zn 0,20 - 0,45 Si < 0,20 Fe < 0,30 Cu < 0,25 Cr < 0,15 Ti < 0,15 Zr < 0,15
    le reste de l'aluminium avec ses inévitables impuretés.
  2. Produit selon la revendication 1, caractérisé en ce que Mg 4,90 - 5,30 %.
  3. Produit selon une des revendications 1 ou 2, caractérisé en ce que Mn 0,20 - 0,40 %, et préférentiellement 0,25 - 0,35 %.
  4. Produit selon une quelconque des revendications 1 à 3, caractérisé en ce que Zn 0,25 - 0,40 %.
  5. Produit selon une quelconque des revendications 1 à 4, caractérisé en ce que Cu < 0,20 , préférentiellement < 0,15 et encore plus préférentiellement < 0,10 %.
  6. Produit selon une quelconque des revendications 1 à 5, caractérisé en ce qu'il contient au moins 0,10 % de fer.
  7. Produit selon une quelconque des revendications 1 à 6, caractérisé en ce qu'il contient au moins 0,05 % de silicium.
  8. Produit selon une quelconque des revendications 1 à 7, caractérisé en ce qu'il contient au moins 4,95 % de magnésium.
  9. Produit selon une quelconque des revendcations 1 à 8, caractérisé en ce qu'il contient au moins 5,0 % de magnésium.
  10. Produit selon une quelconque des revendications 1 à 9, caractérisé en ce que son allongement à la rupture A(TL) est au moins 24 % et préférentiellement au moins 27%.
  11. Produit selon une quelconque des revendications 1 à 10, caractérisé en ce que sa limite d'élasticité Rp0,2(TL) est au moins 145 MPa, sa résistance à la rupture Rm(TL) est au moins 290 MPa, et son allongement à la rupture A(TL) est au moins 24 %.
  12. Produit selon la revendication 11, caractérisé en ce que sa limite d'élasticité Rp0,2(TL) est au moins 150 MPa, et préférentiellement d'au moins 170 MPa.
  13. Produit selon une des revendications 11 ou 12, caractérisé en ce que l'allongement à la rupture A(TL) est au moins 27 %.
  14. Produit selon une des revendications 10 à 13, caractérisé en ce que sa résistance à la rupture Rm(TL) est au moins 300 MPa.
  15. Produit selon une quelconque des revendications 1 à 14, caractérisé en ce que le produit Rm(TL) x A(TL), dans lequel Rm(TL) est exprimé en MPa et A(TL) en pourcent, est supérieur à 8200, préférentiellement supérieur à 8500 et encore plus préférentiellement supérieur à 9000.
  16. Produit selon une des revendications 1 à 15, caractérisé en ce que la perte de masse après le test de corrosion intergranulaire après vieillissement de 7 jours à 100 °C est inférieure à 20 mg/cm2.
  17. Produit selon une des revendications 1 à 15, caractérisé en ce que la perte de masse après le test de corrosion intergranulaire après vieillissement de 20 jours à 100 °C est inférieure à 50 mg/cm2 et préférentiellement inférieure à 30 mg/cm2.
  18. Produit selon une des revendications 1 à 15, caractérisé en ce que la perte de masse après le test de corrosion intergranulaire après vieillissement de 20 jours à 120 °C est inférieure à 95 mg/cm2, préférentiellement inférieure à 80 mg/cm2 et encore plus préférentiellement inférieure à 60 mg/cm2.
  19. Produit selon une quelconque des revendications 1 à 18, caractérisé en ce qu'il s'agit d'une tôle laminée.
  20. Tôle selon la revendication 19, caractérisée en ce que son épaisseur est comprise entre 3 mm et 12 mm.
  21. Tôle selon la revendication 20, caractérisée en ce que son épaisseur est comprise entre 4,5 mm et 10 mm.
  22. Tôle selon l'une de revendications 19 à 21, caractérisée en ce qu'elle a été élaborée par laminage à chaud à partir d'une ébauche obtenue par coulée semi-continue.
  23. Tôle selon la revendication 22, caractérisée en ce que la température de sortie du laminoir à chaud est comprise entre 260 °C et 330 °C, et préférentiellement comprise entre 290 °C et 330 °C.
  24. Utilisation d'une tôle selon une quelconque des revendications 1 à 23 pour la construction soudée.
  25. Utilisation d'une tôle selon une quelconque des revendications 1 à 23 pour la construction de citernes routières ou ferroviaires.
  26. Utilisation d'une tôle selon une quelconque des revendications 1 à 23 pour la construction de véhicules industriels.
  27. Utilisation d'une tôle selon une quelconque des revendications 1 à 23 pour la construction de carrosseries d'automobiles.
  28. Citerne routière ou ferroviaire réalisée au moins partiellement avec des tôles de composition (en pourcent massique) Mg 4,95 - 5,35 Mn 0,20 - 0,50 Zn 0,25 - 0,45 Si 0,05 - 0,20 Fe 0,10 - 0,30 Cu < 0,25 Cr < 0,15 Ti < 0,15 Zr < 0,10
    le reste de l'aluminium avec ses inévitables impuretés,
    lesdites tôles ayant un produit Rm(TL) x A(TL) d'au moins 8500, et préférentiellement d'au moins 9000.
  29. Citerne selon la revendication 28, caractérisée en ce que lesdites tôles montrent une résistance à la corrosion caractérisée par une perte de masse lors de l'essai de corrosion intergranulaire inférieure à 50 mg/cm2 après un vieillissement de 20 jours à 100 °C, et préférentiellement inférieure à 30 mg/cm2.
  30. Citerne selon une des revendications 28 ou 29, caractérisée en ce que lesdites tôles montrent une résistance à la corrosion sous contrainte caractérisée par un indice de CSC inférieur à 50% après un vieillissement de 20 jours à 100°C.
  31. Construction soudée réalisée au moins partiellement avec des tôles selon une quelconque des revendications 1 à 23.
  32. Construction soudée selon la revendication 31, caractérisée en ce que le joint de soudure, obtenu par soudage bout à bout dans le sens Travers-Long avec un chanfrein en V (angle 45 °) par soudage MIG avec un fil d'apport en alliage 5183, montre une valeur de Rm d'au moins 275 MPa, mesurée sur éprouvette prélevée dans le sens Long à travers le joint soudé et disposée de façon à ce que ledit joint soudé se trouve au milieu de la longueur de l'éprouvette, après arasage symétrique du cordon de soudure.
EP03738175A 2002-03-22 2003-03-19 Produits en alliages al-mg pour construction soudee Expired - Lifetime EP1488018B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0203593 2002-03-22
FR0203593A FR2837499B1 (fr) 2002-03-22 2002-03-22 PRODUITS EN ALLIAGES Al-Mg POUR CONSTRUCTION SOUDEE
PCT/FR2003/000870 WO2003080884A2 (fr) 2002-03-22 2003-03-19 Produits en alliages al-mg pour construction soudee

Publications (2)

Publication Number Publication Date
EP1488018A2 EP1488018A2 (fr) 2004-12-22
EP1488018B1 true EP1488018B1 (fr) 2008-09-24

Family

ID=27799176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03738175A Expired - Lifetime EP1488018B1 (fr) 2002-03-22 2003-03-19 Produits en alliages al-mg pour construction soudee

Country Status (16)

Country Link
US (1) US7211161B2 (fr)
EP (1) EP1488018B1 (fr)
JP (1) JP4431194B2 (fr)
KR (1) KR100984088B1 (fr)
CN (1) CN100540703C (fr)
AR (1) AR038963A1 (fr)
AT (1) ATE409243T1 (fr)
AU (1) AU2003244695B2 (fr)
BR (1) BR0308651A (fr)
DE (1) DE60323736D1 (fr)
ES (1) ES2311712T3 (fr)
FR (1) FR2837499B1 (fr)
NO (1) NO340211B1 (fr)
PL (1) PL199108B1 (fr)
WO (1) WO2003080884A2 (fr)
ZA (1) ZA200407227B (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403027B2 (en) * 2007-04-11 2013-03-26 Alcoa Inc. Strip casting of immiscible metals
US7846554B2 (en) * 2007-04-11 2010-12-07 Alcoa Inc. Functionally graded metal matrix composite sheet
US8956472B2 (en) * 2008-11-07 2015-02-17 Alcoa Inc. Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same
RU2012106647A (ru) * 2009-07-24 2013-08-27 Алкоа Инк. Улучшенные алюминиевые сплавы серии 5ххх и изготовленные из них деформированные изделия
CN104046855A (zh) * 2013-03-15 2014-09-17 中国钢铁股份有限公司 耐弯曲高强度铝镁合金制造方法
JP6237004B2 (ja) * 2013-08-30 2017-11-29 株式会社カネカ 軽量盛土構造
CN103740988B (zh) * 2013-11-27 2016-01-20 余姚市吴兴铜业有限公司 一种汽车部件用高性能铝合金的制备方法
CN103831411A (zh) * 2014-03-06 2014-06-04 东北轻合金有限责任公司 一种高强、耐蚀大规格圆铸锭的制造方法
CN103898382B (zh) * 2014-03-27 2017-01-04 北京科技大学 超强高韧耐蚀Al‐Zn‐Mg‐Cu铝合金材料及其制备方法
CN103993207A (zh) * 2014-04-24 2014-08-20 广东兴发铝业有限公司 高速船舶用5xxx系列铝合金挤压型材配方及制造工艺
CN104233021B (zh) * 2014-09-24 2016-08-17 山东裕航特种合金装备有限公司 一种高力学性能和良好机械加工性能的耐腐蚀合金
CN105710569A (zh) * 2016-04-12 2016-06-29 兰州威特焊材科技股份有限公司 一种高铁列车专用高纯crrcsal5183g铝镁合金tig/mig焊丝制备方法
CA3032261A1 (fr) 2016-08-26 2018-03-01 Shape Corp. Procede de formage a chaud et appareil de pliage transversal d'une poutre d'aluminium profilee pour former a chaud un composant structural de vehicule
EP3529394A4 (fr) 2016-10-24 2020-06-24 Shape Corp. Procédé de formage et de traitement thermique d'un alliage d'aluminium en plusieurs étapes pour la production de composants pour véhicules
CN107338404B (zh) * 2017-06-19 2019-01-11 北京科技大学 一种提高铝合金焊缝强度和抗裂能力的方法
CN108165847A (zh) * 2018-01-30 2018-06-15 山东创新金属科技有限公司 一种高铁轴箱盖用铝合金铸锭
CN108385001A (zh) * 2018-03-06 2018-08-10 东北大学 一种5356铝合金焊丝的制备方法
EP3569721B1 (fr) 2018-05-18 2020-05-13 Aleris Rolled Products Germany GmbH Procédé de fabrication d'une tôle al-mg-mn laminée à chaud et son utilisation
TWI646205B (zh) * 2018-09-10 2019-01-01 中國鋼鐵股份有限公司 鋁鎂合金及其製作方法
CN110923521A (zh) * 2019-11-21 2020-03-27 河北联之捷焊业科技有限公司 一种铝合金车辆专用绞股焊丝及其制备工艺
CN113508185A (zh) * 2019-12-27 2021-10-15 俄罗斯工程技术中心有限责任公司 铝基合金
CN111224021B (zh) * 2020-02-21 2022-09-16 苏州宝优际科技股份有限公司 高强度轻量化新能源汽车电池壳体的生产工艺
CN113106306A (zh) * 2021-04-08 2021-07-13 东北大学 一种高强度耐蚀性的5xxx系合金及其制备方法
CN115652152B (zh) * 2022-11-30 2023-03-17 中铝材料应用研究院有限公司 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173856A (ja) * 1984-09-18 1986-04-16 Sukai Alum Kk アルミニウム−マグネシウム合金
JP2671121B2 (ja) 1986-03-10 1997-10-29 スカイアルミニウム 株式会社 伸び、曲げ性、張出し性に優れた成形加工用アルミニウム合金圧延板およびその製造方法
JPH01104865A (ja) 1987-10-12 1989-04-21 Toray Ind Inc 高通気性高保温性繊維シート
JP2706310B2 (ja) * 1989-04-25 1998-01-28 古河電気工業株式会社 自動車パネル用アルミニウム合金板とその製造方法
JPH0733554B2 (ja) * 1992-03-09 1995-04-12 スカイアルミニウム株式会社 耐応力腐食割れ性に優れた成形加工用アルミニウム合金圧延板およびその製造方法
FR2731019B1 (fr) * 1995-02-24 1997-08-22 Pechiney Rhenalu Produit pour construction soudee en alliage almgmn a resistance mecanique amelioree
JPH08311625A (ja) * 1995-05-10 1996-11-26 Kobe Steel Ltd 成形性に優れたAl−Mg系合金の加工方法
US6056836A (en) * 1995-10-18 2000-05-02 Pechiney Rhenalu AlMg alloy for welded constructions having improved mechanical characteristics
FR2740144B1 (fr) 1995-10-18 1997-11-21 Pechiney Rhenalu Alliage almg pour constructions soudees a caracteristiques mecaniques ameliorees
EP0799900A1 (fr) 1996-04-04 1997-10-08 Hoogovens Aluminium Walzprodukte GmbH Alliage d'aluminium-magnesium à haute résistance mécanique pour structures soudées de grandes dimensions
FR2752244B1 (fr) * 1996-08-06 1998-09-18 Pechiney Rhenalu Produit pour construction soudee en alliage almgmn a tenue a la corrosion amelioree
ATE216935T1 (de) 1997-10-03 2002-05-15 Corus Aluminium Walzprod Gmbh Schweisszusatzwerkstoff aus einer aluminium- magnesium-legierung
JP2003502167A (ja) * 1998-10-30 2003-01-21 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー 合成アルミニウムパネル
CA2370160C (fr) * 1999-05-04 2004-12-07 Corus Aluminium Walzprodukte Gmbh Alliage aluminium-magnesium resistant au decollement

Also Published As

Publication number Publication date
ATE409243T1 (de) 2008-10-15
AU2003244695B2 (en) 2008-06-05
NO20044527L (no) 2004-12-22
ZA200407227B (en) 2006-02-22
ES2311712T3 (es) 2009-02-16
EP1488018A2 (fr) 2004-12-22
NO340211B1 (no) 2017-03-20
KR100984088B1 (ko) 2010-09-30
AR038963A1 (es) 2005-02-02
DE60323736D1 (de) 2008-11-06
US7211161B2 (en) 2007-05-01
JP4431194B2 (ja) 2010-03-10
US20040003872A1 (en) 2004-01-08
CN100540703C (zh) 2009-09-16
FR2837499A1 (fr) 2003-09-26
AU2003244695A1 (en) 2003-10-08
WO2003080884A2 (fr) 2003-10-02
FR2837499B1 (fr) 2004-05-21
KR20040091771A (ko) 2004-10-28
JP2005527702A (ja) 2005-09-15
BR0308651A (pt) 2005-01-25
PL371022A1 (en) 2005-06-13
PL199108B1 (pl) 2008-08-29
WO2003080884A3 (fr) 2004-04-01
CN1643172A (zh) 2005-07-20

Similar Documents

Publication Publication Date Title
EP1488018B1 (fr) Produits en alliages al-mg pour construction soudee
EP1558778B1 (fr) Procede de fabrication simplifie de produits lamines en alliages al-zn-mg, et produits obtenus par ce procede
EP2630269B1 (fr) Tole d&#39;acier laminee a chaud ou a froid, son procede de fabrication et son utilisation dans l&#39;industrie automobile
EP0823489B1 (fr) Produit pour construction soudée en alliage AlMgMn à tenue à la corrosion améliorée
EP2697406B1 (fr) Alliages aluminium cuivre magnesium performants a haute temperature
EP2155916B2 (fr) Acier a faible densite presentant une bonne aptitude a l&#39;emboutissage
EP0804626B1 (fr) CONSTRUCTION SOUDEE EN ALLIAGE AlMgMn A RESISTANCE MECANIQUE AMELIOREE
EP1075935B1 (fr) Bande ou tube en alliage d&#39;aluminium pour la fabrication d&#39;échangeurs de chaleur brasés
EP1339887A1 (fr) Procede de fabrication d&#39;une bande plaquee en alliage d&#39;aluminium pour la fabrication d&#39;echangeurs de chaleur brases
EP1143027B1 (fr) Procédé de fabrication d&#39;éléments de structure d&#39;avions en alliage d&#39;aluminium Al-Si-Mg
FR2819525A1 (fr) PRODUITS LAMINES OU FILES EN ALLIAGE D&#39;ALUMINIUM Al-Mn A RESISTANCE A LA CORROSION AMELIOREE
EP0769564B1 (fr) Constructions soudées à caractéristiques mécaniques améliorées en alliage AlMg
WO2017134405A1 (fr) Tôles épaisses en alliage al–cu–li à propriétés en fatigue améliorées
FR2828498A1 (fr) Produit corroye en alliage d&#39;aluminium et de magnesium, et structure soudee et reservoir comportant un tel produit
EP3555331B1 (fr) Alliage d&#39;aluminium pour soudage par laser sans fil d&#39;apport
EP3850119B1 (fr) Produit en alliage almgmn a tenue à la corrosion améliorée
EP0892076A1 (fr) Alliage base nickel et électrode de soudage en alliage base nickel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040906

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60323736

Country of ref document: DE

Date of ref document: 20081106

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20080403208

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2311712

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM FRANCE, FR

Effective date: 20111123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60323736

Country of ref document: DE

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, COURBEVOIE, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 60323736

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, COURBEVOIE, FR

Effective date: 20120622

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM FRANCE

Effective date: 20130205

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER(S): ALCAN RHENALU, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER(S): ALCAN RHENALU, FR; CONSTELLIUM FRANCE, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60323736

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 409243

Country of ref document: AT

Kind code of ref document: T

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20160601

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM ISSOIRE

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20170330

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170303

Year of fee payment: 15

Ref country code: CZ

Payment date: 20170308

Year of fee payment: 15

Ref country code: GB

Payment date: 20170327

Year of fee payment: 15

Ref country code: HU

Payment date: 20170314

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170324

Year of fee payment: 15

Ref country code: TR

Payment date: 20170306

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170328

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 409243

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180319

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181003

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180319

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180319

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200327

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60323736

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220325

Year of fee payment: 20

Ref country code: BE

Payment date: 20220328

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180319

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20230319