EP1478756A2 - Mikroorganismen als träger von nukleotidsequenzen kodierend für zellantigene zur behandlung von tumoren - Google Patents

Mikroorganismen als träger von nukleotidsequenzen kodierend für zellantigene zur behandlung von tumoren

Info

Publication number
EP1478756A2
EP1478756A2 EP03704315A EP03704315A EP1478756A2 EP 1478756 A2 EP1478756 A2 EP 1478756A2 EP 03704315 A EP03704315 A EP 03704315A EP 03704315 A EP03704315 A EP 03704315A EP 1478756 A2 EP1478756 A2 EP 1478756A2
Authority
EP
European Patent Office
Prior art keywords
tumor
cell
protein
microorganism
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03704315A
Other languages
English (en)
French (fr)
Inventor
Ulf R. Rapp
Werner Goebel
Ivaylo Gentschev
Joachim Fensterle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aeterna Zentaris GmbH
Original Assignee
Zentaris AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zentaris AG filed Critical Zentaris AG
Publication of EP1478756A2 publication Critical patent/EP1478756A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001148Regulators of development
    • A61K39/001149Cell cycle regulated proteins, e.g. cyclin, CDC, CDK or INK-CCR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001152Transcription factors, e.g. SOX or c-MYC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001154Enzymes
    • A61K39/001162Kinases, e.g. Raf or Src
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001166Adhesion molecules, e.g. NRCAM, EpCAM or cadherins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00118Cancer antigens from embryonic or fetal origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/255Salmonella (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/42Salmonella
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Microorganisms as carriers of nucleotide sequences coding for cell antigens for the treatment of tumors.
  • the invention relates to a microorganism with foreign nucleotide sequences, its use as a medicament, in particular vaccum, a plasmid with the foreign nucleotide sequences and a method for producing such a microorganism.
  • This invention is based on more recent findings in the molecular mechanisms which lead to malignant new formation. Characteristic changes in the control of cell growth and / or cell differentiation take place very early in the development of cancer (Ponten, Cancer Surv 32: 5-35., 1998). Proteins of signal transduction and cell cycle control, which have been identified in recent years and all of which also represent tumor antigens, are significantly involved in these changes. Tumor antigens are roughly divided into three classes (Pardoll, Nat Med 4: 525-531., 1998): i) Tumor-specific neoantigens which are present in the tumor cell in mutated and / or overexpressed form, such as, for. B.
  • EGF-R EGF-R
  • HER-2 ii) tumor-specific embryonic antigens, such as representatives of the MAGE protein family or CEA, iii) tumor tissue-specific differentiation antigens, such as tyrosinase, Mart-1 / melan-A and gplOO.
  • tumor-specific embryonic antigens such as representatives of the MAGE protein family or CEA
  • tumor tissue-specific differentiation antigens such as tyrosinase, Mart-1 / melan-A and gplOO.
  • CD8 + T cells Effective induction of CD8 + T cells is of crucial importance for the effectiveness of a tumor vaccine, since tumor cells usually do not present MHC class II molecules and the intracellular tumor antigens are mostly restricted to MHC class I.
  • CTL cytotoxic T cells
  • tumor-specific T cells often cannot effectively attack the tumor tissue through different mechanisms (anergy, tolerance, neutralization) (Smyth et al., Nat Immunol 2: 293-299., 2001).
  • a successful tumor vaccine must therefore break this anergy or tolerance and induce a sufficient number of activated, specific CTL as well as specific antibodies.
  • the role of specific antibodies is shown in the successful use of monoclonal antibodies (mAb) against tumor antigens of group (a), such as the already commercially available herceptin, a mAb against HER-2 (Colomer et al., Cancer Invest 19: 49-56., 2001).
  • Plasmids were introduced into Listeria monocytogenes germs which contain a nucleotide sequence for any antigen under the control of any eukaryotic promoter.
  • Virulence-attenuated variants of bacteria that colonize intracellularly have been developed.
  • Listeria monocytogenes, Salmonella enterica sv. Typhi urium and Typhi, as well as Mycobacterium bovis such variants have already been used as well-tolerated live vaccines against typhoid and tuberculosis.
  • These bacteria, including their weakened mutants, are generally immunostimulatory and can trigger a good cellular immune response.
  • L stimulates. monocytogenes particularly through the activation of TH1 cells the proliferation of cytotoxic lymphocytes.
  • These bacteria deliver secreted antigens directly into the cytosol of antigen-presenting cells (APC; macrophages and dendritic cells), which in turn express the co-stimulating molecules and trigger an efficient stimulation of T cells.
  • APC antigen-presenting cells
  • the Listeria are partially broken down in phagosomal compartments and the antigens produced by these carrier bacteria can therefore be presented on the one hand via MHC class II molecules and thus lead to the induction of T helper cells.
  • the listeria replicate in the cytosol of APCs; Antigens produced and secreted by these bacteria are therefore preferably presented via the MHC class I route, which induces CTL responses against these antigens.
  • the invention is based on the technical problem of specifying a medicament which, particularly in tumor prophylaxis and tumor therapy, represents an improved vaccine with a breakdown of the immune tolerance to tumors.
  • the invention teaches a microorganism with a nucleotide sequence coding for a cell antigen, in whose genome the following components are inserted and expressible: I) a nucleotide sequence coding for at least one epitope of an antigen or several antigens of a tumor cell and / or a nucleotide sequence for at least one epitope of an antigen or several antigens specific for a tissue cell from which the tumor originates, II) optional, a nucleotide sequence coding for a protein which stimulates cells of the immune system, IIIA) a nucleotide sequence for a transport system which Expression of the expression product of components I) and, optionally, II) on the outer surface of the bacterium and / or the secretion of the expression product of component I) and, optionally, of component II) and / or IIIB) enables a nucleotide sequence for a protein Lysis of the microorganisms in the
  • the invention thus relates to microorganisms which are carriers of nucleotide sequences which code for cell antigens which in turn are expressed or secreted on the outer membrane of the microorganisms and the use of these microorganisms for Breakthrough of immune tolerance to tumors, and new tumor vaccines, which contain microorganisms as carriers of nucleotide sequences coding for cell antigens of normal cells and / or of tumor cells.
  • the invention triggers an immune reaction directed against the tumor.
  • the microorganisms according to the invention contain the following components: I) at least one nucleotide sequence coding for at least one epitope of at least one antigen of at least one cell protein of a tumor cell and / or optionally at least one nucleotide sequence for at least one epitope of at least one antigen specific for the tissue cell, of which the tumor II) optionally at least one nucleotide sequence for at least one protein which stimulates cells of the immune system, IIIA) at least one nucleotide sequence for a transport system for membrane-based expression or for secretion of the cell antigen coded by component I) and for secretion of the component II) encoded immunostimulating protein, IIIB) optionally a nucleotide sequence for a lysine which lyses the microorganism in the cytosol so that plasmids contained in the microorganism are released into the cytosol, IV) at least one nucleotide sequence for one Activation sequence that can be activated in
  • Component I) represents at least one nucleotide sequence for at least one epitope of at least one antigen of at least one cell protein or at least one oncogenic mutated cell protein of a tumor cell.
  • the oncogenic mutation of the cell protein may have caused a loss or gain in its original cellular functions.
  • this cell protein can be selected from the group consisting of "receptor molecules or parts thereof, namely extracellular, transmembrane or cell-internal parts of the receptors; adhesion molecules or parts thereof, namely extracellular, transmembrane or cell-internal parts of the adhesion molecules; proteins of signal transduction; proteins of the cell cycle control "Differentiation proteins; embryonic proteins; and virus-induced proteins".
  • Such cell antigens take over the regulation of cell growth and cell division in the cell and are presented on the cell membrane of normal cells, for example by the MHC class I molecule. These cell antigens are often overexpressed or specifically mutated in tumor cells. Such mutations can result in functional impairments of oncogene suppressors or the activation of proto-oncogenes to oncogenes and all of them or together with overexpression can be significantly involved in tumor growth.
  • Such cell antigens are presented on the membrane of tumor cells and accordingly represent antigens on tumor cells, but without triggering an immune reaction that influences the patient's tumor disease.
  • Rapp US Pat. No. 5,156,841 has already described the use of oncoproteins, ie expression products of the oncogenes Immunogen for tumor vaccines described. Reference is expressly made to this reference.
  • cell antigens and their oncogenic mutations are 1) receptors, such as Her-2 / neu, androgen receptor, estrogen receptor, Midke receptor, EGF receptor, ERBB2, ERBB4, TRAIL receptor, FAS, TNFalpha receptor, n) signal-transducing proteins and their oncogenic mutations such as c-Raf (Raf-1), A-Raf, B-Raf, Ras, Bcl-2, Bcl-X, Bcl-W, Bfl-1 , Brag-1, Mcl-1, AI, Bax, BAD, Bak, Bcl-Xs, Bid, Bik, Hrk, Bcr / abl, Myb, C-Met, IAP1, IA02, XIAP, ML-IAP LIVIN, Surviv, APAF-1; m) proteins of the cell cycle control and their oncogenic mutations such as, for example, Cyclm - D (1-3), - E, - A,
  • component I) can represent at least one nucleotide sequence for at least one antigen specific for a normal tissue cell from which the respective tumor is derived.
  • Specific antigens of this type are, for example, l) receptors such as, for example, androgen receptors, estrogen receptors, lactoferrm receptor, n) differentiation antigens such as, for example, basic myelin, alpha-lactalbu m, GFAP, PSA, fibrillary acid protein, tyrosmase, EGR-1, MUC1.
  • l) receptors such as, for example, androgen receptors, estrogen receptors, lactoferrm receptor
  • n) differentiation antigens such as, for example, basic myelin, alpha-lactalbu m, GFAP, PSA, fibrillary acid protein, tyrosmase, EGR-1, MUC1.
  • Component II represents at least one nucleotide sequence for at least one protein which stimulates cells of the immune system.
  • the immune response to the expression product of component I) can be increased and / or more can be directed to the activation of Thl cells (for the cellular immune reaction) or for the activation of Th2 cells (for the humoral immune reaction).
  • Immunostimulating proteins are, for example, l) cytok e such as M-CSF, GM-CSF, G-CSF, n) interferons such as IFN-alpha, -ß, gamma, m) interleukms such as IL-1, -2, -3, -4 , -5, -6, -7, -9, -10, -11, -12, -13, -14, -15, -16, Human Leukemia hibitory factor (LIF), IV)
  • cytok e such as M-CSF, GM-CSF, G-CSF, n
  • interferons such as IFN-alpha, -ß, gamma
  • m) interleukms such as IL-1, -2, -3, -4 , -5, -6, -7, -9, -10, -11, -12, -13, -14, -15, -16, Human Leukemia hibitory factor (LIF), IV
  • Chemokme such as Rantes, Monocyte chemotactic and activating factor (MCAF), Macrophage mflammatory protem-1 (MIP-1 alpha, -ß), Neutrophil activatmg Protem-2 (NAP-2), IL-8.
  • MCAF Monocyte chemotactic and activating factor
  • MIP-1 alpha, -ß Macrophage mflammatory protem-1
  • NAP-2 Neutrophil activatmg Protem-2
  • IL-8 such as Rantes, Monocyte chemotactic and activating factor (MCAF), Macrophage mflammatory protem-1 (MIP-1 alpha, -ß), Neutrophil activatmg Protem-2 (NAP-2), IL-8.
  • Component IIIA) is at least one nucleotide sequence, coding for at least one transport system, which enables expression of the expression products of components I) and, optionally, II) on the outer surface of the microorganism.
  • the respective component can either be secreted or on the membrane of the microorganism, i.e. to be expressed at the membrane.
  • Transport systems of this type are, for example, l) the Hamolysm transport signal from E. coli
  • Component IIIB is a nucleotide sequence coding for at least one lytic protein which is in the cytosol a mammalian cell is expressed and the microorganism lysed to release the plasmids in the cytosol of the host cell.
  • lytic proteins endolysins
  • endolysins are, for example, listeria-specific lysis proteins such as PLY551 (Loessner et al Mol Microbiol 16: 1231-41, 1995) and / or the Listeria-specific holin under the control of a listerial promoter.
  • a preferred embodiment of this invention is the combination of different components IIIB), for example the combination of a lysis protein with the holin.
  • the components IIIA and / or IIIB can be constitutively active.
  • Component IV) represents at least one nucleotide sequence for at least one activation sequence for the expression of component I) and, optionally, II). If the expression is in the membrane on the outer surface of the microorganism, the activation sequence should preferably be selected such that it can be activated in the microorganism.
  • activation sequences are, for example: i) constitutively active promoter regions, such as the promoter region with the “ribosomal binding site” (RBS) of the beta-lactamase gene from E. coli or the tetA gene (Busby and Ebright, Cell 79: 743-746., 1994 ), ii) inducible promoters, preferably promoters that become active after being taken up into the cell. These include the actA promoter from L. monocytogenes (Dietrich et al.,
  • the activation sequence is non-cell-specific, tissue cell-specific, cell cycle-specific or function-specific. Activation sequences which are particularly activated in macrophages, dendritic cells and lymphocytes are preferably chosen.
  • Microorganisms in the sense of this invention are viruses, bacteria or unicellular parasites which are usually used for the transfer of nucleotide sequences foreign to the microorganism.
  • the microorganisms are gram-positive or gram-negative bacteria, preferably bacteria such as, for example, Escherichia coli, Salmonella, Yersinia enterocolitica, Vibrio cholerae, Listeria monocytogenes, Shigella.
  • Bacteria which are attenuated in their virulence are preferably used.
  • the components according to the invention are introduced into the microorganisms using the methods known to the person skilled in the art. If the microorganisms are bacteria, the components are inserted into plasmids and the plasmids are transferred into the bacteria. The techniques and plasmids suitable for this are well known to the person skilled in the art.
  • the invention relates to pharmaceutical preparations containing the microorganisms according to the invention or membrane shells of these microorganisms. These membrane casings are produced, for example, by the method described in patent application EP-A-0 540 525.
  • Such pharmaceutical preparations are, for example, suspensions of the microorganisms according to the invention in the solutions familiar to pharmacists, suitable for injection.
  • Another object of the invention is the administration of a pharmaceutical preparation containing the microorganisms according to the invention.
  • the administration takes place locally or systemically, for example in the epidermis, in the subcutis, in the muscles, in a body cavity, in an organ, in the tumor or in the bloodstream.
  • a particular subject of this invention is the oral or rectal administration of the pharmaceutical preparation according to the invention for the prophylaxis and / or therapy of a proliferative disease.
  • the administration can take place once or several times. With each administration in the range of 10 to 10 ⁇ 9 microorganisms according to the invention are administered. If the administration of this number to the microorganisms according to the invention does not produce a sufficient immune reaction, the number to be injected should be increased.
  • the tolerance for a cell presenting component I is broken and one directed against the tumor and / or against its tissue cells cytotoxic immune response triggered.
  • this cytotoxic immune reaction is either directed exclusively against the tumor or also against the tumor cells including the tissue cells from which the tumor cells originate.
  • the invention thus relates to the administration of a pharmaceutical preparation according to the invention for the prophylaxis or therapy of a proliferative disease.
  • the proliferative diseases are tumor diseases, Leukemia, viral diseases, chronic inflammation, rejection of transplanted organs and autoimmune diseases count.
  • component I) represents at least one cell antigen which is expressed by a tumor cell and the tissue cells from which the tumor is derived
  • Example 1 Induction of an immune response in BxB mice by immunization with ⁇ almonella expressing c-Raf
  • Raf is usually a cytosolic
  • PSK Serine / threonine kinase
  • Ras Growth factor to a corresponding receptor normally leads to activation of Ras, the subsequent activation of Raf via several phosphorylation steps via the PSK and tyrosine kinase MEK and the PSK ERK to activation of the replication machinery in the cell nucleus (Kerkhoff and Rapp, Oncogene 17: 1457-1462., 1998).
  • the first link in this chain, the small G protein Ras is found in approximately 30% of all human beings Tumors changed before (Zachos and Spandidos, Crit Rev Oncol Hematol 26: 65-75., 1997).
  • Raf is an effector of Ras and is overexpressed in a variety of human tumors (Naumann et al., Recent Results Cancer Res 143: 237-244., 1997).
  • mice which overexpress the entire molecule or the constitutively active casedomane (BxB) (Kerkhoff et al., Cell Growth Differ 11: 185-190., 2000). This means that these mice develop lung tumors spontaneously after about half a year.
  • BxB constitutively active casedomane
  • the human c-Raf cDNA was cloned into the plasmid pMOhly 1 with the aid of PCR “m-frame” with HlyA (FIG. 1).
  • the plasmid pMO-Raf was then transfected into attenuated Salmonella (S.typhi murium SL7207), which have a defect in the aromatic metabolism (Hoiseth and Stocker, Nature 291: 238-239, 1981).
  • the c-Raf HlyAs fusion protein could be detected in the bacterial lysate and in the culture supernatant of SL7207 bacteria transfected with pMOhy-Raf.
  • BxB transgenic mice were then immunized orally with Salmonella at the age of 7-10 weeks (dose 5 x ⁇ o A 9), the vaccination being repeated twice with an interval of 5 days.
  • An intravenous inoculation with 5xlO ⁇ 5 salmonellae was given 45 days after the last immunization.
  • naked c-Raf encoding DNA was administered intramuscularly to mice.
  • serum samples were now taken and the antibody response was analyzed using an WESTERN blot.
  • the 1: 200 diluted serum against membranes with separated protein was used and blotted protein from c-Raf transfected or non-transfected bacteria.
  • mice immunized with SL7207 c-Raf transfected with pMohly-Raf This shows that immunization with the described Salmonella can break self-tolerance and induce CD4 + T cells, which are necessary for the antibody to change its isotype to IgG.
  • C57BL-6 mice were immunized using the same protocol. Spleen cells were isolated 7 days after the last immunization and stimulated with Raf overexpressing EL-4 cells. 1 h after the start of the stimulation, vesicular transport was blocked by brefeldin A and after a further 4 h the cells were stained with CD8 and IFN-g specific antibodies and analyzed by flow cytometry (Mittrucker et al., Infect Immun 70: 199-203., 2002 ). A Raf-specific antibody response could only be detected in a mouse immunized with pMO-Raf.
  • mice 10 and 14 month old immunized and non-immunized BxB mice were sacrificed and the lung mass was weighed.
  • the lung mass is a direct measure of the size of the tumor.
  • mice with a reduction in lung mass were found significantly more frequently after 14 months than in the control groups, including the group which immunized with naked DNA coding for c-Raf (SL-pCMV-raf) had been.
  • Tumor growth in untreated animals is usually irreversible (Kerkhoff et al., Cell Growth Differ 11: 185-190., 2000).
  • salmonella can be produced as vaccines, which isoforms of C-Raf (such as B-Raf and A-Raf), mutated C-Raf, B-Raf or A-Raf, epitopes of normal or mutated C- Express Raf, B-Raf or A-Raf, or combinations of epitopes from normal and / or mutant C-Raf, B-Raf or A-Raf.
  • Examples of a mutation which is associated with a loss of Raf activity are mutations in the Ras-binding domain, the kinase domain and / or the phosphorylation sites.
  • Example 2 Induction of an immune response in BALB / c mice by immunization with Salmonella expressing PSA.
  • tissue-specific antigens in particular those that are increasingly synthesized and expressed by tumor cells, forms a possible target for therapeutic approaches in addition to the diagnostic utility of these markers.
  • Been for prostate cancer so far are three significant anti ⁇ gene identified: PSA (prostate specific At ⁇ term), PSMA (prostate specific membrane antigen) and PSCA (prostate stem cell antigen).
  • the aim of this experiment was to show whether PSA-secreting salmonella based on the vector pMOHLY 1 can induce an immune response in BALB / c mice.
  • two Nsil cleavage sites were first introduced into the c-DNA sequence of PSA by means of polymerase chain reaction (PCR) in order to enable an "in-frame" insertion of the amplified fragment into the target vector.
  • PCR polymerase chain reaction
  • a 645 base pair (bp) fragment was selected for amplification. 5 ' -GTGGATTG- served as primer
  • the PCR product was first cloned "blunt-end" into the vector pUCl ⁇ and later ligated to the target vector pMOhlyl via Nsil interfaces. Correct insertion was controlled by restriction digestion and by Sequen ⁇ cation confirmed ( Figure 2).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Reproductive Health (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Gynecology & Obstetrics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Communicable Diseases (AREA)
  • Toxicology (AREA)

Abstract

The invention relates to a microorganism with a nucleotide sequence coding for a cell antigen in which the following components are inserted and are expressible: I) a nucleotide sequence coding for at least one epitope of an antigen of a tumor cell and/or a nucleotide sequence for at least one epitope of an antigen that is specific for a tissue cell from which the tumor originates; II) an optional nucleotide sequence coding for a protein that stimulates cells of the immune system; IIIA) a nucleotide sequence for a transport system which makes it possible to express the expression product of components I) and, optionally, II) on the outer surface of the bacterium and/or secrete the expression product of component I) and, optionally, of component II); and/or IIIB) a nucleotide sequence for a protein used for lysing the microorganisms in the cytosol of mammalian cells and for intracellularly releasing plasmids which are contained in the lysed microorganisms; and IV) an activation sequence for expressing one or several of components I) to IIIB), said activation sequence being selected among the group consisting of an activation sequence which is capable of being activated in the microorganism, is tissue-cell-specific but not cell-specific . Each of components I) to IV) can be identically or differently arranged in an individual or multiple manner. Also disclosed are uses of such a microorganism for the production of a medicament.

Description

Mikroorganismen als Trager von Nukleotidsequenzen kodierend für Zellantigene zur Behandlung von Tumoren.
Gebiet der Erfindung.
Die Erfindung betrifft einen Mikroorganismus mit fremden Nukleotidsequenzen, dessen Verwendung als Arzneimittel, insbesondere Vakzm, ein Plasmid mit den fremden Nukleotidsequenzen sowie ein Verfahren zur Herstellung eines solchen Mikroorganismus.
Hintergrund der Erfindung und Stand der Technik.
Hauptursache für den meist tödlichen Verlauf maligner Tumorerkrankungen ist die Unfähigkeit des körpereigenen Abwehrsystems, bösartige Krebszellen zu erkennen und zu zerstören. Krebserkrankungen gehören in den Industrielandern zu den häufigsten Krankheiten mit tödlichem Ausgang. So sterben allein in Deutschland jährlich über 210.000 Menschen an bösartigen Neubildungen (Quelle: WHO, Zahlen von 1997) , was einer jährlichen Rate von über 255 Todesfallen auf 100.000 Einwohnern entspricht.
Basis dieser Erfindung sind neuere Erkenntnisse in den molekularen Mechanismen, die zu einer bösartigen Neu- bildung fuhren. Bereits in einem sehr frühen Stadium der Krebsentstehung finden charakteristische Änderungen der Kontrolle des Zellwachstum und/oder der Zelldifferen- z erung statt (Ponten, Cancer Surv 32: 5-35., 1998). Wesentlich beteiligt an diesen Veränderungen sind Proteine der Signaltransduktion und der Zellzykluskontrolle, welche in den letzten Jahren identifiziert wurden und die alle auch Tumorantigene darstellen. Tumorantigene werden grob in drei Klassen eingeteilt (Pardoll, Nat Med 4: 525-531., 1998) : i) Tumor-spezifische Neoantigene, die in der Tumorzelle in mutierter und/oder überexprimierter Form vorliegen, wie z. B. EGF-R, HER-2, ii) Tumor-spezifische embryonale Antigene, wie Vertreter der MAGE Proteinfamilie oder CEA, iii) Tumorgewebespezifische Differenzierungsantigene, wie Tyrosinase, Mart-1/melan-A und gplOO.
Für die Wirksamkeit eines Tumorimpfstoffes ist eine effektive Induktion von CD8+ T-Zellen von entscheidender Bedeutung, da Tumorzellen meist keine MHC Klasse II Moleküle präsentieren und die intrazellulär vorliegenden Tumorantigene meist MHC Klasse I restringiert sind. Bei Tumorpatienten sind die natürlicherweise vorhandenen Popu- lationen von CD8+, zytotoxischen T-Zellen (CTL) , offensichtlich nicht ausreichend, um die Tumorzellen zu erkennen und zu eliminieren (Jaffee, Ann.N. Y.Acad. Sei . 886: 67-72, 1999) . Darüber hinaus können tumorspezifische T-Zellen oft durch unterschiedliche Mechanismen (Anergie, Toleranz, Neutralisation) das Tumorgewebe nicht effektiv angreifen (Smyth et al . , Nat Immunol 2: 293-299., 2001) . Ein erfolgreicher Tumorimpfstoff muss daher diese Anergie oder Toleranz durchbrechen und eine ausreichende Zahl von aktivierten, spezifischen CTL sowie auch von spezifischen Antikörpern induzieren. Die Rolle von spezifischen Antikörpern zeigt sich bei dem erfolgreichen Einsatz von monoklonalen Antikörpern (mAb) gegen Tumorantigene der Gruppe (a) , wie dem bereits kommerziell verfügbarem Her- ceptin, einem mAb gegen HER-2 (Colomer et al . , Cancer In- vest 19: 49-56., 2001) .
Es ist bereits bekannt, dass sich attenuierte intrazelluläre Bakterien als Impfstoffträger gegen bestimmte bakterielle Infekte eignen, die vor allem durch eine so genannte Thl Immunantwort bekämpft werden können (Hess and Kaufmann, FEMS Immunology & Medical Microbiology 23: 165-173, 1999) . Diese Antwort zeichnet sich durch CTL sowie der Anwesenheit spezifischer IFN-g sekretierender 5 CD4+ T-Zellen (auch T-Helferzellen, Th) aus (Abbas ■ et al . , Nature 383: 787-793, 1996). Andere Gruppen haben gezeigt, dass rekombinante Bakterien gegen einen heterologen Tumor schützen können (Medina et al . , Eur J Immunol 29: 693-699., 1999; Pan et al . , Cancer Res 59: 5264-5269., 10 1999; Woodlock et al . , J Immunother 22: 251-259., 1999; Paglia et al . , Blood 92: 3172-3176., 1998; Paglia et al . , Eur J Immunol 27: 1570-1575., 1997; Pan et al . , Nat Med 1: 471-477., 1995; Pan et al . , Cancer Res 55: 4776-4779.,
1995) . In diesen Fällen wurden allerdings Tiere gegen ein
15
Surrogat-Antigen immunisiert, und anschließend Tumorzellen appliziert, welche dieses Antigen expri ieren.
Diese Tumorsysteme sind mit klinischen Tumoren jedoch nicht zu vergleichen, da in diesen Modellen keine Toleranz für das Tumorantigen bestand. 0
Eine stattliche Anzahl unterschiedlicher Tumorvakzinen wurde bereits klinisch geprüft . Bislang konnte j edoch mit keiner Tumorvakzine und keinem Vakzinierungsverfahren ein Durchbruch in der Behandlung von Tumorerkrankungen erzielt werden . Vor diesem Hintergrund besteht weiterhin 5 ein äußerst großer Bedarf an neuen Tumortherapieverfahren.
Es ist bekannt, Expressionsprodukte von in Bakterien eingeführten Nukleinsäuresequenzen auf der Zellmembran dieser Bakterien zu exprimieren oder von diesen Bakterien sekretieren zu lassen. Basis dieser Technik ist das Es- 0 cherichia coli Hämolysinsystems HlyAs, welches den Proto¬ typ eines Typ I Sekretionssystems von gramnegativen Bakterien darstellt. Mit Hilfe des HlyAs wurden Sekre- tionsvektoren entwickelt, die eine effiziente Ausschleusung von Proteinantigenen in Salmonella enterica, Yersinia enterocol tica und Vibrio cholerae ermöglichen. Derartige Sekretionsvektoren enthalten die cDNA eines beliebigen Proteinantigens gekoppelt an die Nukleotidsequenz für das HlyA- Signalpeptid, für den Hamolysin-
Sekretionsapparat, hlyB und hlyD und den hly-spezifischen Promoter. Mit Hilfe dieses Sekretionsvektors kann ein Protein auf der Oberflache dieses Bakteriums exprimiert werden. Derartig genetisch modifizierte Bakterien induzieren als Vakzinen einen weitaus stärkeren Immunschutz als Bakterien, in welchen das von der eingeführten Nuklemsaure exprimierte Protein zellintern verbleibt (Donner et al EP 1015023 A, Gentschev et al, Gene, 179: 133-140,1996; Vac- cine 19:2621-2618, 2001, Hess et al PNAS 93: 1458-1463, 1996) . Nachteil dieses Systems ist jedoch, dass durch Verwendung des hly-spezifischen Promoters die Menge des auf der Außenflache des Bakteriums exprimierten Proteins äußerst gering ist.
Eine Technik zur Einschleusung von Plasmid-DNA in Saugerzellen durch Tragerbakterien wie Salmonella und Listeria monocytogenes wurde entwickelt. In diesen Plasmiden enthaltene Gene konnten in den Saugerzellen auch dann exprimiert werden, wenn sie unter der Kontrolle eines eu- karyontischen Promoters standen. In Listeria monocytogenes Keime wurden Plasmide eingeführt, die eine Nukleotidsequenz für ein beliebiges Antigen unter der Kontrolle eines beliebigen eukaryontischen Promoters enthalten. Durch Einfuhrung der Nukleotidsequenzen für ein spezifisches Lysis- Gen wurde bewirkt, dass sich die Listeria monocytogenes Keime im Zytosol der Antigen-prasentierenden Zelle auflosen und ihre Plasmide freisetzen, was zur anschließenden Expression, Prozessierung und Präsentation der plasmidkodierten Proteine fuhrt und die Immunogenitat dieser Proteine deutlich steigert (Dietrich et al. Nat. Biotechnol 16: 181-185,1998; Vaccine 19: 2506-2512, 2001).
Virulenz-attenuierte Varianten von Bakterien, die sich intrazellulär ansiedeln, wurden entwickelt. Beispiel- sweise- wurden von Listeria monocytogenes, Salmonella en- terica sv. Typhi urium und Typhi, sowie Mycobacterium bovis derartige Varianten bereits als gut verträgliche Lebendimpfstoffe gegen Typhus und Tuberkulose eingesetzt. Diese Bakterien, einschließlich ihrer abgeschwächten Mu- tanten sind generell immunstimulierend und können eine gute zelluläre Immunantwort auslösen. Beispielsweise stimuliert L . monocytogenes in besonderem Maße über die Aktivierung von TH1 Zellen die Proliferation von zytotoxischen Lymphozyten. Diese Bakterien liefern sezern- ierte Antigene direkt in das Cytosol Antigen- präsentierender Zellen (APC; Makrophagen und Dendritische Zellen) , die ihrerseits die ko-stimulierenden Moleküle exprimieren und eine effiziente Stimulierung von T-Zellen auslösen. Die Listerien werden zum Teil in phagosomalen Kompartimenten abgebaut und die von diesen Trägerbakterien produzierten Antigene können daher einerseits über MHC Klasse II Moleküle präsentiert werden und damit zur Induktion von T-Helferzellen führen. Andererseits replizieren die Listerien nach Freisetzung aus dem Phagosom im Cytosol von APCs; von diesen Bakterien produzierte und sezernierte Antigene werden deshalb bevorzugt über den MHC Klasse I- Weg präsentiert, wodurch CTL Antworten gegen diese Antigene induziert werden. Außerdem konnte gezeigt werden, dass durch die Interaktion der Listerien mit Makrophagen, natürlichen Killerzellen (NK) und Neutrophilen Granu- lozyten die Expression solcher Cytokine (TNF-alpha, IFN- gamma, 11-2, IL-12; Unanue, Curr . Opin . Immunol, 9: 35-43, 1997; Mata and Paterson, J Immunol 163: 1449-14456, 1999) induziert wird, für welche eine antitumorale Wirksamkeit nachgewiesen wurde. So konnte durch die Verabreichung von L. monocytogenes, welche transduziert waren zur Expression von Tumorantigenen, antigenspezifisch das Wachstum von experimentellen Tumoren gehemmt werden (Pan et al Nat Med 1:471-477,1995, Cancer Res 59: 5264-5269,1999; Voest et al. Natl Cancer Inst 87: 581-586,1995; Beatty and Pater- son, J Immunol 165: 5502-5508, 2000) .
Virulenz-attenuierte Salmonella enterica Stämme, in welche Nukleotidsequenzen kodierend für Tumorantigene eingeführt worden waren, konnten als Tumorantigen- exprimierende bakterielle Träger nach oraler Verabreichung einen spezifischen Schutz gegen unterschiedliche experimentelle Tumoren bewirken (Medina et al., Eur J Immunol 30:768-777, 2000, Zoller und Christ J Immunol 166:
3440-34450, 2001; Xiang et al . , PNAS 97: 5492-5497, 2000). Rekombinante Salmonella Stämme waren auch als prophylaktische Vakzine gegen Virusinfektionen (HPV) (Benyacoub et al., Infect Immun 67: 3674-3679, 1999) und zur thera- peutischen Behandlung eines durch ein Tumorvirus (HPV) immortalisierten Maustumors wirksam (Revaz et al., Virol- ogy 279: 354-360, 2001) .
Technisches Problem der Erfindung.
Der Erfindung liegt das technische Problem zu Grunde, ein Arzneimittel anzugeben, welches insbesondere in der Tumorprophylaxe und Tumortherapie eine verbessertes Vakzin mit Durchbrechung der Immuntoleranz gegenüber Tumoren dar- stellt.
Grundkonzeption der Erfindung. Zur Losung dieses technischen Problems lehrt die Erfindung einen Mikroorganismus mit einer Nukleotidsequenzen kodierend für ein Zeilantigen, in dessen Genom folgende Komponenten eingefugt und exprimierbar sind: I) eine Nuk- leotidsequenz, kodierend für zumindest ein Epitop eines Antigens oder mehrerer Antigene einer Tumorzelle und/oder eine Nukleotidsequenz für zumindest ein Epitop eines Antigens oder mehrerer Antigene spezifisch für eine Gewebezelle, von welcher der Tumor stammt, II) optional, eine Nukleotidsequenz, kodierend für ein Protein, welches Zellen des Immunsystems stimuliert, IIIA) eine Nukleotidsequenz für ein Transportsystem, welches die Expression des Expressionsprodukts der Komponenten I) und, optional, II) auf der Außenflache des Bakteriums und/oder die Sekretion des Expressionsprodukts der Komponente I) und, optional, der Komponente II) ermöglicht, und/oder IIIB) eine Nukleotidsequenz für ein Protein zur Lyse der Mikrooganismen im Cytosol von Saugerzellen und zur intrazellularen Freisetzung von Plasmiden enthalten in den lysierten Mikroor- ganismen, und IV) eine Aktivierungssequenz zur Expression einer oder mehrerer der Komponenten I) bis IIIB) ausgewählt aus der Gruppe bestehend aus "in dem Mikroorganismus aktivierbare, gewebezellspezifische, und nicht zellspezifische Aktivierungssequenz", wobei jede der Kom- ponenten I) bis IV) einfach oder mehrfach, jeweils gleich oder verschieden, eingerichtet sein kann sowie Verwendungen eines solchen Mikroorganismus zur Herstellungen eines Arzneimittels .
Gegenstand der Erfindung sind somit Mikroorganismen, welche Trager von Nukleotidsequenzen darstellen, die für Zellantigene kodieren, welche wiederum auf der äußeren Membran der Mikroorganismen exprimiert oder sekretiert werden und die Verwendung dieser Mikroorganismen für die Durchbrechung der Immuntoleranz gegen Tumoren, und neue Tumorvakzinen, welche beinhalten Mikroorganismen als Träger von Nukleotidsequenzen kodierend für Zeilantigene von Normalzellen und/oder von Tumorzellen. Mit der Er- findung wird letztendlich eine gegen den Tumor gerichtete Immunreaktion ausgelöst.
Im Einzelnen enthalten die erfindungsgemäßen Mikroorganismen folgende Komponenten: I) mindestens eine Nukleotidsequenz kodierend für mindestens ein Epitop mindestens eines Antigens mindestens eines Zellproteins einer Tumorzelle und/oder wahlweise mindestens eine Nukleotidsequenz für mindestens ein Epitop mindestens eines Antigens spezifisch für die Gewebezelle, von welchem der Tumor stammt, II) wahlweise mindestens eine Nukleotidse- quenz für mindestens ein Protein, welches Zellen des Immunsystems stimuliert, IIIA) mindestens eine Nukleotidsequenz für ein Transportsystem zur membranständigen Expression oder zur Sekretion des von der Komponente I) kodierten Zellantigens und zur Sekretion des von der Komponente II) kodierten immunstimulierenden Proteins, IIIB) wahlweise eine Nukleotidsequenz für ein Lysin, welches den Mikroorganismus im Cytosol lysiert, sodass im Mikroorganismus enthaltene Plasmide in das Cytosol freigesetzt werden, IV) mindestens eine Nukleotidsequenz für eine im Mikroorganismus aktivierbare oder zellunspezi- fisch, tumorzellspezifisch, gewebezellspezifisch oder funktionsspezifischaktivierbare Aktivierungssequenz zur Expression der Komponente I) und II) .
Bevorzugte Ausführungsformen
Folgend werden die Komponenten eines erfindungsgemäßen Mikroorganismus im Einzelnen beschrieben. Komponente I)
Komponente I) stellt mindestens eine Nukleotidsequenz für mindestens ein Epitop mindestens eines Antigens mindestens eines Zellprotems oder mindestens eines onkogen mutierten Zeilproteins einer Tumorzelle dar. Die onkogene Mutation des Zellprotems kann einen Verlust oder einen Gewinn seiner ursprünglichen zellularen Funktionen bewirkt haben. Desweiteren kann dieses Zellprotem ausgewählt sein aus der Gruppe bestehend aus "Rezeptormolekule oder Teile hiervon, und zwar extrazellulare, transmembrane oder zellinterne Teile der Rezeptoren; Adhasionsmolekule oder Teile hiervon und zwar extrazellulare, transmembrane oder zellinterne Teil der Adhasionsmolekule; Proteine der Signaltransduktion; Proteine der Zellzykluskontrolle; Differenzierungsproteine; embryonale Proteine; und virusinduzierte Proteine". Derartige Zellantigene übernehmen in der Zelle die Regelung des Zellwachstums und der Zellteilung und werden auf der Zellmembran von normalen Zellen präsentiert, beispielsweise durch das MHC- Klasse I Molekül. In Tumorzellen sind diese Zellantigene häufig uberexprim ert oder spezifisch mutiert. Derartige Mutationen können Funktionsemschrankungen von Onkogensup- pressoren oder die Aktivierung von Protoonkogenen zu Onk- ogenen zur Folge haben und alle e oder gemeinschaftlich mit Uberexpressionen wesentlich am Tumorwachstum beteiligt sein. Derartige Zellantigene werden auf der Membran von Tumorzellen präsentiert und stellen demnach Antigene auf Tumorzellen dar, jedoch ohne eine die Tumorkrankheit des Patienten beeinflussende Immunreaktion auszulosen. Von Rapp (US-5, 156, 841) wurde bereits die Verwendung von Onko- protemen, d.h. von Expressionsprodukten der Onkogene als Immunogen für Tumorvakzinen beschrieben. Auf diese Literaturstelle wird ausdrücklich Bezug genommen.
Beispiele für Zellantigene und deren onkogene Mutationen gemäß der Erfindung sind 1) Rezeptoren, wie beispielsweise Her-2/neu, Androgen-Rezeptor, Oestrogen -Rezeptor, Midk e-Rezeptor, EGF-Rezeptor, ERBB2, ERBB4, TRAIL- Rezeptor, FAS, TNFalpha-Rezeptor, n) signaltrans- duzierende Proteine und deren onkogene Mutationen wie beispielsweise c-Raf (Raf-1), A-Raf, B-Raf, Ras, Bcl-2, Bcl-X , Bcl-W, Bfl-1, Brag-1, Mcl-1, AI, Bax, BAD, Bak, Bcl-Xs, Bid, Bik, Hrk, Bcr/abl, Myb, C-Met, IAP1, IA02, XIAP, ML-IAP LIVIN, Surviv , APAF-1; m) Proteine der Zellzykluskontrolle und deren onkogene Mutationen wie beispielsweise Cyclm - D(l-3), - E, - A, - B, - H, Cdk-1, -2, -4, -6, -7, Cdc25C, P16, pl5, p21, p27, pl8, pRb, pl07,pl30, E2F (1-5), GAAD45, MDM2, PCNA, ARF, PTEN, APC, BRCA, P53 und Homologe, IV) Transskπptionsfaktoren und deren onkogene Mutationen wie beispielsweise C-Myc, NFkB, c-Jun, ATF-2, Spl, v) embryonale Proteine, wie beispiel- sweise carcmoembryonales Antigen, alpha-Fetoprotem, Mage, PSCA, vi) Differenzierungsantigene, wie beispielsweise Mart, GplOO, Tyrosmase, GRP, TCF-4, vn) virale Antigene wie beispielsweise von folgenden Viren: HPV, HCV, HPV, EBV, CMV, HSV. Alternativ oder zusätzlich kann Komponente I) mindestens eine Nukleotidsequenz für mindestens ein Antigen spezifisch für eine normale Gewebezelle, von welcher der jeweilige Tumor abstammt, darstellen. Derartige spezifische Antigen sind beispielsweise l) Rezeptoren wie beispielsweise Androgenrezeptoren, Oestrogenrezeptoren, Lactoferrmrezeptor, n) Differenzierungsantigene wie beispielsweise basisches Myelin, alpha-Lactalbu m, GFAP, PSA, Fibrillary acid Protein, Tyrosmase, EGR-1, MUC1. Komponente II)
Komponente II) stellt mindestens eine Nukleotidse- quenz für mindestens ein Protein dar, welches Zellen des Immunsystems stimuliert. Durch die Wahl des Proteins kann die Immunreaktion auf das Expressionsprodukt von Komponente I) verstärkt und/oder mehr zur Aktivierung von Thl Zellen (für die zellulare Immunreaktion) oder zur Ak- tivierung von Th2 Zellen (für die humorale Immunreaktion) ausgerichtet werden. Immunstimulierende Proteine sind beispielsweise l) Cytok e wie M-CSF, GM-CSF, G-CSF, n) Interferone wie IFN-alpha, -ß, gamma, m) Interleukme wie IL-1, -2, -3, -4, -5, -6, -7, -9, -10, -11, -12, -13, -14, -15, -16, Human Leukemia hibitory factor (LIF) , IV)
Chemokme wie Rantes, Monocyte chemotactic and activating factor (MCAF) , Macrophage mflammatory protem-1 (MIP-1- alpha, -ß), Neutrophil activatmg Protem-2 (NAP-2), IL-8.
Komponente IIIA)
Komponente IIIA) ist mindestens eine Nukleotidsequenz, kodierend für mindestens ein Transportsystem, welches die Expression der Expressionsprodukte der Kompo- nenten I) und, optional, II) auf die Außenflache des Mikroorganismus ermöglicht. Die jeweilige Komponente kann hierbei wahlweise entweder sekretiert werden oder auf der Membran des Mikroorganismus, d.h. membranstandig exprim- lert werden. Derartige Transportsysteme sind beispiel- sweise l) das Hamolysmtransportsignal von E.coli
(Nukleotidsequenzen enthaltend HlyA, HlyB und HlyD unter der Kontrolle des hly-spezifischen Promoters) ; folgende Transportsignale sind zu verwenden: für die Sekretion - das C-terminale HlyA-Transportsignal, in Gegenwart von HlyB und HlyD Proteinen; für die membranständige Expression - das C-terminale HlyA-Transportsignal, in Gegenwart vom HlyB-Protein, ii) das Hämolysintransportsignal von E.coli (Nukleotidsequenzen enthaltend HlyA, HlyB und HlyD unter der Kontrolle eines nicht hly-spezifischen bakteriellen Promoters), iii) das Transportsignal für das S-layer Protein ( Rsa A) von Caulobacter crescentus; folgende Transportsignale sind zu verwenden: für die Sekretion und für die membranständige Expression - das C-terminale RsaA- Transportsignal, iv) das Transportsignal für das TolC- Protein von Escherichia coli; folgende Transportsignale sind zu verwenden: für die membranständige Expression - das N-terminale Transportsignal von TolC (das integrale Membranprotein TolC von E. coli ist ein multifunk- tionelles, porenbildendes Protein der äußeren Membran von E. coli, das neben Funktionen wie z. B. der Aufnahme von Colicin El (Morona et al . , J Bacteriol 153: 693-699., 1983) und der Sekretion von Colicin V (Fath et al . , J Bac- teriol 173: 7549-7556., 1991) auch als Rezeptor für den U3-Phagen dient (Austin et al . , J Bacteriol 172: 5312-5325., 1990); dieses Protein findet sich nicht nur in E. coli, sondern in einer Vielzahl von Gram negativen Bakterien (Wiener, Structure Fold Des 8: R171-175., 2000); die Lokalisation in der äußeren Membran und das verbreitete Vorkommen machen TolC zu einem idealen Kandidaten, heterologe Antigene zu präsentieren um z . B. eine Immunantwort auszulösen) .
Komponente IIIB)
Komponente IIIB) ist eine Nukleotidsequenz, kodierend für mindestens ein lytisches Protein, welches im Cytosol einer Säugerzelle exprimiert wird und den Mikroorganismus lysiert zur Freisetzung der Plasmide im Cytosol der Wirtszelle. Derartige lytische Proteine (Endolysine) sind beispielsweise Listerien-spezifische Lysis-Proteine wie z.B. PLY551 (Loessner et al Mol Microbiol 16: 1231-41, 1995) und/oder das Listeria-spezifische Holin unter der Kontrolle eines listeriellen Promoters.
Eine bevorzugte Ausführungsform dieser Erfindung ist die Kombination unterschiedlicher Komponenten IIIB) , beispielsweise die Kombination eines Lysis-Proteins mit dem Holin.
Die Komponenten IIIA und/oder IIIB können konstitutiv aktiv sein.
Komponente IV)
Komponente IV) stellt mindestens eine Nukleotidsequenz für mindestens eine Aktivierungssequenz zur Expression der Komponente I) und, optional, II) dar. ist die Expression membranständig auf der Außenfläche des Mikroorganismus, so ist die Aktivierungssequenz vorzugsweise so auszuwählen, dass sie im Mikroorganismus aktivierbar ist. Derartige Aktivierungssequenzen sind beispielsweise: i) konstitutiv aktive Promotorregionen, wie die Promotorregion mit "Ribosomal binding site" (RBS) des beta-lactamase Gens von E. coli oder des tetA gens (Busby and Ebright, Cell 79: 743-746., 1994), ii) induzierbare Promotoren, bevorzugt Promotoren, die nach Aufnahme in die Zelle aktiv werden. Zu diesen gehört der actA Promoter von L. monocytogenes (Dietrich et al . ,
Nat.Biotechnol. 16: 181-185, 1998) oder der pagC Promoter von S. typhimurium (Bumann, Infect Immun 69: 7493-7500., 2001) . Werden die Plasmide vom Mikroorganismus nach dessen Lyse in das Cytosol der Zelle freigesetzt, so ist die Aktivierungssequenz ichtzellspezifisch, gewebezellspezi- fisch, zellzyklusspezif sch oder funktionsspezifisch. Vorzugsweise werden Aktivierungssequenzen gewählt, welche in Makrophagen, Dendritischen Zellen und Lymphozyten besonders aktiviert werden.
Mikroorganismen im Sinne dieser Erfindung sind Viren, Bakterien oder einzellige Parasiten, welche zur Übertragung von, dem Mikroorganismus fremden Nukleotidsequenzen üblicherweise benutzt werden.
In einer besonderen Ausformung dieser Erfindung stellen die Mikroorganismen gram-positive oder gram-negative Bakterien dar, vorzugsweise Bakterien wie beispielsweise Escherichia coli, Salmonella, Yersinia enterocolitica, Vibrio cholerae, Listeria monocytogenes, Shigella.
Vorzugsweise werden solche Bakterien verwendet, welche in ihrer Virulenz attenuiert sind. Die Komponenten entsprechend der Erfindung werden in die Mikroorganismen eingeführt mit den dem Fachmann bekannten Methoden. Stellen die Mikroorganismen Bakterien dar, so werden die Komponenten in Plasmide eingefügt und die Plasmide in die Bakterien übertragen. Die hierzu geeigneten Techniken und Plasmide sind dem Fachmann hinreichend bekannt.
Gegenstand der Erfindung sind Arzneimittelzubereitun- gen enthaltend die erfmdungsgemaßen Mikroorganismen oder aber Membranhullen dieser Mikroorganismen. Die Herstellung dieser Membranhullen erfolgt beispielsweise nach der in der Patentanmeldung EP-A-0 540 525 beschriebenen Methode. Derartige Arzneimittelzubereitungen sind beispielsweise Suspensionen der erfmdungsgemaßen Mikroorganismen in den dem Pharmazeuten geläufigen Lösungen, geeignet zur Injektion.
Weiterer Gegenstand der Erfindung ist die Verabreichung einer Arzneimittelzubereitung enthaltend die erfindungsgemäßen Mikroorganismen. Die Verabreichung erfolgt lokal oder systemisch, beispielsweise in die Epider- is, in die Subkutis, in die Muskulatur, in eine Körperhöhle, in ein Organ, in den Tumor oder in den Blutkreislauf . Ein besonderer Gegenstand dieser Erfindung ist die perorale oder rektale Verabreichung der erfindungsgemäßen Arzneizubereitung für die Prophylaxe und/oder Therapie einer prolif erativen Erkrankung. Die Verabreichung kann einmalig oder mehrmalig erfolgen. Bei jeder Verabreichung werden im Bereich von 10 bis 10Λ9 erfindungsgemäße Mikroorganismen verabreicht. Falls die Verabreichung dieser Anzahl an den erfindungsgemäßen Mikroorganismen keine ausreichende Immunreaktion bewirkt, ist die zu injizierende Anzahl zu steigern. Nach Verabreichung der erfindungsgemäßen Mikroorganismen wird die Toleranz für eine Zelle, die Komponente I) präsentiert, beispielsweise für eine Tumorzelle, oder für eine Gewebezelle, von welcher der Tumor stammt, durchbrochen und eine gegen den Tumor und/oder gegen dessen Gewe- bezellen -gerichtete zytotoxische Immunreaktion ausgelöst. Je nach Wahl der Komponente I) ist diese zytotoxische Immunreaktion entweder ausschließlich gegen den Tumor gerichtet oder auch gegen die Tumorzellen einschließlich der Gewebezellen, von welchem die Tumorzellen abstammen. Gegenstand der Erfindung ist somit die Verabreichung einer erfindungsgemäßen Arzneimittelzubereitung zu Prophylaxe oder Therapie einer prolif erativen Erkrankung. Zu den proliferativen Erkrankungen sind Tumorerkrankungen, Leukämien, viral verursachte Erkrankungen, chronische Entzündungen, Abstoßungen transplantierter Organe und Autoimmunerkrankungen zu zählen.
In einer besonderen Ausformung dieser Erfindung, bei welcher die Komponente I) mindestens ein Zeilantigen darstellt, welches exprimiert wird von einer Tumorzelle und den Gewebezellen, von welchen der Tumor abstammt, wird die erfindungsgemäße Arzneimittelzubereitung zur Prophylaxe oder Therapie eines Tumors der Schilddrüse, der Mamma, des Magens, der Niere, des Ovars, der Muttermale, der Prostata, der Cervix oder der Harnblase verabreicht.
Im Folgenden wird die Erfindung anhand von lediglich Ausführungsformen darstellenden Beispielen näher erläutert .
Beispiel 1: Induktion einer Immunantwort in BxB Mäusen durch Immunisierung mit c-Raf exprimierenden Ξalmonellen
Raf ist eine normalerweise zytosolische
Serin/Threonin Kinase (PSK) , welche im Zusammenspiel mit anderen Proteinen von Signalkaskaden das Zellwachstum und -überleben kontrolliert (Kerkhoff and Rapp, Oncogene 17: 1457-1462., 1998; Troppmair and Rapp, Recent Results Can- cer Res 143: 245-249., 1997). Eine Bindung eines
Wachstumsfaktor an einen entsprechenden Rezeptor führt normalerweise über eine Aktivierung von Ras, der anschließenden Aktivierung von Raf über mehrere Phospho- rylierungsschritte über die PSK- und Tyrosin Kinase MEK und der PSK ERK zu einer Aktivierung der Replika- tionsmaschinerie im Zellkern (Kerkhoff and Rapp, Oncogene 17: 1457-1462., 1998). Das erste Glied dieser Kette, das kleine G-Protein Ras, liegt in ca. 30% aller menschlichen Tumore verändert vor (Zachos and Spandidos, Crit Rev Oncol Hematol 26: 65-75., 1997). Raf ist ein Effektor von Ras und liegt in einer Vielzahl von menschlichen Tumoren uber- exprimiert vor (Naumann et al . , Recent Results Cancer Res 143: 237-244. , 1997) .
Für den Test im Mausmodell werden transgene Mause verwendet, welche das vollständige Molekül oder die konstitutiv aktive K asedomane (BxB) uberexprimieren (Kerkhoff et al . , Cell Growth Differ 11: 185-190., 2000). Damit entwickeln diese Mause spontan nach ca. einem halben Jahr Lungentumore .
Für die Generierung der Vakzine wurde die humane c- Raf cDNA mit Hilfe von PCR "m-frame" mit HlyA in das Plasmid pMOhly 1 kloniert (Figur 1) . Anschließend wurde das Plasmid pMO-Raf in attenuierte Salmonellen (S.typhi murium SL7207), welche einen Defekt im aromatischen Stoffwechsel tragen, transfiziert (Hoiseth and Stocker, Nature 291: 238-239, 1981). Im Immunoblottmg mit Hilfe von Antikörpern, gerichtet gegen c-Raf konnte im Bakteπenlysat wie auch im Kulturuberstand von, mit pMOhy-Raf trans- fizierten SL7207-Bakterιen das c-Raf HlyAs Fusionsprotein nachgewiesen werden.
BxB transgene Mause wurden nun im Alter von 7-10 Wochen oral mit den Salmonellen immunisiert (Dosis 5 x χoA9) , wobei die Impfung 2 mal im Abstand von 5 Tagen wiederholt wurde. 45 Tage nach der letzten Immunisierung erfolgte eine intravenöse Auffnschimpfung mit 5xlOΛ5 Salmonellen. Zur Kontrolle wurde Mausen nackte c-Raf kodierende DNA intramuskulär verabreicht. 5-7 Tage nach der letzten Immunisierung wurden nun Serumproben entnommen und mit Hilfe eines WESTERN-Blots die Antikorperantwort analysiert. Hierzu wurde das 1:200 verdünnte Serum gegen Membranen mit aufgetrenntem Protein und geblottetem Protein von c-Raf transfizierten oder nicht transfizierten Bakterien hybridisiert. Der Nachweis der gebundenen Serumantikörper erfolgte mit Hilfe von Antikörpern spezifisch für Maus-IgG. In Gegensatz zu den Kontrollmäusen konnten in Mäusen immunisiert mit pMohly- Raf transfizierten SL7207 c-Raf spezifische Antikörper des Isotyps IgG induziert werden. Damit ist gezeigt, dass eine Immunisierung mit den beschriebenen Salmonellen die Selbst-Toleranz durchbrechen kann und CD4+ T-Zellen, welche für den Antikörper Isotypenwechsel zu IgG notwendig sind, induziert.
Zur Analyse der CD8+ T-Zellantwort wurden C57BL-6 Mäuse nach dem gleichen Protokoll immunisiert. 7 Tage nach der letzten Immunisierung wurden Milzzellen isoliert und diese wurden mit Raf-überexprimierenden EL-4 Zellen stimuliert. 1 h nach Beginn der Stimulation wurde der vesikuläre Transport durch Brefeldin A geblockt und nach weiteren 4 h wurden die Zellen mit CD8 und IFN-g spezifischen Antikörpern gefärbt und durchflusszytometrisch analysiert (Mittrucker et al . , Infect Immun 70: 199-203., 2002) . Nur in einer pMO-Raf immunisierten Maus konnte eine Raf-spezifische Antikörperantwort detektiert werden.
Zum Nachweis der tumoriziden Aktivität wurden 10, 12 und 14 Monate alte immunisierte und nicht immunisierte BxB Mäuse getötet und die Lungenmasse gewogen. Die Lungenmasse ist ein direktes Maß für die Größe des Tumors. In der Gruppe, immunisiert mit SL-pMO-Raf waren nach 14 Monaten deutlich häufiger Mäuse anzutreffen mit einer Reduktion der Lungemasse, als in den Kontrollgruppen einschließlich derjenigen Gruppe, welche mit nackter DNA kodierend für c-Raf (SL-pCMV-raf) immunisiert worden war. Normalerweise ist das Tumorwachstum in nicht behandelten Tieren nicht umkehrbar (Kerkhoff et al . , Cell Growth Differ 11: 185-190., 2000). Diese Daten zeigen somit, dass in diesem Experiment eine Impfung mit SL-pMO-Raf Tiere vor der Entstehung von Tumoren schützen konnte und die hier beschriebene Erfindung als Tumorvakzine geeignet ist. Diese Experimente zeigen desweiteren, dass sich mit dem in dieser Erfindung dargestellten Trägersystem prinzipiell die Selbst-Toleranz durchbrechen und in c-Raf toleranten Tieren eine c-Raf spezifische Antikörperantwort- und T-Zellantwort induzieren lässt. Mit dem gleichen experimentellen System lassen sich als Vakzinen Salmonellen herstellen, welche Isoformen von C-Raf (wie beispielsweise B-Raf und A-Raf) , mutiertes C- Raf, B-Raf oder A-Raf, Epitope von normalen oder mutiertem C-Raf, B-Raf oder A-Raf, oder Kombinationen von Epitopen von normalen und/oder mutiertem C-Raf, B-Raf oder A-Raf exprimieren. Beispiele für eine Mutation, die mit Verlust der Aktivität von Raf einhergeht, sind Mutationen der Ras- bindenden Domäne, der Kinase-Domäne und/oder der Phosphorylierungsstellen .
Beispiel 2: Induktion einer Immunantwort in BALB/c Mäusen durch Immunisierung mit PSA exprimierenden Salmonellen.
Die Existenz gewebsspezifischer Antigene, insbesondere solcher, die in erhöhtem Maße von Tumorzellen synthetisiert und exprimiert werden, bildet neben der diagnostischen Verwertbarkeit dieser Marker auch einen möglichen Angriffspunkt für therapeutische Ansätze. Für das Prostatakarzinom sind bislang drei nennenswerte Anti¬ gene identifiziert worden: PSA (Prostata spezifisches An¬ tigen) , PSMA (Prostata spezifisches Membran-Antigen) und PSCA (Prostata Stamm-Zell-Antigen) . Während PSA bereits schon in frühen Tumorformen überexprimiert vorliegt (Watt et al . , Proc Natl Acad Sei U S A 83: 3166-3170., 1986; Wang et al . , Prostate 2: 89-96., 1981) und damit zur Karzinomdiagnostik beiträgt (Labrie et al . , J Urol 147: 846-851; discussion 851-842., 1992), ist die PSCA-
Expression meist erst im lokal fortgeschrittenen, entdifferenzierten und metastasierten Tumorstadium erhöht (Gu et al . , Oncogene 19: 1288-1296., 2000; Reiter et al . , Proc Natl Acad Sei U S A 95 : 1735-1740., 1998). Die Organspezi- fität macht sowohl PSA als auch PSCA zu einem potentiellen Zielantigen bei der Entwicklung von Immuntherapien gegen das Prostatakarzinom (Reiter et al . , Proc Natl Acad Sei U S A 95: 1735-1740., 1998; Hodge et al . , Int J Cancer 63:
231-237., 1995; Armbruster, Clin Chem 39: 181-195., 1993).
In diesem Versuch sollte gezeigt werden, ob PSA sez- ernierende Salmonellen auf der Basis des Vektors pMOHLY 1 in BALB/c Mäusen eine Immunantwort induzieren können. Dazu wurden zunächst mittels Polymerase-Kettenreaktion (PCR) zwei Nsil-Schnittstellen in die c-DNA-Sequenz von PSA eingeführt, um eine "in-frame"-Insertιon des amplifizier- ten Fragments in den Zielvektor zu ermöglichen. Für die
Amplifikation wurde ein Fragment von 645 Basenpaaren (bp) ausgewählt. Als Primer dienten 5'-GTGGATTG-
GTGATGCATCCCTCATC-3' und 5 ' -CAGGGCACATGCATCACTGCCCCA-3 ' .
Das PCR-Produkt wurde zunächst "blunt-end" in den Vektor pUClδ kloniert und später über Nsil-Schnittstellen mit dem Zielvektor pMOhlyl ligiert. Die korrekte Insertion wurde mittels Restriktionsverdau kontrolliert und durch Sequen¬ zierung bestätigt (Figur 2) .
Mit diesem Salmonellenstamm werden nun BALB/c Mäuse dreimal im Abstand von 3 Wochen mit einer Dosis von 1x107 nasal immunisiert. Die Immunantwort wird mit WESTERN-Blot
Analysen und intrazellulärer Zytokinfärbung nachgewiesen.

Claims

Patentansprüche
1) Mikroorganismus mit einer Nukleotidsequenzen kodierend für ein Zellantigen, in dessen Genom folgende Komponenten eingefügt und exprimierbar sind:
I) eine Nukleotidsequenz, kodierend für zumindest ein Epitop eines Antigens oder mehrerer Antigene einer Tumorzelle und/oder eine Nukleotidsequenz für zumindest ein Epitop eines Antigens oder mehrerer Antigene spezifisch für eine Gewebezelle, von welcher der Tumor stammt,
II) optional, eine Nukleotidsequenz, kodierend für ein Protein, welches Zellen des Immun- Systems stimuliert,
IIIA) eine Nukleotidsequenz für ein Transportsys- tem, welches die Expression des Expressionsprodukts der Komponenten I) und, optional, II) auf der Außenfläche des Bakteriums und/oder die Sekretion des Expressionsprodukts der Komponente I) und, optional, der Komponente II) ermöglicht, und/oder IIIB) eine Nukleotidsequenz für ein Protein zur Lyse der Mikrooganismen im Cytosol von Säugerzellen und zur intrazellulären Freisetzung von Plasmiden enthalten in den lysierten Mikroorganismen, und IV) eine Aktivierungssequenz zur Expression einer oder mehrerer der Komponenten I) bis III3) ausgewählt aus der Gruppe bestehend aus "in dem Mikroorganismus aktivierbare, gewebezellspezifische, und nicht zellspezifische Aktivierungssequenz", wobei jede der Komponenten I) bis IV) einfach oder mehrfach, jeweils gleich oder verschieden, eingerichtet sein kann.
2) Mikroorganismus nach Anspruch 1), wobei der Mikroorganismus em Virus, ein Bakterium, insbesondere ein gram-positives oder gram-negatives Bakterium, vorzugsweise ausgewählt aus der Gruppe bestehend aus "Escherichia coli, Salmonella, Yers ia enteroco- litica, Vibrio cholerae, Listeria monocytogenes, und Shigella", oder em einzelliger Parasit ist, wobei die Virulenz des Mikroorganismus vorzugsweise reduz
3) Mikroorganismus nach Anspruch 1), wobei der Mikroorganismus die Hülle eines Bakteriums ist.
4) Mikroorganismus nach einem der Ansprüche 1) bis 3), wobei die Komponente I) eine Nukleotidsequenz ist, welche für em Epitop oder mehrere Epitope eines Antigens oder mehrerer Antigene eines Proteins oder mehrerer Proteine, optional mutiert, einer Tumorzelle kodiert, wobei dieses Protein vorzugsweise ausgewählt ist aus der Gruppe bestehend aus "extrazellularer, transmembraner oder intrazellularer Teil eines Rezeptors; extrazellularer, transmembraner oder intrazellularer Teil eines Adhasionsmolekules; signaltransduzierendes Protein; em die Zellteilung kontrollierendes Protein; Transkriptionsfaktor; Dif- ferenzierungsprotem; embryonales Protein; und vi- rales Protein", wobei das Protein vorzugsweise e Onkogengenprodukt oder ein Suppressorgenprodukt, insbesondere c-Raf, A-Raf, B-Raf oder ein homologes Protein von c-Raf, A-Raf oder B-Raf, ist.
5) Mikroorganismus nach einem der Ansprüche 1) bis 3), wobei die Komponente I) eine Nukleotidsequenz ist, welche für ein Antigen kodiert, welches spezifisch ist für die Gewebezelle, insbesondere ausgewählt aus der Gruppe bestehend aus "Schilddrüse, Brustdrüse, Speicheldrüse, Lymphdrüse, Brustdrüse, Magenschlei - haut, Niere, Ovar, Prostata, Cervix, Harnblasenschleimhaut und Muttermal", von welcher der Tumor stammt .
6) Mikroorganismus nach einem der Ansprüche 1) bis 5), mit einer Komponente I) nach Anspruch 4) und einer
Komponente I) nach Anspruch 5) .
7) Mikroorganismus nach einem der Ansprüche 1) bis 6), wobei die Komponente II) kodiert für mindestens ein Cytokin, Interleukin, Interferon und/oder Chemokin.
8) Mikroorganismus nach einem der Ansprüche 1) bis 7), wobei die Komponente IIIA) kodiert für das Hämolysin- transportsignal von Escherichia coli, für das S-Layer (Rsa A) Protein von Caulobacter crescentus, oder für das TolC-Protein von Escherichia coli.
9) Mikroorganismus nach einem der Ansprüche 1) bis 8), wobei die Komponente IIIB) kodiert für ein lytisches Protein von gram-positiven Bakterien, für ein lytisches Protein von Listeria monocytogenes, für PLY551 von Listeria monocytogenes und/oder für das Holin von Listeria monocytogenes. 10) Mikroorganismus nach einem der Ansprüche 1) bis 9), wobei die Komponente IV) kodiert für eine Aktivatorsequenz, aktivierbar im Mikroorganismus, insbesondere kodiert für eine tumorzellspezifische, gewebezell- spezifische, makrophagenspezifische, dentritenspezi- fische, lyphozytenspezifische, funktionsspezifische oder nichtzellspezifisch aktivierbare Aktivatorsequenz .
10
11) Mikroorganismus nach einem der Ansprüche 1) bis 10), bei welchem Komponente I) für mindestens zwei unterschiedliche Proteine kodiert.
15 12) Verwendung eines Mikroorganismus nach einem der Ansprüche 1) bis 11) für die Herstellung eines Arzneimittels insbesondere zur Prophylaxe und/oder Therapie einer Erkrankung, welche verursacht wird durch eine unkontrollierte Zellteilung oder eine In-
20 fektion, vorzugsweise einer Tumorerkrankung, insbesondere eines Prostatakarzinoms, eines Ovarkarzinoms, eines Mammakarzinoms, eines Magenkarzinoms, eines Nierentumors, eines Schilddrüsentumors, eines Mela- noms, eines Cervixtumors, eines Harnblasentumors,
25 eines Speicheldrüsentumors oder eines Lymphdrüsentu- mors, einer Leukämie, einer viralen oder bakteriellen Infektion, einer chronischen Entzündung, einer Orga- nabstpßung und/oder einer Autoimmunerkrankung.
30 13) Verwendung nach Anspruch 12) für die Entfernung eines Tumors wie auch des gesunden Gewebes, von welchem der Tumor stammt. 14) Verwendung nach Anspruch 12) oder 13), wobei das Arzneimittel für die lokale, - parenterale, orale oder rektale Verabreichung hergerichtet ist.
15) Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 12) bis 15), wobei ein Mikroorganismus nach einem der Ansprüche 1) bis 11) in physiologisch wirksamer Dosis mit einem oder mehreren physiologisch verträglichen Trägerstoffen zur oralen, i.m., i.V., i.p., rektalen oder lokalen Gabe hergerichtet wird.
16) Plasmid oder Expressionsvektor enthaltend die Komponenten I) bis IV) gemäß Anspruch 1.
17) Verfahren zur Herstellung eines Organismus nach einem der Ansprüche 1) bis 11), wobei ein Plasmid oder Expressionsvektor nach Anspruch 16) erzeugt und mit diesem Plasmid oder Expressionsvektor ein Mikroorgan- ismus transformiert wird.
EP03704315A 2002-02-28 2003-02-13 Mikroorganismen als träger von nukleotidsequenzen kodierend für zellantigene zur behandlung von tumoren Withdrawn EP1478756A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10208653 2002-02-28
DE10208653A DE10208653A1 (de) 2002-02-28 2002-02-28 Mikroorganismus als Träger von Nukleotidsequenzen kodierend für Zellantigene zur Behandlung von Tumoren
PCT/DE2003/000471 WO2003072789A2 (de) 2002-02-28 2003-02-13 Mikroorganismen als träger von nukleotidsequenzen kodierend für zellantigene zur behandlung von tumoren

Publications (1)

Publication Number Publication Date
EP1478756A2 true EP1478756A2 (de) 2004-11-24

Family

ID=27762489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03704315A Withdrawn EP1478756A2 (de) 2002-02-28 2003-02-13 Mikroorganismen als träger von nukleotidsequenzen kodierend für zellantigene zur behandlung von tumoren

Country Status (19)

Country Link
US (1) US20060105423A1 (de)
EP (1) EP1478756A2 (de)
JP (1) JP2005518795A (de)
KR (1) KR20040104464A (de)
CN (1) CN1650014A (de)
AU (1) AU2003206664A1 (de)
BR (1) BRPI0308119A2 (de)
CA (1) CA2513190A1 (de)
DE (1) DE10208653A1 (de)
HR (1) HRP20040785A2 (de)
IL (1) IL163672A0 (de)
MX (1) MXPA04008287A (de)
NO (1) NO20043926L (de)
NZ (1) NZ535312A (de)
PL (1) PL372370A1 (de)
RS (1) RS75604A (de)
RU (1) RU2319741C2 (de)
WO (1) WO2003072789A2 (de)
ZA (1) ZA200407528B (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8221739B2 (en) 2004-04-29 2012-07-17 Botanic Oil Innovations, Inc. Method of cancer treatment
EP1957100B1 (de) * 2005-11-29 2016-07-13 Intrexon Actobiotics NV Induktion von schleimhauttoleranz gegen antigene
KR100818144B1 (ko) * 2006-02-15 2008-03-31 고려대학교 산학협력단 인터페론감마를 발현하는 살모넬라 균주 및 이를 함유하는항암 치료용 조성물
WO2008027560A2 (en) * 2006-09-01 2008-03-06 Anza Therapeutics, Inc. Holin-enhanced vaccines and reagents, and methods of use thereof
EP1921149A1 (de) 2006-11-13 2008-05-14 AEterna Zentaris GmbH Mikroorganismen als Träger von Nukleotidsequenzen, die für Antigene und Toxine kodieren, Verfahren zur Herstellung und deren Verwendungen
EP2125010B1 (de) 2007-01-25 2014-06-04 Actogenix N.V. Behandlung von immunkrankheiten durch mukosale abgabe von antigenen mit genetisch modifiziertem lactobacillus
KR101104077B1 (ko) 2008-10-14 2012-01-11 건국대학교 산학협력단 Egr-1의 발현을 증가시키는 활성을 갖는 신규한 엔터로박테리아속에 속하는 신규균주 및 그 균주를 포함하는 조성물의 항암제로서의 용도
KR101346620B1 (ko) * 2011-11-30 2014-01-06 전남대학교산학협력단 신규 박테리아 용해 단백질 및 그의 용도
RU2551238C9 (ru) * 2013-08-02 2016-04-10 Федеральное государственное бюджетное учреждение "Медико-генетический научный центр" Российской академии медицинских наук Способ индукции апоптоза клеток злокачественной опухоли колоректального рака и средство для его осуществления
EP3550976A4 (de) 2016-12-07 2020-06-10 MD Biosciences, Inc. Verfahren zur synergistischen behandlung von krebs
US20220193149A1 (en) * 2019-05-16 2022-06-23 City Of Hope Compositions and methods for targeting tumor-associated extracellular matrix components to improve drug delivery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156841A (en) * 1988-08-26 1992-10-20 United States Of America Anti-tumor vaccine
ZA941645B (en) * 1994-03-09 1995-01-13 South To South Co Operation In Antibodies specifically reactive against human prostate specific antigen.
US6051237A (en) * 1994-11-08 2000-04-18 The Trustees Of The University Of Pennsylvania Specific immunotherapy of cancer using a live recombinant bacterial vaccine vector
AU2001297770B2 (en) * 2000-11-22 2007-04-05 University Of Maryland, Baltimore Use of CLyA hemolysin for excretion of fusion proteins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03072789A2 *

Also Published As

Publication number Publication date
AU2003206664A1 (en) 2003-09-09
NZ535312A (en) 2008-03-28
CA2513190A1 (en) 2003-09-04
HRP20040785A2 (en) 2004-12-31
PL372370A1 (en) 2005-07-25
RU2319741C2 (ru) 2008-03-20
ZA200407528B (en) 2006-06-28
KR20040104464A (ko) 2004-12-10
WO2003072789A2 (de) 2003-09-04
NO20043926L (no) 2004-09-20
CN1650014A (zh) 2005-08-03
WO2003072789A3 (de) 2004-02-12
BRPI0308119A2 (pt) 2016-06-28
MXPA04008287A (es) 2006-04-27
US20060105423A1 (en) 2006-05-18
DE10208653A1 (de) 2003-09-18
IL163672A0 (en) 2005-12-18
JP2005518795A (ja) 2005-06-30
RS75604A (en) 2006-12-15
RU2004128929A (ru) 2005-04-10

Similar Documents

Publication Publication Date Title
DE69533334T2 (de) Impfstoff zum Auflösen einer Immunreaktion auf ein tumorspezifisches Antigen
DE69836588T2 (de) Tuberkulose impfstoff
DE69027313T2 (de) Impfstoffe enthaltende avirulente phop-type mikroorganismen
DE69731756T2 (de) Melanomzellinien, welche immundominante melanomantigene teilen und verfahren zu deren anwendung
DE69322092T2 (de) Neue bakterielle impfstoffe unter verwendung von impfstämmen von pathogenen bakterien
Chen et al. Development of a Listeria monocytogenes-based vaccine against hepatocellular carcinoma
HUE030655T2 (en) Preparations and methods for enhancing the immune response to eimeria
CN106102768B (zh) 分枝杆菌抗原组合物
EP1699480B1 (de) Allogenes tumortherapeutikum
CN108350411A (zh) 口服肿瘤疫苗
EP1478756A2 (de) Mikroorganismen als träger von nukleotidsequenzen kodierend für zellantigene zur behandlung von tumoren
JPH03504336A (ja) 組換えポックスウイルス及び連鎖球菌mタンパク質ワクチン
JP7247097B2 (ja) がん免疫療法のための新規pd-l1標的dnaワクチン
CN108330142B (zh) 一种具有免疫保护作用的美人鱼发光杆菌溶血素Hlych蛋白
CN110214028A (zh) 联合使用口服肿瘤疫苗和免疫抑制阻滞剂的癌症治疗
WO1997040182A1 (de) Gentransfizierte humane dendritische zellen, ihre herstellung und ihre verwendung, bevorzugt als vakzine
US5330753A (en) Cholera vaccines
EP2403947B1 (de) Verfahren zur oralen/mukosalen vakzinierung mittels rekombinanter hefen
WO2003045428A2 (de) Verwendung einer technisch veränderten zelle als vakzine zur behandlung einer tumorerkrankung
EP1476582B1 (de) Nukleotidsequenz codierend für ein tolc, das eine heterologe aminosäuresequenz enthält
DE60223232T2 (de) Mucinpeptid mit immunstärkenden eigenschaften
EP1474519A2 (de) Mikroorganismus zur gentherapeutischen behandlung proliferativer erkrankungen
CN108794636B (zh) 一种表位多肽串联混合物在抗立氏立克次体的免疫保护中的应用
Jensen Recombinant Listeria monocytogenes as a live vaccine vector and a probe for studying cell-mediated immunity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040910

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZENTARIS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZENTARIS GMBH

17Q First examination report despatched

Effective date: 20070518

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AETERNA ZENTARIS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20071130