EP1456108B1 - Spulspindel mit erhöhter eigenfrequenz - Google Patents

Spulspindel mit erhöhter eigenfrequenz Download PDF

Info

Publication number
EP1456108B1
EP1456108B1 EP02791819A EP02791819A EP1456108B1 EP 1456108 B1 EP1456108 B1 EP 1456108B1 EP 02791819 A EP02791819 A EP 02791819A EP 02791819 A EP02791819 A EP 02791819A EP 1456108 B1 EP1456108 B1 EP 1456108B1
Authority
EP
European Patent Office
Prior art keywords
outer tube
inner tube
winding spindle
tube
clamping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02791819A
Other languages
English (en)
French (fr)
Other versions
EP1456108A1 (de
Inventor
Roland Oesterwind
Rainald Voss
Heinz JÄSCHKE
Roland Kampmann
Jörg Spahlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Saurer GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saurer GmbH and Co KG filed Critical Saurer GmbH and Co KG
Publication of EP1456108A1 publication Critical patent/EP1456108A1/de
Application granted granted Critical
Publication of EP1456108B1 publication Critical patent/EP1456108B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/54Arrangements for supporting cores or formers at winding stations; Securing cores or formers to driving members
    • B65H54/547Cantilever supporting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/54Arrangements for supporting cores or formers at winding stations; Securing cores or formers to driving members
    • B65H54/543Securing cores or holders to supporting or driving members, e.g. collapsible mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/54Arrangements for supporting cores or formers at winding stations; Securing cores or formers to driving members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2401/00Materials used for the handling apparatus or parts thereof; Properties thereof
    • B65H2401/10Materials
    • B65H2401/11Polymer compositions
    • B65H2401/111Elastomer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2601/00Problem to be solved or advantage achieved
    • B65H2601/50Diminishing, minimizing or reducing
    • B65H2601/52Diminishing, minimizing or reducing entities relating to handling machine
    • B65H2601/524Vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a winding spindle for clamping a plurality of winding tubes in a winding machine for threads according to the preamble of claim 1.
  • Such a winding spindle is from the DE 196 07 916 A1 known.
  • winding spindles are used in winding machines for winding preferably freshly spun synthetic threads into coils.
  • several bobbins are attached in succession on the winding spindle projecting in the winding machine.
  • the winding spindle has a clamping device which has a plurality of radially outwardly feasible clamping elements.
  • an annular space is formed between an outer tube and an inner tube.
  • the inner tube is connected to transmit the rotational movement with a drive shaft.
  • the outer tube is substantially positively coupled to the inner tube, wherein the carrying capacity of the winding spindle is determined by the inner tube.
  • the known winding spindle has a relatively low bending-critical natural frequency.
  • the winding spindle must, depending on the diameter of the coil during the winding of the threads a speed range of about 2,000 U / min. up to 22,000 rpm. run through.
  • the natural frequencies of the winding spindle are particularly critical speeds which lead to resonant vibrations.
  • the inner diameter of the sleeves to be clamped must be observed as extreme limits for the design of the winding spindle.
  • winding spindles in which the outer tube is formed as a supporting element and coupled to a drive.
  • winding spindles generally have the disadvantage that the connection to a drive due to the internal clamping device at the end of the outer tube must be initiated. This additionally high torsional moments are introduced into the outer tube, which requires an additional torsional stiffness in addition to the desired high bending stiffness.
  • a winding spindle is known in which an inner tube and an outer tube are arranged at a distance from each other.
  • a clamping device is movably arranged, which is actuated by means of compressed air and is therefore sealed by O-rings relative to the tubes. Even with a spindle loaded with full packages, the mobility of the clamping device must be ensured so that the clamping device can not transmit any radial forces between the inner tube and the outer tube.
  • a winding spindle is known in which an outer tube is arranged to be movable relative to an inner tube.
  • the outer tube serves to guide spring-loaded balls, which serve as a clamping device for a winding tube. Since the balls are arranged with play within the outer tube, you can also transmit no radial forces between the inner tube and outer tube.
  • the invention is therefore the object of developing a winding spindle of the type mentioned in such a way that the natural frequency of the winding spindle is increased substantially measures.
  • the invention has the advantage that with the same arrangement of the outer tube, the clamping device and the inner tube of relevant for the load capacity and the natural frequency diameter of the winding spindle is increased.
  • the outer tube and the inner tube are clamped together so that the outer tube and the inner tube absorb the upcoming external load to the same extent.
  • a plurality of axially spaced-apart support means between the inner tube and the outer tube are arranged.
  • the support means generate a radially acting clamping force between the inner tube and the outer tube. So that a frictional connection between the inner tube and the outer tube is formed.
  • the outer outer tube for receiving the load during the entire operation of the winding spindle can be used.
  • the invention also has the advantage that the clamping force for non-positive connection between the inner tube and the outer tube is generated only after assembly of the winding spindle.
  • the support means are each formed from a deformable support body and at least one clamping element.
  • the non-deformed support body can be attached to the circumference of the inner tube.
  • the outer tube is then slipped over the non-deformed support body over the inner tube.
  • a clamping element is introduced or activated in order to deform the support body in the annular space between the inner tube and the outer tube such that a radially acting clamping force builds up between the inner tube and the outer tube.
  • the clamping force could also be generated such that first of the support body is held tension-free by means of clamping elements, and that after releasing the clamping elements, the support body generate a clamping force.
  • the tensioning element can in this case be formed, for example, by an actuator or by mechanical means.
  • the support means is formed in that the outer tube and the inner tube are braced at least partially elastically against each other over the circumference.
  • the support body can form both annular and segment-shaped.
  • annular support bodies a clamping force acting essentially uniformly on the circumference between the outer tube and the inner tube is produced.
  • the outer tube retains its predefined preferably round shape even at high clamping forces.
  • a particularly simple and safe-acting embodiment variant is given by the development of the invention in claim 5.
  • the support body is held on the inner tube.
  • a plurality of clamping screws are provided, which are arranged distributed uniformly on the circumference of the outer tube and act through the outer tube to the support body. Characterized the annular support body is clamped and deformed against the outer tube, so that the outer tube is non-positively connected to the inner tube.
  • the support body preferably carries on the circumference at least one elastic ring, so that a uniform support of the outer tube over the entire circumference is maintained. Furthermore, it can thus produce a damping between the outer tube and the inner tube.
  • the ratio between the length L of the winding spindle and the diameter D of the winding spindle is above L / D ⁇ 10.
  • the winding spindle is preferably carried out with the feature of claim 8.
  • the inner tube and the outer tube extends over a length of at least 1 m, wherein at least three mutually spaced support means are provided for frictional connection of the inner tube and the outer tube.
  • the outer tube and the inner tube to connect at the free end by a cover.
  • the lid is applied with a contact surface at the front end of the outer tube and connected by screws to the front end of the inner tube.
  • an additional tension of the outer tube is generated against the inner tube.
  • the axial clamping force applied by the cover ensures that the outer tube represents a non-positive unit with the inner tube over its entire length.
  • the advantageous development of the invention according to claim 10 and 11 is particularly well suited to safely clamp at very long projecting winding spindles relatively wide bobbins and to drive at high speed.
  • a support point with one or more support means is arranged in each case between two adjacent clamping devices of the clamping device. For each winding thus a clamping point between the inner tube and the outer tube is formed.
  • the clamping apparatuses adjacent to the supporting means are preferably used for tensioning a sleeve. A synchronous operation of both clamping devices is advantageous.
  • the winding spindle To facilitate the assembly of the clamping device, it is proposed according to a further advantageous embodiment of the winding spindle to form the outer tube by a plurality of cylinders, wherein the cylinders are preferably rigidly interconnected.
  • the bending strength is not significantly reduced in spite of several individual cylinders compared to a continuous outer tube.
  • the connection of the cylinder is advantageously carried out releasably, in order to perform a maintenance of the clamping device in a simple manner.
  • the outer tube in the end regions in each case one or more outer grooves.
  • the wall thickness of the outer tube in the middle region is greater than in the end regions.
  • the masses of the winding spindle to be accelerated are reduced.
  • construction materials for the outer tube and the inner tube are basically steel, aluminum or fiber-reinforced composite materials suitable.
  • the combination of an outer tube made of steel and an inner tube made of aluminum or a fiber-reinforced composite material has proven to be particularly advantageous.
  • Fig. 1 is a longitudinal section through a first embodiment of the winding spindle according to the invention is shown schematically.
  • the winding spindle has a drive shaft 5, which is rotatably supported within a carrier 7 by the bearings 8.
  • the drive shaft 5 is coupled to an electric drive at an end, not shown here.
  • the drive shaft 5 is rotatably coupled to a hub 6, which is connected to a hollow cylindrical inner tube 3.
  • the hub 6 is preferably arranged in the central region of the inner tube 3, wherein a projecting portion of the support 7 for supporting the drive shaft 5 projects into the open end of the inner tube 3.
  • a hollow cylindrical outer tube 1 is arranged at a distance, which extends substantially over the entire length of the inner tube 3.
  • a clamping device 2 is arranged in the annular space 26 formed between the inner tube 3 and the outer tube 1.
  • the clamping device 2 consists of several clamping devices 13, which have a plurality of adjustable clamping elements 4 in the radial direction.
  • the clamping elements 4 protrude through openings 9 of the outer tube 1 radially outward to tension a plugged on the circumference of the outer tube winding tube 10.
  • the tensioning devices 13 could here, for example, as from DE 196 07 916 A1 is known to be trained.
  • the clamping element 4 is supported via a wedge surface 18 of a piston 16 that is axially movable on the inner tube 1.
  • the piston 16 is supported via one or more springs 17 on a fixedly connected to the inner tube 3 stop. In the position shown in Fig. 1, the piston 16 is held by the springs 17 in a clamping position.
  • the clamping elements 4 protrude from the outer tube 1.
  • the piston 16 is preferably acted upon on the opposite side to the spring 17 with a pressure medium, a compressed air, so that the piston 16 against the spring 17 in the direction of Stop 22 is moved.
  • the piston 16 has on the pressurized side a seal 19, which in each case creates a seal between the piston 16 and the inner tube 3 and between the piston 16 and the outer tube 1.
  • the tensioning device 13 adjacent in the longitudinal direction of the winding spindle has an identical structure, with the pressure-loaded end faces of the pistons 16 facing one another at a distance.
  • a winding tube 10 can be tensioned by two adjacent clamping devices.
  • To release both pistons 16 of the adjacent clamping devices 13 are driven by a pressure chamber at the same time.
  • the control means and the pressure lines are not shown here for clarity.
  • a support means 12 is provided in the annular space 26 between the outer tube and the inner tube 3 in each case.
  • a cross-section of the winding spindle shown in Fig. 1 in the region of the support point is shown schematically in Fig. 2.
  • the following description applies to the support means 12 for in Figures 1 and 2.
  • the support means 12 is in this case formed by an annular support body 23 and a plurality of circumferentially distributed outer tube 1 arranged clamping elements 24.
  • the support body 23 is formed deformable.
  • the embodiment of the support body 23 shown in Fig. 1, the support body 23 is formed from a profiled ring.
  • the support body 23 is attached to the inner tube 3.
  • the clamping elements 24 which are formed by clamping screws, screwed from the outside through the outer tube 1 and connected to the support body 23. This will the support body 23 is clamped to the outer tube 1 and thus deformed. Due to the deformation of the support body 23, a radially acting clamping force is generated between the inner tube 3 and the outer tube 1.
  • the support body 23 has on the side facing the outer tube 1 two parallel elastic rings 25.
  • the elastic rings 25 take over the support function at the same time a sealing function to the annular space 26 against the To seal receiving openings for the clamping elements 24 in the outer tube 1.
  • each winding unit i. H. each tensioning point a winding tube 10 each have a support point for bracing the outer tube 1 of the inner tube 3.
  • the embodiment shown in Fig. 1 is particularly suitable for long projecting winding spindles of over one meter in length when using relatively wide winding tubes 10.
  • a cover 14 is connected by a plurality of screws 15 with the inner tube 3.
  • the lid 14 is dimensioned such that the annular space 26 between the inner tube 3 and the outer tube 1 is also closed by the lid 14.
  • the inner tube 3 has a circumferential collar 11 against which the outer tube 1 rests.
  • the support means 12 shown in Fig. 1 is a possible embodiment for generating a clamping force between the outer tube 1 and the inner tube 3 after the outer tube 1 is attached to the inner tube 3.
  • Fig. 3 is a cross section of a further embodiment of a winding spindle according to the invention is shown schematically.
  • the cross section represents one of several support points of the winding spindle.
  • the Supporting means 12 formed by a plurality on the circumference of the inner tube 3 evenly distributed segment-shaped support body 27.
  • the support bodies 27 are each formed as a deformable profile.
  • Each support body 27 is associated with a clamping element 24 in the form of a clamping screw.
  • the tensioning element 24 is screwed into the outer tube 1 and connected to the support body 27.
  • the support body 27 is clamped and deformed against the outer tube 1.
  • the deformation of the segment-shaped support body 27 generates a radially acting clamping force between the inner tube 3 and the outer tube 1.
  • a non-uniform on the circumference of the outer tube 1 acting clamping force is generated. Due to the large number of arranged within a support point supporting body 27 can be a secure clamping between the inner tube 3 and the outer tube 1 can be achieved.
  • the shape of the segment-shaped support body 27 and the clamping elements 24 is exemplary.
  • FIG. 4 a further embodiment of a winding spindle according to the invention is shown schematically.
  • This embodiment is substantially identical to the previous embodiment of Fig. 1.
  • the annular support body 23 are T-shaped. Within a support point of the annular support body 23, which is supported by the elastic rings 25 relative to the outer tube 1, connected by a plurality of clamping elements 24 with the outer tube 1. In this case, a related to the circular circumference of the annular support body 23 deformation is achieved.
  • the annular support body 23 is in the tensioned state a polygonal cross-section, which leads in the annular space 26 to a force acting between the inner tube 3 and the outer tube 1 clamping force. Thus, a substantially uniformly acting over the circumference clamping force between the inner tube 3 and the outer tube 1 is generated.
  • the outer tube has a recess 28 in each of the end regions.
  • the recess 28 is encircling the circumference of the outer tube 1.
  • the wall thickness of the outer tube 1 in the central region of the winding spindle is formed stronger than in the end regions of the outer tube.
  • FIG. 5 another embodiment of a winding spindle according to the invention is shown in a longitudinal sectional view. This embodiment is also substantially identical to the previous embodiment of FIG. 1 is formed. In that regard, reference is made to the description made in Fig. 1 reference and at this point only the differences are shown.
  • the outer tube 1 is formed by a column of cylinders 20 arranged behind one another.
  • adjacent cylinders 20 are coupled together in a connection 21 such that substantially no relative movement between the individual cylinders can occur.
  • the column of a plurality of cylinders 20 thus produced has a substantially equivalent flexural rigidity compared to a continuous outer tube.
  • the connection 21 between the cylinders 20 is preferably detachable.
  • the connection 21 could also be made in a manner not shown here by additional elements. For example, a shrink ring covering the joint between two cylinders 20 would ensure adequate bending stiffness. However, there is also the possibility to keep the connection of the cylinder pliable and to hold the cylinders together by an axial force.
  • the cylinders can be designed differently in their length, so that, for example, one or more longer cylinders are arranged in the middle region and one or more short cylinders are arranged in the end region.
  • the inner tube 3 and the column of the cylinder 20 are braced against each other.
  • a circumferential collar 11 is attached to the end facing the carrier 7 on the inner tube 3.
  • the collar 11 is preferably formed circumferentially and has an outer diameter which projects beyond the outer diameter of the cylinder 20 so that the front end of the column of the cylinder 20 rests against the side facing away from the carrier 7 inside the collar 11.
  • a lid 14 is arranged at the opposite end of the inner tube 3 and the column of the cylinder 20.
  • the lid 14 has an outer diameter that projects beyond the outer diameter of the cylinder 20.
  • the cover 14 On the side facing the cylinder 20, the cover 14 has an annular abutment surface which bears directly against the end face of the cylinder column. Between the end face of the inner tube 1 and the lid 14, a gap is formed, which is penetrated by a plurality of screws 15 which connect the lid 14 with the end face of the inner tube 1. Characterized the inner tube 3 and the column of the cylinder 20 is clamped together such that the clamping force generated by the screws 15 in the inner tube 1 leads to an over the contact surface of the lid 14 on the column of the cylinder 20 corresponding counterforce.
  • the clamping force generated by the screw 15 leads to a tensile stress of the inner tube 3.
  • a pressure force is introduced into the end face of the column by the contact surface of the lid 14.
  • the column of the cylinder 20 is supported on the collar 11 of the inner tube 3 at the opposite end.
  • the support means 12 is formed by an annular support body 23 and a plurality of clamping elements 24 acting on the support body 23.
  • the support body 23 is formed as an incompressible elastomeric ring 29.
  • Within the annular space 26 acts on both end faces of the elastomeric ring 29, a clamping element 24 in the form of a spring.
  • the clamping elements 24 can simultaneously support the within the Clamps 13 slidably trained piston take over.
  • the arranged in the annular space 26 column consisting of clamping devices 13 and support means 12 is stretched over the screwed at the end of the inner tube 3 cover 14 between the collar 11 and the lid 14.
  • the clamping elements 24 designed as springs generate a pressure load on the respective elastomer ring 29, so that a radially acting clamping force between the inner tube 3 and the respective cylinder 20 is generated by the deformation of the elastomer ring 29.
  • the column of the cylinder 20 is connected by a radial clamping force in the supporting points as well as by axial tension through the cover 14 with the inner tube 3.
  • a plurality of support points for radial clamping between the inner tube and the outer tube are respectively provided. It has been found that with a length of the winding spindle of one meter at least three spaced-apart support points with, for example, annular support means must be present in order to obtain a sufficient load capacity of the outer tube.
  • annular support means With a length of the winding spindle of one meter at least three spaced-apart support points with, for example, annular support means must be present in order to obtain a sufficient load capacity of the outer tube.
  • a profiled outer tube it is also possible to use a profiled outer tube.
  • the outer tube has an inner longitudinal profile shape, which allows a wall thickness reduction and thus a mass saving in the outer tube, without substantially reducing the rigidity.
  • the winding spindle according to the invention is particularly characterized by the fact that the inner tube and the outer tube can be mounted in a simple manner. When mounting the support body are not deformed and held on the circumference of the inner tube. Only after final assembly is carried out by deformation of the support body bracing of the outer tube with the inner tube.

Abstract

Es ist eine Spulspindel zum Aufspannen mehrerer Spulhülsen (10) beschrieben. Die Spulspindel wird durch ein Innenrohr (3) und ein das Innenrohr (3) umschliessendes Aussenrohr (1) gebildet. Das Innenrohr (3) ist mit einer Antriebswelle (5) verbunden. Zwischen dem Innenrohr (3) und dem Aussenrohr (1) ist eine Klemmeinrichtung (2) angeordnet, welche mehrere durch Öffnungen (9) des Aussenrohres (1) ausfahrbare Klemmelemente (4) zum Spannen der Spulhülsen (10) aufweist. Das am Umfang des Innenrohres (3) angeordnete Aussenrohr (1) ist erfindungsgemäss durch mehrere zwischen dem Innenrohr (3) und dem Aussenrohr (1) in Abstand zueinander liegende Stützmittel (12) verspannt. Hierzu erzeugen die Stützmittel (12) eine radial wirkende Spannkraft zwischen dem Innenrohr (3) und dem Aussenrohr (1).

Description

  • Die Erfindung betrifft eine Spulspindel zum Aufspannen mehrerer Spulhülsen in einer Aufspulmaschine für Fäden gemäß dem Oberbegriff des Anspruchs 1.
  • Eine derartige Spulspindel ist aus der DE 196 07 916 A1 bekannt.
  • Derartige Spulspindeln werden in Aufspulmaschinen zum Aufspulen von vorzugsweise frisch gesponnenen synthetischen Fäden zu Spulen eingesetzt. Hierzu sind mehrere Spulhülsen hintereinander auf der in der Aufspulmaschine auskragend angeordneten Spulspindel aufgesteckt. Zum Spannen der Spulhülsen besitzt die Spulspindel eine Klemmeinrichtung, die mehrere radial nach außen führbare Klemmelemente besitzt. Zur Aufnahme der Klemmeinrichtung ist zwischen einem Außenrohr und einem Innenrohr ein Ringraum gebildet. Das Innenrohr ist zur Übertragung der Drehbewegung mit einer Antriebswelle verbunden. Das Außenrohr ist im wesentlichen formschlüssig mit dem Innenrohr gekoppelt, wobei die Tragfähigkeit der Spulspindel durch das Innenrohr bestimmt ist. Dadurch weist die bekannte Spulspindel eine relativ geringe biegekritische Eigenfrequenz auf. Zur Realisierung hoher Fadenlaufgeschwindigkeiten von mehr als 4.000 m/min. muß die Spulspindel in Abhängigkeit vom Durchmesser der Spule während der Aufwicklung der Fäden einen Drehzahlbereich von ca. 2.000 U/min. bis 22.000 U/min. durchlaufen. Dabei stellen die Eigenfrequenzen der Spulspindel in besonderem Maße kritische Drehzahlen dar, die zu Resonanzschwingungen führen. Somit besteht der Wunsch, die Spulspindel derart zu gestalten, daß eine möglichst hohe Eigenfrequenz erreicht wird. Hierbei sind jedoch die Innendurchmesser der zu spannenden Hülsen als äußerste Grenzwerte zur Gestaltung der Spulspindel einzuhalten.
  • So ist beispielsweise aus der EP 0 704 400 eine Spulspindel bekannt, bei welcher das Außenrohr als tragendes Element ausgebildet und mit einem Antrieb gekoppelt ist. Derartige Spulspindeln besitzen jedoch generell den Nachteil, daß die Anbindung an einen Antrieb aufgrund der innenliegenden Klemmeinrichtung am Ende des Außenrohres eingeleitet werden muß. Damit werden zusätzlich hohe Torsionsmomente in dem Außenrohr eingeleitet, die neben der gewünschten hohen Biegesteifigkeit eine zusätzliche Torsionssteifigkeit erfordert.
  • Aus der US 4,336,912 ist eine Spulspindel bekannt, bei der ein Innenrohr und ein Außenrohr mit Abstand zueinander angeordnet sind. Im Zwischenraum ist eine Klemmeinrichtung beweglich angeordnet, welche mittels Druckluft betätigt wird und daher durch O-Ringe gegenüber den Rohren abgedichtet ist. Auch bei einer durch volle Spulpakete belasteten Spindel muss die Beweglichkeit der Klemmeinrichtung sichergestellt sein, so dass die Klemmeinrichtung keine radialen Kräfte zwischen Innenrohr und Außenrohr übertragen kann.
  • Aus der US 6,113,025 ist eine Spulspindel bekannt, bei der ein Außenrohr relativ zu einem Innenrohr beweglich angeordnet ist. Das Außenrohr dient zu Führung von federbelasteten Kugeln, die als Klemmeinrichtung für eine Spulhülse dienen. Da die Kugeln mit Spiel innerhalb des Außenrohres angeordnet sind können Sie ebenfalls keine radialen Kräfte zwischen Innenrohr und Außenrohr übertragen.
  • Die Erfindung liegt demnach die Aufgabe zugrunde, eine Spulspindel der eingangs genannten Art derart weiterzubilden, daß die Eigenfrequenz der Spulspindel im wesentlichen Maße erhöht wird.
  • Diese Aufgabe wird durch eine Spulspindel mit den Merkmalen des Anspruchs 1 gelöst.
  • Vorteilhafte Weiterbildungen der Erfindungen sind in den Unteransprüchen 2 bis 13 definiert.
  • Die Erfindung besitzt den Vorteil, daß bei gleicher Anordnung des Außenrohres, der Klemmeinrichtung und des Innenrohres der für die Tragfähigkeit und der Eigenfrequenz maßgebliche Durchmesser der Spulspindel vergrößert ist. Hierzu sind das Außenrohr und das Innenrohr derart miteinander verspannt, daß das Außenrohr und das Innenrohr im gleichen Maße die anstehende äußere Belastung aufnehmen. Hierzu sind mehrere axial in Abstand zueinander angeordnete Stützmittel zwischen dem Innenrohr und dem Außenrohr angeordnet. Die Stützmittel erzeugen dabei eine radial wirkende Spannkraft zwischen dem Innenrohr und dem Außenrohr. So daß eine kraftschlüssige Verbindung zwischen dem Innenrohr und dem Außenrohr entsteht. Damit wird neben dem Innenrohr das außen liegende Außenrohr zur Aufnahme der Belastung während des gesamten Betriebes der Spulspindel nutzbar.
  • Die Erfindung besitzt außerdem den Vorteil, daß die Spannkraft zur kraftschlüssigen Verbindung zwischen dem Innenrohr und dem Außenrohr erst nach Montage der Spulspindel erzeugt wird. Hierzu sind die Stützmittel jeweils aus einem verformbaren Stützkörper und zumindest einem Spannelement gebildet. So läßt sich beispielsweise der nicht verformte Stützkörper am Umfang des Innenrohres anbringen. Das Außenrohr wird sodann über die nicht verformten Stützkörper über das Innenrohr gestülpt. Anschließend wird ein Spannelement eingebracht oder aktiviert, um die Stützkörper in dem Ringraum zwischen dem Innenrohr und dem Außenrohr derart zu verformen, daß sich eine radial wirkende Spannkraft zwischen dem Innenrohr und dem Außenrohr aufbaut. Die Spannkraft könnte jedoch auch derart erzeugt werden, daß zunächst der Stützkörper mittels Spannelementen spannkraftfrei gehalten wird, und daß nach Lösen der Spannelemente die Stützkörper eine Spannkraft erzeugen. Das Spannelement kann hierbei beispielsweise durch einen Aktor oder durch mechanische Mittel ausgebildet sein.
  • Um einerseits zu verhindern, daß die kraftschlüssige Verbindung zwischen dem Innenrohr und dem Außenrohr durch Fliehkräfte unterbrochen werden und andererseits eine über den gesamten Umfang gleichmäßig wirkende Spannkraft zwischen dem Außenrohr und dem Innenrohr zu erhalten, ist gemäß einer vorteilhaften Weiterbildung der Erfindung, das Stützmittel derart ausgebildet, daß das Außenrohr und das Innenrohr über den Umfang zumindest teilweise elastisch gegeneinander verspannt sind.
  • Zum Verspannen des Außenrohres mit dem Innenrohr lassen sich die Stützkörper sowohl ringförmig als auch segmentförmig ausbilden. Bei ringförmig ausgebildeten Stützkörpern wird eine im wesentlichen gleichmäßig am Umfang zwischen dem Außenrohr und dem Innenrohr wirkende Spannkraft erzeugt. Das Außenrohr behält selbst bei hohen Spannkräften seine vordefinierte vorzugsweise runde Form.
  • Es ist jedoch auch möglich, die Spannkraft über segmentförmige Stützkörper zwischen dem Innenrohr und dem Außenrohr zu erzeugen. Dies ist insbesondere bei dickwandigen Außenrohren von Vorteil, bei welchem keine meßbare Verformung durch die wirkende Spannkraft erreicht wird.
  • Eine besonders einfache und sicher wirkende Ausführungsvariante ist durch die Weiterbildung der Erfindung bei Anspruch 5 gegeben. Hierbei ist der Stützkörper an dem Innenrohr gehalten. Zum Verformen des Stützkörpers innerhalb des Ringraumes zwischen dem Innenrohr und dem Außenrohr sind mehrere Spannschrauben vorgesehen, die gleichmäßig am Umfang des Außenrohres verteilt angeordnet sind und durch das Außenrohr auf den Stützkörper einwirken. Dadurch wird der ringförmige Stützkörper gegen das Außenrohr verspannt und verformt, so daß das Außenrohr kraftschlüssig mit dem Innenrohr verbunden ist.
  • Der Stützkörper trägt vorzugsweise am Umfang zumindest einen elastischen Ring, so daß eine gleichmäßige Abstützung des Außenrohres über den gesamten Umfang eingehalten wird. Desweiteren läßt sich damit eine Dämpfung zwischen dem Außenrohr und dem Innenrohr erzeugen.
  • Das Verhältnis zwischen der Länge L der Spulspindel und dem Durchmesser D der Spulspindel liegt oberhalb L/D≥10. Damit können insbesondere mehrere im Durchmesser kleinere Spulhülsen, wie in der Textiltechnik üblich, sicher aufgespannt werden.
  • Um eine Vielzahl von 8, 10, 12 oder mehr Spulhülsen an einer auskragenden Spulspindel aufzunehmen und dabei 8, 10, 12 oder mehr Fäden mit Geschwindigkeiten von über 4.000 m/min. aufzuwickeln, wird die Spulspindel vorzugsweise mit dem Merkmal nach Anspruch 8 ausgeführt. Dabei erstreckt sich das Innenrohr und das Außenrohr über eine Länge von mind. 1 m, wobei zur kraftschlüssigen Verbindung des Innenrohres und des Außenrohres zumindest drei in Abstand zueinander angeordnete Stützmittel vorgesehen sind.
  • Zur Erhöhung der Biegesteifigkeit wird weiterhin vorgeschlagen, daß das Außenrohr und das Innenrohr am freien Ende durch einen Deckel zu verbinden. Hierbei ist der Deckel mit einer Anlagefläche an dem stirnseitigen Ende des Außenrohres angelegt und über Schrauben mit dem stirnseitigen Ende des Innenrohres verbunden. Dadurch wird eine zusätzliche Verspannung des Außenrohres gegen das Innenrohr erzeugt. Die durch den Deckel angebrachte axiale Spannkraft stellt sicher, daß das Außenrohr auf der gesamten Länge eine mit dem Innenrohr kraftschlüssige Einheit darstellt.
  • Die vorteilhafte Weiterbildung der Erfindung gemäß Anspruch 10 und 11 ist insbesondere gut geeignet, um bei sehr lang auskragenden Spulspindeln relativ breite Spulhülsen sicher zu spannen und mit hoher Geschwindigkeit anzutreiben. Hierzu ist jeweils zwischen zwei benachbarten Spannapparaten der Klemmeinrichtung eine Stützstelle mit einem oder mehreren Stützmitteln angeordnet. Zu jeder Spulstelle ist somit eine Spannstelle zwischen dem Innenrohr und dem Außenrohr ausgebildet. Um das Spannen und Lösen der Hülsen auf der gesamten Hülsenbreite gleichmäßig ausführen zu können, werden die zu dem Stützmittel benachbarten Spannapparate vorzugsweise zum Spannen einer Hülse verwendet. Dabei ist eine synchrone Betätigung beider Spannapparate von Vorteil.
  • Zur Erleichterung der Montage der Klemmeinrichtung wird gemäß einer weiteren vorteilhaften Ausbildung der Spulspindel vorgeschlagen, daß Außenrohr durch mehrere Zylinder zu bilden, wobei die Zylinder vorzugsweise biegesteif miteinander verbunden sind. Damit wird einerseits im Betrieb die Biegefestigkeit trotz mehrerer einzelner Zylinder gegenüber einem durchgehenden Außenrohr nicht wesentlich vermindert. Die Verbindung der Zylinder wird dabei vorteilhaft lösbar ausgeführt, um eine Wartung der Klemmeinrichtung auf einfache Weise ausführen zu können.
  • Für den Fall, daß das Außenrohr nur in den Endbereichen durch Zylinder gebildet ist, ist eine biegefeste Verbindung nicht erforderlich.
  • Bei sehr lang auskragenden Spulspindeln hat sich gezeigt, daß insbesondere durch Verstärkung des mittleren Bereiches eine Verbesserung der Biegesteifigkeit erreicht werden kann. Somit weist gemäß einer vorteilhaften Weiterbildung der Erfindung das Außenrohr in den Endbereichen jeweils eine oder mehre äußere Eindrehungen auf. Damit ist die Wandstärke des Außenrohres im mittleren Bereich größer als in den Endbereichen. Zusätzlich werden die zu beschleunigenden Massen der Spulspindel reduziert.
  • Als Konstruktionswerkstoffe für das Außenrohr und das Innenrohr sind grundsätzlich Stahl, Aluminium oder aber auch faserverstärkte Verbundwerkstoffe geeignet. Um eine möglichst tragfähige und möglichst biegesteife Spulspindel zu erhalten hat die Kombination aus einem Außenrohr aus Stahl und einem Innenrohr aus Aluminium oder einem faserverstärktem Verbundwerkstoff als besonders vorteilhaft herausgestellt.
  • Einige Ausführungsbeispiele der erfindungsgemäßen Spulspindel sowie deren Vorteile sind unter Hinweis auf die beigefügten Zeichnungen näher beschrieben.
  • Es zeigen
  • Fig. 1
    schematisch einen Längsschnitt eines ersten Ausführungsbeispiels der erfindungsgemäßen Spulspindel
    Fig. 2
    schematisch einen Querschnitt des Ausführungsbeispiels aus Fig. 1
    Fig. 3
    schematisch einen Querschnitte eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Spulspindel
    Fig. 4
    schematisch ein Längsschnitt eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Spulspindel
    Fig. 5
    schematisch ein Längsschnitt eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Spulspindel
  • In Fig. 1 ist schematisch ein Längsschnitt durch ein erstes Ausführungsbeispiel der erfindungsgemäßen Spulspindel gezeigt. Die Spulspindel besitzt eine Antriebswelle 5, die innerhalb eines Trägers 7 durch die Lager 8 drehbar gelagert ist. Die Antriebswelle 5 ist an einem hier nicht dargestellten Ende mit einem elektrischen Antrieb gekoppelt. An dem zum Träger 7 herausragenden Ende ist die Antriebswelle 5 mit einer Nabe 6 drehfest gekoppelt, die mit einem hohlzylindrischen Innenrohr 3 verbunden ist. Die Nabe 6 ist bevorzugt im mittleren Bereich des Innenrohres 3 angeordnet, wobei ein auskragendes Teilstück des Trägers 7 zur Lagerung der Antriebswelle 5 in das offene Ende des Innenrohres 3 hineinragt.
  • Am Umfang des Innenrohres 3 ist mit Abstand ein hohlzylindrisches Außenrohr 1 angeordnet, das sich im wesentlichen über die gesamte Länge des Innenrohres 3 erstreckt. In dem zwischen dem Innenrohr 3 und dem Außenrohr 1 gebildeten Ringraum 26 ist eine Klemmeinrichtung 2 angeordnet. Die Klemmeinrichtung 2 besteht aus mehreren Spannapparaten 13, die mehrere in radialer Richtung verstellbare Klemmelemente 4 aufweisen. Hierzu ragen die Klemmelemente 4 durch Öffnungen 9 des Außenrohres 1 radial nach außen, um eine am Umfang des Außenrohres aufgesteckte Spulhülse 10 zu spannen. Die Spannapparate 13 könnten hierbei beispielsweise, wie aus der DE 196 07 916 A1 bekannt ist, ausgebildet sein. So stützt sich in dem Spannapparat 13 am freien Stirnende der Spulspindel das Klemmelement 4 über eine Keilfläche 18 eines am Innenrohr 1 axial beweglichen Kolbens 16 ab. Der Kolben 16 stützt sich über eine oder mehrere Federn 17 an einem fest mit den Innenrohr 3 verbundenen Anschlag ab. In der in Fig. 1 gezeigten Stellung ist der Kolben 16 durch die Federn 17 in eine Klemmposition gehalten. Die Klemmelemente 4 ragen aus dem Außenrohr 1 hervor. Zum Lösen einer Spulhülse 10 wird der Kolben 16 auf der zur Feder 17 gegenüberliegenden Seite mit einem Druckmedium vorzugsweise einer Druckluft beaufschlagt, so daß der Kolben 16 gegen die Feder 17 in Richtung des Anschlages 22 verschoben wird. Dadurch verschiebt sich die Keilfläche 18, so daß das Klemmelement 4 sich radial nach innen bewegen kann. Zur Abdichtung besitzt der Kolben 16 auf der druckbeaufschlagten Seite eine Dichtung 19, die jeweils eine Abdichtung zwischen dem Kolben 16 und dem Innenrohr 3 sowie zwischen dem Kolben 16 und dem Außenrohr 1 erzeugt.
  • Der in Längsrichtung der Spulspindel benachbarte Spannapparat 13 ist identisch aufgebaut, wobei die druckbeaufschlagten Stirnflächen der Kolben 16 sich mit Abstand gegenüberstehen. Somit läßt sich eine Spulhülse 10 durch zwei benachbarte Spannapparate spannen. Zum Lösen werden beide Kolben 16 der benachbarten Spannapparate 13 durch einen Druckraum gleichzeitig angesteuert. Die Steuermittel sowie die Druckleitungen sind aufgrund der Übersichtlichkeit hier nicht dargestellt.
  • Zwischen benachbarten Spannapparaten ist in dem Ringraum 26 zwischen dem Außenrohr und dem Innenrohr 3 jeweils ein Stützmittel 12 vorgesehen.
  • Zur Beschreibung des Stützmittels 12 ist in Fig. 2 schematisch ein Querschnitt der in Fig. 1 gezeigten Spulspindel im Bereich der Stützstelle dargestellt. Insoweit kein ausdrücklicher Bezug zu einer der Figuren gemacht ist, gilt die nachfolgende Beschreibung zu dem Stützmittel 12 für bei Figuren 1 und 2.
  • Das Stützmittel 12 wird hierbei durch einen ringförmigen Stützkörper 23 und mehreren am Umfang des Außenrohres 1 verteilt angeordnete Spannelemente 24 gebildet. Der Stützkörper 23 ist verformbar ausgebildet. Dem in Fig. 1 gezeigten Ausführungsbeispiel des Stützkörpers 23 ist der Stützkörper 23 aus einem profilierten Ring geformt.
  • Der Stützkörper 23 ist auf das Innenrohr 3 aufgesteckt. Um eine zwischen dem Innenrohr 3 und dem Außenrohr 1 wirkende Spannkraft zu erzeugen, werden die Spannelemente 24, die durch Spannschrauben gebildet sind, von außen durch das Außenrohr 1 eingeschraubt und mit dem Stützkörper 23 verbunden. Dadurch wird der Stützkörper 23 mit dem Außenrohr 1 verspannt und somit verformt. Durch die Verformung des Stützkörpers 23 wird eine radial wirkende Spannkraft zwischen dem Innenrohr 3 und dem Außenrohr 1 erzeugt. Um eine möglichst gleichmäßige Wirkung der Spannkraft am Umfang des Außenrohres zu erzielen, besitzt der Stützkörper 23 auf der zum Außenrohr 1 gewandten Seite zwei parallel verlaufende elastische Ringe 25. Die elastischen Ringe 25 übernehmen neben der Stützfunktion gleichzeitig eine Dichtfunktion, um den Ringraum 26 gegenüber den Aufnahmeöffnungen für die Spannelemente 24 in dem Außenrohr 1 abzudichten.
  • Wie in Fig. 1 dargestellt, ist das Außenrohr 1 an mehreren Stützstellen durch die Stützmittel 12 mit dem Innenrohr 3 verspannt. Bei diesem Ausführungsbeispiel der Spulspindel weist jede Spulstelle, d. h. jede Spannstelle eine Spulhülse 10 jeweils eine Stützstelle zum Verspannen des Außenrohres 1 des Innenrohres 3 auf. Damit ist das in Fig. 1 dargestellte Ausführungsbeispiel besonders für lang auskragende Spulspindeln von über einem Meter Länge bei Verwendung relativ breiter Spulhülsen 10 geeignet.
  • An dem freien Ende der Spulspindel ist ein Deckel 14 durch mehrere Schrauben 15 mit dem Innenrohr 3 verbunden. Der Deckel 14 ist derart bemessen, daß der Ringraum 26 zwischen dem Innenrohr 3 und dem Außenrohr 1 ebenfalls durch den Deckel 14 verschlossen wird.
  • An dem gegenüberliegenden Ende besitzt das Innenrohr 3 einen umlaufenden Kragen 11, an welchem das Außenrohr 1 anliegt.
  • Das in Fig. 1 dargestellte Stützmittel 12 ist ein mögliches Ausführungsbeispiel zur Erzeugung einer Spannkraft zwischen dem Außenrohr 1 und dem Innenrohr 3 nachdem das Außenrohr 1 auf das Innenrohr 3 aufgesteckt ist. In Fig. 3 ist schematisch ein Querschnitt eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Spulspindel gezeigt. Hierbei stellt der Querschnitt eine von mehreren Stützstellen der Spulspindel dar. Innerhalb der Stützstelle wird das Stützmittel 12 durch mehrere am Umfang des Innenrohres 3 gleichmäßig verteilt angeordnete segmentförmige Stützkörper 27 gebildet. Die Stützkörper 27 sind jeweils als ein verformbares Profil ausgebildet. Jedem Stützkörper 27 ist ein Spannelement 24 in Form einer Spannschraube zugeordnet. Das Spannelement 24 ist hierzu in das Außenrohr 1 eingeschraubt und mit dem Stützkörper 27 verbunden. Dabei wird der Stützkörper 27 gegen das Außenrohr 1 verspannt und verformt. Die Verformung des segmentförmigen Stützkörpers 27 erzeugt eine radial wirkende Spannkraft zwischen dem Innenrohr 3 und dem Außenrohr 1. Somit wird eine ungleichmäßige am Umfang des Außenrohres 1 wirkende Spannkraft erzeugt. Durch die Vielzahl der innerhalb einer Stützstelle angeordneten Stützkörper 27 läßt sich ein sicheres Verspannen zwischen dem Innenrohr 3 und dem Außenrohr 1 erzielen. Auch hierbei ist die Formgebung der segmentförmigen Stützkörper 27 sowie der Spannelemente 24 beispielhaft.
  • In Fig. 4 ist schematisch ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Spulspindel dargestellt. Dieses Ausführungsbeispiel ist im wesentlichen identisch mit dem vorhergehenden Ausführungsbeispiel nach Fig. 1. Insoweit wird auf die zur Fig. 1 gemachte Beschreibung Bezug genommen, und an dieser Stelle werden nur die Unterschiede aufgezeigt.
  • Bei dem in Fig. 4 dargestellten Ausführungsbeispiel der erfindungsgemäßen Spulspindel sind die ringförmigen Stützkörper 23 T-förmig ausgebildet. Innerhalb einer Stützstelle ist der ringförmige Stützkörper 23, der sich über die elastische Ringe 25 gegenüber dem Außenrohr 1 abstützt, durch mehrere Spannelemente 24 mit dem Außenrohr 1 verbunden. Dabei wird eine auf den kreisförmigen Umfang des ringförmigen Stützkörpers 23 bezogene Verformung erzielt. Der ringförmige Stützkörper 23 stellt im verspannten Zustand ein Vieleckquerschnitt dar, der in dem Ringraum 26 zu einer zwischen dem Innenrohr 3 und dem Außenrohr 1 wirkenden Spannkraft führt. Damit wird eine im wesentlichen über den Umfang gleichmäßig wirkende Spannkraft zwischen dem Innenrohr 3 und dem Außenrohr 1 erzeugt.
  • Um einerseits möglichst geringe Massen zu beschleunigen und andererseits eine hohe Biegefestigkeit insbesondere im mittleren Bereich der Spulspindel zu erhalten, besitzt das Außenrohr in den Endbereichen jeweils eine Eindrehung 28. Die Eindrehung 28 ist umlaufend am Umfang des Außenrohres 1 eingebracht. Damit ist die Wandstärke des Außenrohres 1 im mittleren Bereich der Spulspindel stärker ausgebildet, als in den Endbereichen des Außenrohres 1.
  • In Fig. 5 ist ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Spulspindel in einer Längsschnittansicht dargestellt. Dieses Ausführungsbeispiel ist ebenfalls im wesentlichen identisch zu dem vorhergehenden Ausführungsbeispiel nach Fig. 1 ausgebildet. Insoweit wird auf die in Fig. 1 gemachte Beschreibung Bezug genommen und an dieser Stelle werden nur die Unterschiede aufgezeigt.
  • Bei dem in Fig. 5 dargestellten Ausführungsbeispiel wird das Außenrohr 1 durch eine Säule von hintereinandergesteckten Zylindern 20 gebildet. Dabei sind benachbarte Zylinder 20 in einer Verbindung 21 derart miteinander gekoppelt, daß im wesentlichen keine Relativbewegung zwischen den einzelnen Zylindern auftreten kann. Dadurch weist die so hergestellte Säule aus einer Vielzahl von Zylindern 20 eine im wesentlichen gleichwertige Biegesteifigkeit auf im Vergleich zu einem durchgehenden Außenrohr. Die Verbindung 21 zwischen den Zylindern 20 ist vorzugsweise lösbar ausgebildet. Die Verbindung 21 könnte auch in einer hier nicht dargestellten Art und Weise durch Zusatzelemente hergestellt werden. So würde bereits ein die Fuge zwischen zwei Zylindern 20 überdeckender Schrumpfring eine ausreichende Biegesteifigkeit gewährleisten. Es besteht jedoch auch die Möglichckeit, die Verbindung der Zylinder biegeweich zu halten und die Zylinder durch eine Axialkraft zusammenzuhalten. Zudem können die Zylinder in ihrer Länge unterschiedlich ausgeführt sein, so daß beispielsweise im mittleren Bereich ein oder mehr längere Zylinder und in dem Endbereich ein oder mehrere kurze Zylinder angeordnet sind. Das Innenrohr 3 und die Säule der Zylinder 20 sind gegeneinander verspannt. Hierzu ist an dem zum Träger 7 gewandten Ende an dem Innenrohr 3 ein umlaufender Kragen 11 angebracht. Der Kragen 11 ist vorzugsweise umlaufend ausgebildet und besitzt einen Außendurchmesser, der den Außendurchmesser der Zylinder 20 überragt, so daß das stirnseitige Ende der Säule der Zylinder 20 an der vom Träger 7 abgewandten Innenseite des Kragens 11 anliegt.
  • An dem gegenüberliegenden Ende des Innenrohres 3 und der Säule der Zylinder 20 ist ein Deckel 14 angeordnet. Der Deckel 14 besitzt einen Außendurchmesser, der den Außendurchmesser der Zylinder 20 überragt. Auf der zu dem Zylinder 20 gewandten Seite besitzt der Deckel 14 eine ringförmige Anlagefläche, die unmittelbar an der Stirnseite der Zylindersäule anliegt. Zwischen der Stirnseite des Innenrohres 1 und dem Deckel 14 ist ein Spalt gebildet, der von mehreren Schrauben 15 durchdrungen ist, die den Deckel 14 mit der Stirnseite des Innenrohres 1 verbinden. Dadurch wird das Innenrohr 3 und die Säule der Zylinder 20 derart miteinander verspannt, daß die durch die Schrauben 15 erzeugte Spannkraft in dem Innenrohr 1 zu einer über die Anlagefläche des Deckels 14 an der Säule der Zylinder 20 entsprechende Gegenkraft führt. Die durch die Schraube 15 erzeugte Spannkraft führt zu einer Zugbeanspruchung des Innenrohres 3. An der Säule der Zylinder 20 wird dagegen durch die Anlagefläche des Deckels 14 eine Druckkraft in die Stirnseite der Säule eingeleitet. Die Säule der Zylinder 20 stützt sich dabei an dem gegenüberliegenden Ende an dem Kragen 11 des Innenrohrs 3 ab. Somit entsteht zwischen dem Innenrohr und der Säule der Zylinder 20 ein geschlossener Kraftfluß, so daß die Säule der Zylinder 20 und das Innenrohr 3 die Tragfähigkeit sowie die Biegesteifigkeit der Spulspindel bestimmen.
  • Zusätzlich ist eine radiale Verspannung zwischen dem Innenrohr 3 und den Zylindern 20 wirksam. Hierzu ist das Stützmittel 12 durch einen ringförmigen Stützkörper 23 und mehreren auf den Stützkörper 23 einwirkenden Spannelemente 24 gebildet. Der Stützkörper 23 ist als ein inkompressibler Elastomerring 29 ausgebildet. Innerhalb des Ringraumes 26 wirkt zu beiden Stirnseiten des Elastomerrings 29 ein Spannelement 24 in Form einer Feder. Dabei können die Spannelemente 24 gleichzeitig die Abstützung der innerhalb der Spannapparate 13 verschiebbar ausgebildeten Kolben übernehmen. Die in dem Ringraum 26 angeordnete Säule bestehend aus Spannapparaten 13 und Stützmittel 12 wird über den am Ende des Innenrohres 3 verschraubten Deckel 14 zwischen dem Kragen 11 und dem Deckel 14 gespannt. Dadurch erzeugen die als Federn ausgebildeten Spannelemente 24 eine Druckbelastung auf den jeweiligen Elastomerring 29, so daß durch die Verformung des Elastomerrings 29 eine radial wirkende Spannkraft zwischen dem Innenrohr 3 und dem jeweiligen Zylinder 20 erzeugt wird. Somit wird die Säule der Zylinder 20 durch eine radiale Spannkraft in den Stützstellen sowie durch axiale Verspannung durch den Deckel 14 mit dem Innenrohr 3 verbunden.
  • In den gezeigten Ausführungsbeispielen der Spulspindel nach Fig. 1, 4 und 5 sind jeweils mehrere Stützstellen zur radialen Verspannung zwischen dem Innenrohr und dem Außenrohr vorgesehen. Es hat sich gezeigt, daß bei einer Länge der Spulspindel von einem Meter mindestens drei in Abstand zueinander ausgebildete Stützstellen mit beispielsweise ringförmigen Stützmitteln vorhanden sein müssen, um eine ausreichende Tragfähigkeit des Außenrohres zu erhalten. Zur Erhöhung der Biegesteifigkeit besteht ebenfalls die Möglichkeit, ein profiliertes Außenrohr zu verwenden. Hierbei besitzt das Außenrohr eine innenliegende längsgerichtete Profilform, die eine Wandstärkenreduzierung und damit eine Masseeinsparung in dem Außenrohr ermöglicht, ohne die Steifigkeit im wesentlichen zu vermindern.
  • Die erfindungsgemäße Spulspindel zeichnet sich besonders dadurch aus, daß das Innenrohr und das Außenrohr auf einfache Weise montierbar sind. Bei der Montage sind die Stützkörper nicht verformt und am Umfang des Innenrohres gehalten. Erst nach endgültiger Montage erfolgt durch Verformung der Stützkörper eine Verspannen des Außenrohres mit dem Innenrohr.
  • Bezugszeichenliste
  • 1
    Außenrohr
    2
    Klemmeinrichtung
    3
    Innenrohr
    4
    Klemmelemente
    5
    Antriebswelle
    6
    Nabe
    7
    Träger
    8
    Lager
    9
    Öffnungen
    10
    Spulhülse
    11
    Kragen
    12
    Stützmittel
    13
    Spannapparat
    14
    Deckel
    15
    Schraube
    16
    Kolben
    17
    Feder
    18
    Keilfläche
    19
    Dichtung
    20
    Zylinder
    21
    Verbindung
    22
    Anschlag
    23
    ringförmiger Stützkörper
    24
    Spannelement
    25
    Ring
    26
    Ringraum
    27
    segmentförmiger Stützkörper
    28
    Eindrehung
    29
    Elastomerring

Claims (13)

  1. Spulspindel zum Aufspannen mehrerer Spulhülsen (10) in einer Aufspulmaschine für Fäden mit einem drehbaren Innenrohr (3), welches durch eine Nabe (6) mit einer konzentrisch zum Innenrohr (3) angeordneten Antriebswelle (5) drehfest verbunden ist, mit einem Träger (7) zur Lagerung der Antriebswelle (5), mit einem das Innenrohr (3) mit Abstand umschließenden Außenrohr (1), wobei das Innenrohr (3) und das Außenrohr (1) drehfest miteinander verbunden sind, und mit einer zwischen dem Innenrohr (3) und dem Außenrohr (1) angeordneten Klemmeinrichtung (2), welche mehrere durch Öffnungen (9) des Außenrohres (1) ausfahrbare Klemmelemente (4) zum Spannen der Spulhülsen (10) aufweisen, dadurch gekennzeichnet, daß zwischen dem Innenrohr (3) und dem Außenrohr (1) mehrere im Abstand zueinander liegende Stützmittel (12) angeordnet sind, welche Stützmittel (12) eine radial wirkende Spannkraft zwischen dem Innenrohr (3) und dem Außenrohr (1) erzeugen und daß die Stützmittel (12) jeweils aus einem verformbaren Stützkörper (23) und zumindest einem Spannelement (24) gebildet sind, wobei die Spannkraft durch Zusammenwirken des Stützkörpers (23) und des Spannelementes (24) erzeugbar ist.
  2. Spulspindel nach Anspruch 1, dadurch gekennzeichnet, daß die Stützmittel (12) derart ausgebildet sind, daß das Außenrohr (1) und das Innenrohr (3) über den Umfang zumindest teilweise elastisch gegeneinander verspannt sind.
  3. Spulspindel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Stützkörper (23) ringförmig ausgebildet ist, so daß die Spannkraft im wesentlichen gleichmäßig am Umfang zwischen dem Außenrohr (1) und dem Innenrohr (3) wirkt.
  4. Spulspindel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Stützkörper (27) segmentförmig ausgebildet ist, so daß die Spannkraft ungleichmäßig am Umfang zwischen dem Außenrohr (1) und dem Innenrohr (3) wirkt.
  5. Spulspindel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Stützkörper (24, 27) an dem Innenrohr (1) gehalten ist und daß das Spannelement (24) durch eine oder mehrere gleichmäßig verteilt angeordnete Spannschrauben gebildet ist, welche von außen durch das Außenrohr (1) auf den Stützkörper (23) einwirken.
  6. Spulspindel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Stützkörper (23) am Umfang zumindest einen elastischen Ring (25) trägt, durch welchen der Stützkörper (23) sich gegenüber dem Außenrohr (1) abstützt.
  7. Spulspindel nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, daß das Verhältnis zwischen der Länge L der Spulspindel und dem Durchmesser D der Spulspindel in einem Bereich von L/D≥10 liegt.
  8. Spulspindel nach Anspruch 7, dadurch gekennzeichnet, daß das Innenrohr (3) und das Außenrohr (1) sich über eine Länge von mindestens 1m erstrecken und zumindest durch drei in Abstand zueinander angeordnet ringförmige Stützmittel (12) verspannt sind.
  9. Spulspindel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Außenrohr (1) und das Innenrohr (3) am freien Ende durch einen Deckel (14) verbunden sind, daß der Deckel (14) mit einer Anlagefläche an dem stirnseitigen Ende des Außenrohres (1) anliegt und daß der Deckel (14) mit Abstand zu dem stirnseitigen Ende des Innenrohres (3) durch die Schraube (15) mit dem Innenrohr (3) verschraubt ist.
  10. Spulspindel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Klemmeinrichtung (2) mehrere axial hintereinander angeordnete Spannapparate (13) aufweist, durch welchen die Klemmelemente (4) radial führbar sind, und daß zwischen zwei benachbarten Spannapparaten (13) eine der Stützmittel (12) angeordnet ist.
  11. Spulspindel nach Anspruch 10, dadurch gekennzeichnet, daß zum Spannen einer Spulhülse (10) die dem Stützmittel (12) benachbarten Spannapparate (13) vorgesehen sind.
  12. Spulspindel nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß das Außenrohr (1) durch mehrere Zylinder (20) gebildet wird und daß die Verbindungen (21) der Zylinder (20) biegesteif und/oder lösbar ausgeführt sind.
  13. Spulspindel nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß das Außenrohr (1) in den Endbereichen jeweils eine oder mehrere äußere Eindrehungen (28) aufweist, so daß die Wandstärke im mittlere Bereich des Außenrohres (1) größer ist als im Bereich der Eindrehungen (28).
EP02791819A 2001-12-22 2002-12-13 Spulspindel mit erhöhter eigenfrequenz Expired - Lifetime EP1456108B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10163832A DE10163832A1 (de) 2001-12-22 2001-12-22 Spulspindel
DE10163832 2001-12-22
PCT/EP2002/014213 WO2003055778A1 (de) 2001-12-22 2002-12-13 Spulspindel mit erhöhter eigenfrequenz

Publications (2)

Publication Number Publication Date
EP1456108A1 EP1456108A1 (de) 2004-09-15
EP1456108B1 true EP1456108B1 (de) 2007-07-18

Family

ID=7710778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02791819A Expired - Lifetime EP1456108B1 (de) 2001-12-22 2002-12-13 Spulspindel mit erhöhter eigenfrequenz

Country Status (9)

Country Link
US (1) US7007886B2 (de)
EP (1) EP1456108B1 (de)
JP (1) JP2005512923A (de)
KR (1) KR20050008645A (de)
CN (1) CN1273365C (de)
AU (1) AU2002358133A1 (de)
DE (2) DE10163832A1 (de)
TW (1) TWI293940B (de)
WO (1) WO2003055778A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210648B2 (en) * 2004-09-28 2007-05-01 Catalyst Paper Corporation Disposable/reusable core adapters
JP5453456B2 (ja) * 2009-02-23 2014-03-26 エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 巻取りスピンドル
DE102009021258A1 (de) 2009-05-14 2010-11-18 Oerlikon Textile Gmbh & Co. Kg Spulspindel
JP5441635B2 (ja) * 2009-11-19 2014-03-12 Tmtマシナリー株式会社 ボビンホルダ
DE102010004562A1 (de) * 2010-01-14 2011-07-21 Oerlikon Textile GmbH & Co. KG, 42897 Spulspindel
JP6054145B2 (ja) * 2012-11-06 2016-12-27 株式会社ミヤコシ 印刷機の印刷胴
DE102014117605A1 (de) * 2014-12-01 2016-06-02 TRüTZSCHLER GMBH & CO. KG Spindel für einen Wickler
JP2016147738A (ja) * 2015-02-12 2016-08-18 村田機械株式会社 糸巻取機
KR101880205B1 (ko) * 2017-05-16 2018-07-20 일진에이테크 주식회사 지관 척킹 장치
CN107826822B (zh) * 2017-12-01 2024-02-20 山东电航电力设备科技有限公司 非晶薄带全自动换卷机用卷芯锁紧装置
CN110054025B (zh) * 2019-01-17 2020-09-22 天长市恒鑫机电设备有限公司 一种金属线收卷装置
WO2020161587A1 (en) * 2019-02-04 2020-08-13 Lohia Corp Limited A composite rigid tube for yarn winding
CN113677610B (zh) * 2019-04-17 2024-01-19 欧瑞康纺织有限及两合公司 筒子壳体
CN111994718A (zh) * 2019-05-21 2020-11-27 李振婷 一种纺织用筒管卡紧装置及使用方法
JP2024019003A (ja) * 2022-07-29 2024-02-08 Tmtマシナリー株式会社 ボビンホルダ及び糸巻取機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2528384A1 (de) * 1975-06-25 1977-01-20 Zinser Textilmaschinen Gmbh Huelsenspannvorrichtung
DE2543952C2 (de) * 1975-10-02 1984-03-01 F.M.N. Schuster GmbH & Co KG, 5030 Hürth Spreizdorn zur Aufnahme von Spulenhülsen u.dgl. bei Spulmaschinen
DE2914923A1 (de) * 1979-04-12 1980-10-30 Barmag Barmer Maschf Aufspulvorrichtung
DD153487A3 (de) * 1980-02-21 1982-01-13 Lutz Brenner Huelsenspannvorrichtung fuer mehrfach-spulentraeger
GB8524303D0 (en) * 1985-10-02 1985-11-06 Rieter Ag Maschf Chuck structures
GB8525791D0 (en) * 1985-10-18 1985-11-20 Rieter Ag Maschf Actuating system
EP0234844B2 (de) * 1986-02-20 2000-09-20 Toray Industries, Inc. Spulmaschine
JPH0679958B2 (ja) * 1988-10-07 1994-10-12 東レ株式会社 糸条の巻取装置
DE4224100C2 (de) * 1991-08-02 1997-06-05 Barmag Barmer Maschf Spulspindel
FR2686077B1 (fr) * 1992-01-14 1995-07-07 Clecim Sa Mandrin cylindrique expansible d'enrouleuse ou de derouleuse.
IT1270018B (it) 1994-09-27 1997-04-16 Cognetex Spa Mandrino portabobine perfezionato di un gruppo di raccolta di filo a bava continua
DE19607916A1 (de) * 1995-03-04 1996-09-05 Barmag Barmer Maschf Spannfutter in Spulmaschinen
DE19538262A1 (de) * 1995-10-13 1997-04-17 Neumag Gmbh Spulenhalter für eine oder mehrere, hintereinander angeordnete Spulen
DE19548142A1 (de) * 1995-12-22 1997-06-26 Barmag Barmer Maschf Aufspulvorrichtung
DE10037201A1 (de) * 1999-08-03 2001-02-15 Barmag Barmer Maschf Aufspulvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2003055778A1 (de) 2003-07-10
TWI293940B (en) 2008-03-01
CN1273365C (zh) 2006-09-06
KR20050008645A (ko) 2005-01-21
DE50210525D1 (de) 2007-08-30
JP2005512923A (ja) 2005-05-12
TW200301215A (en) 2003-07-01
EP1456108A1 (de) 2004-09-15
AU2002358133A1 (en) 2003-07-15
CN1602279A (zh) 2005-03-30
US20040222328A1 (en) 2004-11-11
US7007886B2 (en) 2006-03-07
DE10163832A1 (de) 2003-07-03

Similar Documents

Publication Publication Date Title
EP1456108B1 (de) Spulspindel mit erhöhter eigenfrequenz
EP2247521B1 (de) Spulenhalter
EP2523884B1 (de) Spulspindel
EP1725403B8 (de) Hülse für druckmaschinen
EP2308787A2 (de) Spuleinrichtung
CH629043A5 (de) Anordnung zum verspannen einer luftspaltwicklung im staender einer elektrischen maschine.
CH659456A5 (de) Spannfutter in spulmaschinen.
DE4335258C2 (de) Pneumatisch-mechanische Spannvorrichtung für Wickelwellen, Spannköpfe und dergleichen
EP3626659A1 (de) Hülsenaufnahme für einen spulenrahmen einer spulvorrichtung
DE19538262A1 (de) Spulenhalter für eine oder mehrere, hintereinander angeordnete Spulen
AT510239A1 (de) Einrichtung zur dämpfung von schwingungen in einem antriebsstrang
DE10208933A1 (de) Spulspindel
DE19607916A1 (de) Spannfutter in Spulmaschinen
DE3039064A1 (de) Spannfutter in spulmaschinen
DE10150297A1 (de) Vorrichtung zum Führen oder Aufwickeln eines laufenden Fadens
EP3385207B1 (de) Spindel für einen wickler
DE2729127A1 (de) In radialrichtung aufweitbare spannvorrichtung zur aufnahme einer roehrenfoermigen buchse
EP1496597B1 (de) Vorrichtung zum Abstützen eines Statorwickelkopfs
WO2017129512A1 (de) Aufspulmaschine
DE10310306A1 (de) Vorrichtung zum Spannen einer Statorwicklung
WO2016150737A1 (de) Spulspindel
EP0404204B1 (de) Hülsenspannsystem für eine Spulendorn
DE102014117605A1 (de) Spindel für einen Wickler
DE10151860B4 (de) Spannwelle, System aus Spannwelle und Hülse und Rotationsdruckmaschine sowie Verfahren zur dynamischen Stabilisierung einer Spannwelle
WO2016150767A1 (de) Spulspindel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAMPMANN, ROLAND

Inventor name: VOSS, RAINALD

Inventor name: OESTERWIND, ROLAND

Inventor name: SPAHLINGER, JOERG

Inventor name: JAESCHKE, HEINZ

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE IT LI TR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50210525

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

BERE Be: lapsed

Owner name: SAURER G.M.B.H. & CO. KG

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081230

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091213