EP1450011A2 - Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine und Brennkraftmaschine mit einem solchen Aktuator - Google Patents
Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine und Brennkraftmaschine mit einem solchen Aktuator Download PDFInfo
- Publication number
- EP1450011A2 EP1450011A2 EP04300049A EP04300049A EP1450011A2 EP 1450011 A2 EP1450011 A2 EP 1450011A2 EP 04300049 A EP04300049 A EP 04300049A EP 04300049 A EP04300049 A EP 04300049A EP 1450011 A2 EP1450011 A2 EP 1450011A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- electromagnet
- magnet
- actuator
- section
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 8
- 230000004907 flux Effects 0.000 abstract description 9
- 239000012141 concentrate Substances 0.000 abstract description 3
- 230000006698 induction Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
- F01L9/21—Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
- F01L2009/2132—Biasing means
- F01L2009/2134—Helical springs
- F01L2009/2136—Two opposed springs for intermediate resting position of the armature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
- F01L9/21—Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
- F01L2009/2146—Latching means
- F01L2009/2148—Latching means using permanent magnet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
- F01L9/21—Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
- F01L2009/2151—Damping means
Definitions
- the present invention relates to an actuator electromechanical valve control for combustion engine internal and to an internal combustion engine provided with such actuator.
- An electromechanical actuator 100 (FIG. 1) of valve 110 includes mechanical means, such as springs 102 and 104, and electromagnetic means, such as electromagnets 106 and 108, to control the position of the valve 110 by means of electrical signals.
- the tail of the valve 110 is applied against the rod 112 of a magnetic plate 114 located between the two electromagnets 106 and 108.
- the simultaneous displacement of the rod 112 allows the spring 102 to place the valve 110 in the closed position, the head of the valve 110 coming against its seat 111 and preventing the gas exchanges between the inside and outside of the cylinder 117.
- valve 110 alternates open positions or closed, called switched, with transient movements between these two positions. Thereafter, we will call “state switched” state of an open or closed valve.
- the actuator 100 can be provided of magnets 118, located in the electromagnet 108, and 116, located in the electromagnet 106, intended to reduce energy necessary to maintain the tray 114 in a position switched.
- each magnet is located between two sub-elements of the electromagnet with which it is associated so that its magnetic field, possibly combined with the field created by the electromagnet, strengthens the holding in the open or closed position of the valve. 110.
- the magnet 116 is between two sub-elements 106 a and 106 b
- electromagnet with polarized magnet or electromagnet requires significantly less of energy to control a valve, maintaining a valve in a switched position representing consumption significant energy for the actuator.
- the present invention results from the observation that the actuator 100 has many drawbacks.
- this actuator requires the use of two separate sub-elements 106a and 106b to form a electromagnet 106. Operations specific to manufacturing and storage of each of these sub-elements is therefore necessary, increasing the complexity and cost of manufacturing the actuator.
- a new disadvantage lies in the difficulty of a possible replacement of a magnet 116 or 118. Indeed, it is necessary to disassemble the entire electromagnet 106 to replace a failed magnet 116.
- the actuator 100 requires the use of a magnetic plate 114 of high mass due, in particular, to its large section Sp.
- this section is generally equal to the section S e of the branches of the electromagnets to obtain optimal operation of the actuator, the branches of the support of the electromagnet and the plate forming a magnetic circuit of constant section.
- actuator 100 requires springs high stiffness to move the large mass of the plate. Consequently, the sensitivity of the control exercised by the electromagnets on the plate by means of the current flowing in the coils is reduced, while the consumption required by the electromagnets to control the plate is increased.
- springs of high stiffness causes, as a corollary, that these form, with the movable elements of the actuator 100, an oscillating device characterized by a switching delay substantially fixed by the stiffness k 102 and k 104 of the springs 102 and 104 and by the mass m d of the moving elements (plate 114, rod 112, movable mass of the springs 102 and 104, and valve 110).
- the energy dissipated for example under the form of actuator operating noise due to impact of the plate on an electromagnet is generally increased by a increased mass of the plate. Now such an increase of energy dissipation causes energy efficiency weaker of the actuator.
- the present invention remedies at least one of disadvantages mentioned above. It concerns an actuator electromechanical valve control for combustion engine internal including a magnet electromagnet and a plate mobile magnetic coming in the vicinity of the electromagnet, the magnet being located on a surface of the electromagnet opposite of the plate, characterized in that the electromagnet comprises an E-shaped magnetic circuit, and the magnet is located at the end of a branch of this E-shaped circuit
- manufacture and assembly of a polarized electromagnet are easy since the magnet is fixed on the surface of this electromagnet while it is no longer necessary to use an electromagnet formed by several sub-elements, thus simplifying the manufacturing operations, logistics and assembly of the electromagnet.
- this rod is external to the circuit at E.
- different support branches are provided with a magnet.
- At least one magnet is section above the branch section on which it is located.
- the plate is of section lower than the section of the end branches of the support at E.
- the section of a branch end of the support is less than half the cross section of the central branch of the support.
- the section of the junction between an extreme branch of the support and the central branch of the support in E is less than half the section of the branch support center.
- the invention also relates to a combustion engine internal including an electromechanical actuator for controlling valve fitted with a magnet electromagnet and a plate moving magnetic coming in the vicinity of the electromagnet.
- the motor actuator conforms to one of the actuator embodiments described above.
- FIG. 2 is shown an electromagnet 200 comprising three magnets 202, 204 and 206 located, in accordance with the invention, on the surface of the support 208 facing the actuator plate 210.
- the magnets 202, 204 and 206 are located, respectively, on the central and extreme branches of the E-shaped support 208
- the magnets are arranged according to their polarity so that their magnetic field strengthens the field magnetic created by the electromagnet 200 when the latter is active and attracts plateau 210.
- the North Pole (N) of magnet 202 and the South poles (S) of magnets 204 and 206 are located towards the tray 210.
- Such an electromagnet 200 therefore requires a support 208 E-shaped, conventionally used for actuators not polarized.
- a magnet can be fixed to its support by gluing or overmolding.
- the magnetization of the magnet can be realized after overmolding so as not to risk the demagnetization of the magnet during this overmolding.
- the magnet can be in one piece ( Figure 9a) or formed by assembling small magnets 90 (FIG. 9b) juxtaposed.
- Figure 9a when the magnet is conductive, which is the case with magnets rare earths, we reduce the intensity of the currents induced in the magnet during actuator operation, increasing thus the yield of the latter.
- the magnet is composed of magnet powder and a binder. It then has a low resistivity which reduces the intensity of the currents induced during actuator operation.
- FIG. 3 is shown a second electromagnet 300 such that a single magnet 302 is located at the surface of its support 304.
- This support 304 can be machined so as to maintain a residual air gap between the magnet surface and the plate 310 when the latter comes into contact with the support, eliminating thus the shocks between the magnet 302 and the plate.
- Such air gap, protecting the magnet, is all the more advantageous since the magnet is fragile, for example when it is made in earth rare.
- the flux of the magnetic field generated by the electromagnet forms two symmetrical loops 306 joining in the central column 308.
- the latter have a section S e equal to half of the section 2S c of the central column.
- FIG. 4 is shown a third electromagnet 400, according to the invention, comprising a single central magnet 402 of section S a greater than the section S c of the magnetic circuit formed by the magnetic plate (not shown) and the branches of the support 404.
- a third electromagnet 400 comprising a single central magnet 402 of section S a greater than the section S c of the magnetic circuit formed by the magnetic plate (not shown) and the branches of the support 404.
- Such a magnet generates a stronger magnetic field than a smaller section magnet.
- FIG. 5 is shown another variant of electromagnet 500 using a central magnet 502 of section S a greater than the section S c of the magnetic circuit.
- This configuration makes it possible to increase the polarization flux created by the magnet, in particular in the plate (not shown) and in the end columns of the magnetic circuit.
- low stiffness springs can be used to control a plateau of limited mass. Since then, electricity consumption is reduced.
- control exerted on the plateau by the electromagnet by means of the field generated by a coil is increased since the control exerted by the springs is lowered in intensity.
- Such an improvement in control allows, for example, to reduce the speed of impact of the plate on the electromagnet support.
- the manufacturing cost of the tray is reduced while the size of the electromagnet is no longer imposed in height by the section of the magnet.
- the magnetic plate has a section S p equal to this section S c of the magnetic circuit, as shown in FIG. 3.
- the concentration of the flux makes it possible to obtain important magnetizations in the air gap with use magnets with weak remanent induction, for example ferrite or in composite materials.
- the outer branch may have a cross section less than a third of the section of the central branch (or column).
- a support 704 ensuring the maintenance of an air gap between the magnet 702 and the plate 710 when the latter comes into contact with the support.
- the present invention is susceptible of numerous variants. In fact, it may be possible to saturate magnetically the plate, by reducing its section, if the action suffered by the plate is sufficient to ensure its maintenance against the electromagnet.
- magnets 1001 and 1002 can be placed on a surface of the mobile controlled 1004 tray by the electromagnet 1006.
- the use of the invention allows use an inlet valve actuator separate from a exhaust valve actuator.
- an intake valve actuator conforming to the invention is more efficient for maintaining the valve cold than a conventional actuator thanks to the optimized action of the magnet on the set.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
- Electromagnets (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0301950A FR2851291B1 (fr) | 2003-02-18 | 2003-02-18 | Actionneur electromecanique de commande de soupape pour moteur a combustion interne et moteur a combustion interne muni d'un tel actionneur |
FR0301950 | 2003-02-18 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1450011A2 true EP1450011A2 (de) | 2004-08-25 |
EP1450011A3 EP1450011A3 (de) | 2008-12-24 |
EP1450011B1 EP1450011B1 (de) | 2010-05-26 |
Family
ID=32732017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04300049A Expired - Lifetime EP1450011B1 (de) | 2003-02-18 | 2004-01-27 | Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine und Brennkraftmaschine mit einem solchen Aktuator |
Country Status (7)
Country | Link |
---|---|
US (1) | US7097150B2 (de) |
EP (1) | EP1450011B1 (de) |
JP (1) | JP4622261B2 (de) |
AT (1) | ATE469289T1 (de) |
DE (1) | DE602004027323D1 (de) |
ES (1) | ES2346436T3 (de) |
FR (1) | FR2851291B1 (de) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4064934B2 (ja) * | 2004-02-27 | 2008-03-19 | 三菱重工業株式会社 | 電磁弁装置 |
DE202004006156U1 (de) * | 2004-04-19 | 2004-08-26 | Bürkert Werke GmbH & Co. KG | Magnetantrieb für ein Ventil |
JP2006223081A (ja) * | 2005-01-14 | 2006-08-24 | Matsushita Electric Ind Co Ltd | アクチュエータ構造およびそれを用いたアクチュエータブロック、ならびに電子機器 |
ATE382818T1 (de) * | 2005-07-26 | 2008-01-15 | Festo Ag & Co | Elektromagnetventil |
FR2894380B1 (fr) * | 2005-12-02 | 2008-02-29 | Valeo Sys Controle Moteur Sas | Actionneur electromagnetique a aimants permanents disposes en v et a branche centrale en retrait. |
US7900885B2 (en) * | 2005-12-02 | 2011-03-08 | Valeo Systemes De Controle Moteur | Electromagnetic actuator with permanent magnets which are disposed in a V-shaped arrangement |
FR2894377B1 (fr) * | 2005-12-02 | 2008-05-16 | Valeo Sys Controle Moteur Sas | Actionneur electromagnetique avec deux electroaimants comportant des aimants de forces differentes, et procede de gestion d'une soupape de moteur a combustion interne faisant application. |
US8066474B1 (en) | 2006-06-16 | 2011-11-29 | Jansen's Aircraft Systems Controls, Inc. | Variable guide vane actuator |
DE502007000822D1 (de) * | 2006-10-23 | 2009-07-16 | Pilz Auslandsbeteiligungen Gmb | Zuhaltevorrichtung |
DE102007050550A1 (de) * | 2007-10-23 | 2009-04-30 | Robert Bosch Gmbh | Multipol-Magnetaktor |
AT515114B1 (de) * | 2014-09-23 | 2015-06-15 | Seh Ltd | Magnetvorrichtung umfassend Statoren und Translatoren |
US10851907B2 (en) * | 2015-11-09 | 2020-12-01 | Husco Automotive Holdings Llc | System and methods for an electromagnetic actuator |
EP3220398A1 (de) | 2016-03-17 | 2017-09-20 | HUSCO Automotive Holdings LLC | Systeme und verfahren für elektromagnetischen aktuator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1174595A1 (de) * | 2000-07-18 | 2002-01-23 | Peugeot Citroen Automobiles SA | Ventilaktuator in einer Brennkraftmaschine |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3858135A (en) | 1973-08-14 | 1974-12-31 | S Gray | Push-pull linear motor |
CH658304A5 (de) * | 1983-03-24 | 1986-10-31 | Sulzer Ag | Den durchfluss eines druckmediums steuerndes umschaltventil. |
DE3334160C2 (de) * | 1983-09-21 | 1986-07-24 | Sauer, Otto, 6800 Mannheim | Magnetventil |
US4533890A (en) * | 1984-12-24 | 1985-08-06 | General Motors Corporation | Permanent magnet bistable solenoid actuator |
DE3500530A1 (de) | 1985-01-09 | 1986-07-10 | Binder Magnete GmbH, 7730 Villingen-Schwenningen | Vorrichtung zur elektromagnetischen steuerung von hubventilen |
DE3513103A1 (de) | 1985-04-12 | 1986-10-16 | Fleck, Andreas, 2000 Hamburg | Elektromagnetisch arbeitende stellvorrichtung |
US4883025A (en) * | 1988-02-08 | 1989-11-28 | Magnavox Government And Industrial Electronics Company | Potential-magnetic energy driven valve mechanism |
JP2707127B2 (ja) | 1988-12-28 | 1998-01-28 | 株式会社いすゞセラミックス研究所 | 電磁力バルブ駆動装置 |
DE3921151A1 (de) * | 1989-06-28 | 1991-01-10 | Bosch Gmbh Robert | Magnetsystem |
DE4024054A1 (de) * | 1990-07-28 | 1992-01-30 | Bosch Gmbh Robert | Magnetsystem |
DE4108758C2 (de) | 1991-03-18 | 2000-05-31 | Deutz Ag | Magnetventil für eine Kraftstoff-Einspritzvorrichtung |
JP3134724B2 (ja) | 1995-02-15 | 2001-02-13 | トヨタ自動車株式会社 | 内燃機関の弁駆動装置 |
JPH1047028A (ja) * | 1996-07-31 | 1998-02-17 | Suzuki Motor Corp | 電磁弁型エンジンの制御装置 |
DE19651846B4 (de) * | 1996-12-13 | 2005-02-17 | Fev Motorentechnik Gmbh | Verfahren zur elektromagnetischen Betätigung eines Gaswechselventils ohne Polflächenberührung |
JPH10205314A (ja) * | 1996-12-13 | 1998-08-04 | Fev Motorentechnik Gmbh & Co Kg | ガス交換弁の電磁弁駆動部を制御する方法 |
JPH11101110A (ja) * | 1997-09-26 | 1999-04-13 | Nissan Motor Co Ltd | 電磁バルブの駆動装置 |
FR2784497B1 (fr) * | 1998-10-07 | 2000-12-15 | Sagem | Actionneur electromagnetique a palette aimantee |
JP4126787B2 (ja) | 1998-12-07 | 2008-07-30 | トヨタ自動車株式会社 | 電磁駆動装置 |
JP3715460B2 (ja) | 1999-03-31 | 2005-11-09 | 株式会社日立製作所 | 機関弁の電磁駆動装置 |
JP2000303810A (ja) * | 1999-04-23 | 2000-10-31 | Honda Motor Co Ltd | 内燃機関の電磁式動弁装置 |
DE19922427A1 (de) * | 1999-05-14 | 2000-11-30 | Siemens Ag | Elektromagnetischer Mehrfachstellantrieb |
JP3573263B2 (ja) | 1999-07-21 | 2004-10-06 | 愛三工業株式会社 | 電磁アクチュエータ |
JP2001123808A (ja) * | 1999-08-18 | 2001-05-08 | Nippon Piston Ring Co Ltd | 電磁式弁駆動装置 |
DE50010766D1 (de) * | 1999-09-16 | 2005-08-25 | Siemens Ag | Verfahren zum steuern eines elektromechanischen stellantriebes |
DE10003928A1 (de) * | 1999-11-25 | 2001-06-07 | Daimler Chrysler Ag | Elektromagnetischer Aktuator |
JP2001303915A (ja) * | 2000-04-18 | 2001-10-31 | Nissan Motor Co Ltd | 内燃機関の動弁装置 |
US6308667B1 (en) | 2000-04-27 | 2001-10-30 | Visteon Global Technologies, Inc. | Actuator for engine valve with tooth and socket armature and core for providing position output and/or improved force profile |
FR2812025B1 (fr) | 2000-07-20 | 2003-01-24 | Peugeot Citroen Automobiles Sa | Actionneur electromagnetique de soupape de moteur a combustion interne |
JP2002115515A (ja) * | 2000-10-06 | 2002-04-19 | Nissan Motor Co Ltd | 電磁駆動弁用アクチュエータ及び内燃機関の動弁装置、並びに弁体の電磁駆動方法 |
JP2002130510A (ja) | 2000-10-18 | 2002-05-09 | Toyota Motor Corp | 電磁駆動弁 |
FR2822585B1 (fr) | 2001-03-20 | 2003-08-15 | Peugeot Citroen Automobiles Sa | Actionneur electromagnetique de soupape de moteur a combustion interne |
JP2002364391A (ja) | 2001-06-08 | 2002-12-18 | Toyota Motor Corp | 電磁駆動弁の中立位置変化検出装置 |
-
2003
- 2003-02-18 FR FR0301950A patent/FR2851291B1/fr not_active Expired - Fee Related
-
2004
- 2004-01-27 ES ES04300049T patent/ES2346436T3/es not_active Expired - Lifetime
- 2004-01-27 AT AT04300049T patent/ATE469289T1/de not_active IP Right Cessation
- 2004-01-27 EP EP04300049A patent/EP1450011B1/de not_active Expired - Lifetime
- 2004-01-27 DE DE602004027323T patent/DE602004027323D1/de not_active Expired - Lifetime
- 2004-02-17 JP JP2004040037A patent/JP4622261B2/ja not_active Expired - Fee Related
- 2004-02-18 US US10/781,610 patent/US7097150B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1174595A1 (de) * | 2000-07-18 | 2002-01-23 | Peugeot Citroen Automobiles SA | Ventilaktuator in einer Brennkraftmaschine |
Also Published As
Publication number | Publication date |
---|---|
DE602004027323D1 (de) | 2010-07-08 |
ES2346436T3 (es) | 2010-10-15 |
FR2851291B1 (fr) | 2006-12-08 |
US20040217313A1 (en) | 2004-11-04 |
JP2004286021A (ja) | 2004-10-14 |
EP1450011A3 (de) | 2008-12-24 |
JP4622261B2 (ja) | 2011-02-02 |
EP1450011B1 (de) | 2010-05-26 |
FR2851291A1 (fr) | 2004-08-20 |
ATE469289T1 (de) | 2010-06-15 |
US7097150B2 (en) | 2006-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1811536B1 (de) | Magnetisches Stellglied mit Permanentmagnet mit reduziertem Volumen | |
EP1450011B1 (de) | Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine und Brennkraftmaschine mit einem solchen Aktuator | |
EP1875480B1 (de) | Bistabiler und polarisierter elektromagnetischer aktuator zur schnellen betätigung | |
EP0869519B1 (de) | Planarer magnetischer Motor und magnetischer Microantrieb mit einem solchen Motor | |
EP0974185B1 (de) | Verbesserter linearantrieb | |
EP2037476B1 (de) | Elektromagnetisches Stellglied und Schaltgerät, das mit einem solchen elektromagnetischen Stellglied ausgestattet ist | |
EP1174595B1 (de) | Ventilaktuator in einer Brennkraftmaschine | |
WO2000072347A1 (fr) | Dispositif de commande d'ouverture et/ou de fermeture, en particulier pour un appareil de coupure tel un disjoncteur, et disjoncteur equipe d'un tel dispositif | |
FR2913142A1 (fr) | Actionneur electromagnetique hybride. | |
EP1450013B1 (de) | Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine und Brennkraftmaschine mit einem solchen Aktuator | |
FR2865238A1 (fr) | Actionneur electromecanique de commande de soupape pour moteur a combustion interne et moteur a combustion interne muni d'un tel actionneur | |
EP3688866B1 (de) | Elektromagnetischer energiewandler | |
EP1568858B1 (de) | Elektromagnetische Ventilsteuerungseinrichtung für Brennkraftmaschine | |
EP3939151B1 (de) | Elektromagnetische vorrichtung | |
EP0042884A1 (de) | Magnetmotor mit elektromagnetischer Erregung | |
EP3198624A1 (de) | Elektromagnetischer aktuator und elektrischer kontaktor mit einem derartigen aktuator | |
EP0886875B1 (de) | Einphasige elektromagnetische drehbare betätigungsvorrichtung mit magnetfeder und elektrisches ventil mit einer solchen betätigungsvorrichtung | |
FR2846469A1 (fr) | Actionneur modulable pour appareil interrupteur | |
EP1703089A1 (de) | Elektromagnetisch arbeitende Ventilstelleinrichtung in einem Brennkraftmaschine und Brennkraftmaschine mit einer solchen Ventilstelleinrichtung | |
EP1229560A1 (de) | Elektromagnetischer Ventil-Aktuator mit Elektromagnet für eine Brennkraftmaschine | |
FR2851289A1 (fr) | Actionneur electromecanique de soupape pour moteur a combustion interne et moteur a combustion interne muni d'un tel actionneur | |
FR2868870A1 (fr) | Electroaimant a concentration de champ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20090618 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 602004027323 Country of ref document: DE Date of ref document: 20100708 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100526 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2346436 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20101006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100827 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100927 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: GC2A Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110301 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004027323 Country of ref document: DE Effective date: 20110228 |
|
BERE | Be: lapsed |
Owner name: PEUGEOT CITROEN AUTOMOBILES SA Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100526 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20180312 Ref country code: FR Ref legal event code: CD Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR Effective date: 20180312 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190102 Year of fee payment: 16 Ref country code: ES Payment date: 20190201 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602004027323 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F01L0009040000 Ipc: F01L0009200000 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20201218 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200128 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20211215 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211215 Year of fee payment: 19 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220127 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004027323 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |