EP1438150A1 - Vorrichtung und verfahren zur herstellung feinkristalliner werkstoffe - Google Patents
Vorrichtung und verfahren zur herstellung feinkristalliner werkstoffeInfo
- Publication number
- EP1438150A1 EP1438150A1 EP02799373A EP02799373A EP1438150A1 EP 1438150 A1 EP1438150 A1 EP 1438150A1 EP 02799373 A EP02799373 A EP 02799373A EP 02799373 A EP02799373 A EP 02799373A EP 1438150 A1 EP1438150 A1 EP 1438150A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- deformation
- material sample
- sample
- pressure
- spatial directions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/10—Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/001—Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/01—Extruding metal; Impact extrusion starting from material of particular form or shape, e.g. mechanically pre-treated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/02—Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
- B21J1/025—Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/03—Amorphous or microcrystalline structure
Definitions
- the invention relates to a device and a method for producing finely crystalline, preferably submicron or nanocrystalline materials by multiple plastic deformation of a material sample, wherein the outer shape of the material sample after the first deformation essentially corresponds to that after the last deformation.
- Submicron or nanocrystalline materials in particular of metals, alloys, or intermetallic compounds, are ideally suited for a wide range of applications and in particular have a very high strength. Such materials have been used since the 1980's, e.g. manufactured by powder metallurgical way. However, metallic materials produced in such a way unfortunately have a relatively low ductility.
- the material sample 1 to be deformed is located in a cylindrical recess of a pressure-resistant mold 2 and is pressurized with a pressure piston 3 with a cylindrical cross-section.
- a rotational movement of the mold 2 or the plunger 3 about the common axis there is a high-pressure torsional deformation of the sample 1, which, however, is very inhomogeneous, since in the region of the axis of rotation less deformation than in the peripheral region is applied.
- an angled channel is formed in a pressure-resistant mold 2, through which the material sample 1 is pressed by means of a punch 3. After removal of the material sample from the angled channel this is again - as indicated by dashed lines - introduced on the side of the plunger 3 in the mold 2, which can be carried out to achieve the desired fine structure more similar deformation steps.
- the material sample essentially retains its outer shape, that is, the outer shape of the material sample after the first deformation substantially corresponds to that after the last deformation, even if many such deformation steps are performed sequentially.
- Fig. 3 the CEC method is sketched, in which the pressure-resistant mold 2 has a cylindrical channel with a taper.
- the material sample 1 is pressed by means of a first plunger 3 through the cylindrical taper of the channel against the pressure of a second plunger 3, wherein the sample is subjected to a compression followed by extrusion. Thereafter, the direction of movement of the two plunger 3 is reversed and the sample of material 1 is again pressed through the cylindrical taper. Again, the outer shape of the material sample remains essentially unchanged. and the cyclic deformation can be repeated until the desired fine structure is achieved.
- a disadvantage of the two methods according to FIGS. 2 and 3 is the inhomogeneous deformation in the two end regions of the material sample 1, as well as the relatively large force required to overcome the frictional forces between the shape and the material sample.
- the starting material in contrast to the present invention, is not a solid, homogeneous material sample, but a mass M of particulate material which is pressure sintered by applying first, second and third compressive forces in directions normal to each other to form a final product.
- Means for heating the mass M suitable for supplying a sintering heat, e.g. an induction heating unit with a coil surrounding the mass M or an electric heating unit with opposite current-conducting electrodes.
- a sintering heat e.g. an induction heating unit with a coil surrounding the mass M or an electric heating unit with opposite current-conducting electrodes.
- JP 08-188838 A discloses a device with which a homogeneous particle distribution in particle-reinforced aluminum alloys is to be achieved.
- a variant of the ECA method is described in a first embodiment, in which two angled channels are combined in the form of a cross channel, but here - as in all ECA method - the sample by more or less formed edges (change in direction by 90 °) must be pressed, whereby large frictional forces arise.
- JP 08-188838 A two opposing plunger are used in each case, which are guided by their conical shape in the pairwise movement to each other sliding and change the volume and shape of the interior.
- the high frictional forces of the pressure pistons guided against one another must be mentioned.
- Object of the present invention is to propose a device or a method for producing finely crystalline, preferably submicron or nanocrystalline materials by multiple plastic deformation of a material sample, with homogeneous, submicron or nanocrystalline materials are to arise at relatively low energy consumption.
- This object is achieved according to the invention by the following method steps:
- the device according to the invention has a pressure-resistant form with a substantially parallelepiped or cube-shaped interior, wherein at least one of the interior bounding wall surfaces is designed as movable in the direction of the interior plunger, after the pressurization, the material sample is substantially normal to Pressure direction in a free area of the pressure-resistant mold expands.
- the strength of recrystallized pure copper from about 60 MPa can be increased to 500 MPa, without significant losses in the elongation at break.
- Intermetallic Ni 3 Al materials are relatively brittle. Such treatment can give them considerable ductility.
- Recrystallized pure chromium has a brittle-transition temperature of about 300 ° C. In a submicron crystalline pure chromium produced by multiple plastic deformation, the brittle transition temperature is below room temperature.
- step b a compression deformation of the material sample along a third of three substantially normal times each other in space directions, wherein after a free expansion of the sample in at least one of the other two spatial directions limits are set.
- a deformation path of more than 30%, preferably 50 to 60%, of the thickness of the material sample in the direction of deformation is carried out.
- a deformation path of more than 30%, preferably 50 to 60%, of the thickness of the material sample in the direction of deformation is carried out.
- about 8 to 10 deformation steps are necessary. With increasing number of cycles, the grain size decreases further and the misorientation (tilting) of the neighboring grains increases.
- At least one pressure stamp is used to deform the material sample, which alternately acts on different boundary surfaces of the material sample, which boundary surfaces enclose an angle of substantially 90 °.
- 4a to 4c show a first embodiment of a device for producing finely crystalline materials in the working positions a to c and the
- FIGS. 4a to 4c The simplest embodiment of the device according to the invention is shown in FIGS. 4a to 4c.
- the material sample 1 which essentially corresponds to a cuboid, has mutually parallel cover surfaces A, B and C, and is arranged in a substantially cuboid or cube-shaped interior of a pressure-resistant mold 2.
- the individual wall surfaces of the pressure-resistant mold 2 are labeled 4 (bottom surface), 5 (top surface) and 6 (side surfaces).
- one of the wall surfaces 4 to 6, namely the top surface 5 is designed as a pressure stamp 3 which is movable in the direction of the interior and has a rectangular or square cross-section.
- the material sample 1 is first of all inserted into the pressure-resistant mold 2, as shown in FIG. 4 a, with the top surface A of the sample resting against the pressure ram 3. Thereafter, as shown in FIG. 4b, a compression deformation of the sample, wherein the plunger 3 in the example shown a Deformation of about 50% of the thickness or height of the material sample travels in the deformation direction.
- the sample expands normal to the printing direction into the free area 7 of the pressure-resistant mold 2 until the expansion is limited by the side surfaces 6. This results again in a material sample of the same or very similar external shape as in Fig. 4a with the boundary surfaces A to C.
- the sample is rotated and used for the next deformation of FIG. 4c in the mold 2.
- two or three plungers 3 are used whose axes are normal to one another.
- one of the two pressure pistons 3 can be held in each case, and thus form part of the pressure-resistant mold 2, while the other pressure piston 3 deforms the material sample 1.
- the manipulation effort is thereby reduced since the material sample 1 does not have to be removed from the mold 2 after each deformation, rotated and replaced.
- two or three mutually adjoining wall surfaces are designed as pressure stamps 3 which can be actuated alternately.
- the guide elements for the three pressure pistons 3 are indicated only by dashed lines, the material sample is concealed by the cyclically actuable pressure pistons 3.
- At least one of the wall surfaces bounding the interior space may be made removable or slidable.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Extrusion Of Metal (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Powder Metallurgy (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT02799373T ATE329707T1 (de) | 2001-09-25 | 2002-09-19 | Vorrichtung und verfahren zur herstellung feinkristalliner werkstoffe |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT15162001 | 2001-09-25 | ||
AT0151601A AT411027B (de) | 2001-09-25 | 2001-09-25 | Vorrichtung und verfahren zur herstellung feinkristalliner werkstoffe |
PCT/AT2002/000272 WO2003026815A1 (de) | 2001-09-25 | 2002-09-19 | Vorrichtung und verfahren zur herstellung feinkristalliner werkstoffe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1438150A1 true EP1438150A1 (de) | 2004-07-21 |
EP1438150B1 EP1438150B1 (de) | 2006-06-14 |
Family
ID=3688304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02799373A Expired - Lifetime EP1438150B1 (de) | 2001-09-25 | 2002-09-19 | Vorrichtung und verfahren zur herstellung feinkristalliner werkstoffe |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1438150B1 (de) |
AT (2) | AT411027B (de) |
DE (1) | DE50207219D1 (de) |
WO (1) | WO2003026815A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109759488A (zh) * | 2018-12-29 | 2019-05-17 | 华中科技大学 | 一种高压扭转成形模具 |
CN113369328A (zh) * | 2021-06-11 | 2021-09-10 | 中国兵器工业第五九研究所 | 一种开放型腔循环挤压模具 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0323541D0 (en) * | 2003-10-08 | 2003-11-12 | Univ Strathclyde | A method of treating a metal billet |
AT501546B1 (de) * | 2005-03-08 | 2007-02-15 | Austria Wirtschaftsservice Tec | Verfahren zur herstellung metallischer verbundwerkstoffe |
DE102009050543B3 (de) * | 2009-10-23 | 2011-05-26 | Peter Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Groche | Verfahren und Vorrichtung zur Herstellung von feinkörnigen, polykristallinen Werkstoffen oder Werkstücken aus länglichen oder rohrförmigen Halbzeugen |
AT510770B1 (de) * | 2010-11-29 | 2015-01-15 | Ait Austrian Inst Technology | Verfahren zur herstellung eines gegenstandes aus einem metall oder einer legierung, daraus hergestellter gegenstand sowie presswerkzeug hierfür |
KR101278290B1 (ko) * | 2011-10-20 | 2013-06-21 | 포항공과대학교 산학협력단 | 압축비틀림을 이용한 나선형 층상복합재료 제조 방법 |
CN103785844B (zh) * | 2014-01-13 | 2017-08-08 | 上海交通大学 | 一种纳米结构块体镁材料及制备方法 |
CN104690205B (zh) * | 2015-01-27 | 2016-08-17 | 浙江大学 | 制备三维大尺寸全致密纳米晶铁块体材料的模具和方法 |
DE102015107308B4 (de) * | 2015-05-11 | 2017-10-19 | Gottfried Wilhelm Leibniz Universität Hannover | Verfahren zum Strangpressen, Strangpressvorrichtung sowie Strangpresswerkzeug |
CN105107914A (zh) * | 2015-08-17 | 2015-12-02 | 盐城工学院 | 一种高压扭转成形机 |
DE102015218408A1 (de) | 2015-09-24 | 2017-03-30 | Siemens Aktiengesellschaft | Bauteil und/oder Oberfläche aus einem Refraktärmetall oder einer Refraktärmetalllegierung für thermozyklische Belastungen und Herstellungsverfahren dazu |
CN106269971B (zh) * | 2016-08-17 | 2018-06-19 | 中国兵器工业第五九研究所 | 一种多向压缩扭转复合挤压制备微纳米铜的方法 |
CN106381458A (zh) * | 2016-10-13 | 2017-02-08 | 南京工程学院 | 一种基于限定型高压扭转的非晶合金强化方法 |
CN106825097B (zh) * | 2017-04-01 | 2018-06-19 | 哈尔滨理工大学 | 一种等通道转角挤压与往复式挤扭复合成形装置及方法 |
CN108714631B (zh) * | 2018-05-17 | 2020-12-01 | 北京科技大学 | 一种扭-挤复合强塑变成形方法及工艺装置 |
CN110508635B (zh) * | 2019-08-27 | 2021-07-30 | 太原理工大学 | 一种具有分离式凸模的非对称往复挤压装置及加工方法 |
CN111139346B (zh) * | 2020-01-16 | 2021-07-27 | 暨南大学 | 一种塑性变形处理提高Fe基非晶合金电解水析氢催化活性的方法 |
CN113774297B (zh) * | 2021-09-08 | 2022-06-24 | 厦门理工学院 | 基于剧烈塑性变形的可提高铝合金耐腐蚀性和力学性能的方法及高性能耐腐蚀铝合金 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4273581A (en) * | 1978-04-07 | 1981-06-16 | Inoue-Japax Research Incorporated | Sintering method |
US4721537A (en) * | 1985-10-15 | 1988-01-26 | Rockwell International Corporation | Method of producing a fine grain aluminum alloy using three axes deformation |
US5513512A (en) * | 1994-06-17 | 1996-05-07 | Segal; Vladimir | Plastic deformation of crystalline materials |
JPH08188838A (ja) * | 1994-12-28 | 1996-07-23 | Toyota Central Res & Dev Lab Inc | アルミニウム合金の製造方法 |
US5850755A (en) * | 1995-02-08 | 1998-12-22 | Segal; Vladimir M. | Method and apparatus for intensive plastic deformation of flat billets |
JPH09276972A (ja) * | 1996-04-19 | 1997-10-28 | Nippon Steel Corp | 平面ひずみ往復加工法 |
JP3268639B2 (ja) * | 1999-04-09 | 2002-03-25 | 独立行政法人産業技術総合研究所 | 強加工装置、強加工法並びに被強加工金属系材料 |
-
2001
- 2001-09-25 AT AT0151601A patent/AT411027B/de not_active IP Right Cessation
-
2002
- 2002-09-19 EP EP02799373A patent/EP1438150B1/de not_active Expired - Lifetime
- 2002-09-19 AT AT02799373T patent/ATE329707T1/de not_active IP Right Cessation
- 2002-09-19 DE DE50207219T patent/DE50207219D1/de not_active Expired - Fee Related
- 2002-09-19 WO PCT/AT2002/000272 patent/WO2003026815A1/de active IP Right Grant
Non-Patent Citations (1)
Title |
---|
See references of WO03026815A1 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109759488A (zh) * | 2018-12-29 | 2019-05-17 | 华中科技大学 | 一种高压扭转成形模具 |
CN109759488B (zh) * | 2018-12-29 | 2019-11-22 | 华中科技大学 | 一种高压扭转成形模具 |
CN113369328A (zh) * | 2021-06-11 | 2021-09-10 | 中国兵器工业第五九研究所 | 一种开放型腔循环挤压模具 |
CN113369328B (zh) * | 2021-06-11 | 2023-04-25 | 中国兵器工业第五九研究所 | 一种开放型腔循环挤压模具 |
Also Published As
Publication number | Publication date |
---|---|
AT411027B (de) | 2003-09-25 |
ATA15162001A (de) | 2003-02-15 |
EP1438150B1 (de) | 2006-06-14 |
ATE329707T1 (de) | 2006-07-15 |
WO2003026815A1 (de) | 2003-04-03 |
DE50207219D1 (de) | 2006-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1438150B1 (de) | Vorrichtung und verfahren zur herstellung feinkristalliner werkstoffe | |
DE60010968T2 (de) | Verfahren und Vorrichtung zur Verformung von metallischen Werkstoffen sowie verformten metallischen Werkstoffen | |
EP0062365B1 (de) | Verfahren zur Herstellung eines Bauteils aus einer Titanlegierung sowie Bauteil und Verwendung des Bauteils | |
EP2200768B1 (de) | Verfahren zur herstellung von halbzeuge aus niti-formgedächtnislegierungen | |
DE10014403A1 (de) | Verfahren zur Fertigung von Metallteilen | |
AT2881U1 (de) | Verfahren zur herstellung eines tellerventiles aus gamma-tial-basislegierungen | |
CH638833A5 (de) | Verfahren zur herstellung eines festen koerpers aus einer kupfer-zink-aluminium-legierung und mittels dieses verfahrens hergestellte koerper. | |
EP1214995B1 (de) | Verfahren zur Behandlung metallischer Werkstoffe | |
AT501546B1 (de) | Verfahren zur herstellung metallischer verbundwerkstoffe | |
EP3544753B1 (de) | Verfahren zur bearbeitung eines werkstücks aus einem metallischen werkstoff | |
DE1471078B1 (de) | Verfahren zum verbinden eines sinterhartmetalls mit einem metallischen koerper | |
EP0213410B1 (de) | Verfahren zur Herstellung eines metallischen Körpers aus einer insbesondere amorphen Legierung mit zumindest teilweise magnetischen Komponenten | |
DE2200670B2 (de) | ||
DE3515167A1 (de) | Verfahren zur herstellung eines metallischen koerpers aus einer amorphen legierung | |
AT510770B1 (de) | Verfahren zur herstellung eines gegenstandes aus einem metall oder einer legierung, daraus hergestellter gegenstand sowie presswerkzeug hierfür | |
WO2015082630A1 (de) | Verfahren zur bearbeitung einer dispersionsgehärteten platinzusammensetzung | |
EP0356718B1 (de) | Verfahren zur Formgebung und Verbesserung der mechanischen Eigenschaften von pulvermetallurgisch hergestellten Rohlingen aus einer Legierung mit erhöhter Warmfestigkeit durch Strangpressen | |
EP0045984B1 (de) | Verfahren zur Herstellung eines Werkstückes aus einer warmfesten Legierung | |
DE1920466A1 (de) | Verfahren zum Verfestigen von Werkstuecken | |
DE2438315C3 (de) | Verfahren zum pulvermetallurgischen Herstellen von Genauteilen | |
EP3231536A1 (de) | Verfahren zur pulvermetallurgischen herstellung von bauteilen aus titan oder titanlegierungen | |
EP3334520B1 (de) | Nichmonolithische vakuumkammer zum ausführen von vakuumanwendungen und/oder zur aufnahme von vakuum-komponenten | |
DE69514319T2 (de) | Verfahren zum plastischen Warmverformen | |
EP1574590B1 (de) | Verfahren zur Herstellung von Profilen aus Magnesiumwerkstoff mittels Strangpressen | |
EP0074679A1 (de) | Verfahren zur Herstellung eines Werkstückes aus einer warmfesten Legierung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040422 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AUSTRIA WIRTSCHAFTSSERVICE GESELLSCHAFT MBH |
|
17Q | First examination report despatched |
Effective date: 20050408 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060614 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50207219 Country of ref document: DE Date of ref document: 20060727 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060914 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061114 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20060614 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
EN | Fr: translation not filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20070315 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070924 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060919 |
|
BERE | Be: lapsed |
Owner name: AUSTRIA WIRTSCHAFTSSERVICE -G. MBH Effective date: 20060930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070309 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090401 |