EP1423645B1 - Ensemble amortisseur concu pour reduire les pulsations d'une chambre de combustion dans une installation de turbine a gaz - Google Patents

Ensemble amortisseur concu pour reduire les pulsations d'une chambre de combustion dans une installation de turbine a gaz Download PDF

Info

Publication number
EP1423645B1
EP1423645B1 EP02758740A EP02758740A EP1423645B1 EP 1423645 B1 EP1423645 B1 EP 1423645B1 EP 02758740 A EP02758740 A EP 02758740A EP 02758740 A EP02758740 A EP 02758740A EP 1423645 B1 EP1423645 B1 EP 1423645B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
wall
surface part
damping arrangement
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02758740A
Other languages
German (de)
English (en)
Other versions
EP1423645A1 (fr
Inventor
Urs Benz
Jaan Hellat
Franz Joos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1423645A1 publication Critical patent/EP1423645A1/fr
Application granted granted Critical
Publication of EP1423645B1 publication Critical patent/EP1423645B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a damping arrangement for reducing resonant vibrations in a combustion chamber with a double-walled combustion chamber wall, which encloses a gap gastight with an outer wall surface portion and an inner, the combustion chamber facing wall surface part, in the cooling air for purposes of convective cooling of the combustion chamber wall can be fed.
  • a combustion chamber with an aforementioned double-walled combustion chamber wall is, for example, from the EP 0 669 500 B1 and DE-196 40 980-A1 out.
  • the double-walled combustion chamber wall surrounding the combustion zone is traversed in its enclosed space for cooling purposes with compressed combustion air supply, wherein the double-walled combustion chamber wall is cooled by means of convective cooling. Further details about the design of such a combustion chamber can be found in the above-mentioned European patent in detail, is pointed to the disclosure content at this point.
  • Such trained combustors are primarily for the operation of gas turbines, but they also find general use in heat-generating facilities, such as for firing of boilers.
  • thermoacoustic oscillations occur in these combustion chambers, which in the frequency range between 20 and 400 Hz show quite pronounced resonance phenomena.
  • combustion chamber pulsations oscillations can assume amplitudes and associated pressure fluctuations, whereby the combustion chamber itself is exposed to strong mechanical loads that are able to reduce the life of the combustion chamber crucial, even lead to the destruction of the combustion chamber.
  • acoustic damping elements such as Helmholtz dampers or ⁇ / 4 tubes.
  • a damping element is for example from the DE-19640 980-A1 out.
  • acoustic damping elements consist of a bottleneck and a larger volume connected to the bottleneck, which in each case is adapted to the frequency to be damped.
  • the targeted damping low frequencies requires large damping volume, which can not be integrated in each combustion chamber from a design point of view.
  • Active countermeasures are also known for the targeted control of combustion chamber pulsations, with which, for example, anti-sound fields are coupled into the combustion chamber for targeted suppression or annihilation of the resonant pressure fluctuations.
  • the combustion chamber described above with convective cooling within the double-walled combustion chamber wall has been optimized in the light of a low-emission combustion. Moreover, with such a combustor, it is possible to achieve very lean combustion using a relatively high proportion of air.
  • damping measures with which an effective damping of itself within a combustion chamber of the type described above forming combustion chamber pulsations is possible without affecting the combustion optimized properties of the combustion chamber sustainable.
  • damping measures whose constructive requirements build as small as possible in order to integrate them to save space in combustor systems of the aforementioned type. In particular, this should leave open the possibility to integrate the combustion chamber in systems that have only limited space.
  • a damping arrangement for reducing resonant vibrations in a combustion chamber with a double-walled combustion chamber wall which encloses a gap in an airtight manner with an outer wall surface part and an inner wall surface part facing the combustion chamber, in FIG the cooling air for purposes of convective cooling of the combustion chamber wall can be fed, designed such that at least a third wall surface part is provided which includes a gas-tight volume with the outer wall surface portion and the gas-tight volume is gas-tightly connected to the combustion chamber via at least one connecting line.
  • the third wall surface part supplements the already double-walled combustion chamber wall, at least locally or in sections, to form a three-walled wall structure, wherein the volume trapped by the outer wall surface part of the double-walled combustion chamber wall and the third wall surface part serves as resonance volume or absorber volume, ie. is formed in such a form and size that on the connecting line designed as a connecting line between the resonant or absorber volume - hereinafter referred to only as absorber volume - and the combustion chamber an acoustically effective coupling of the absorber volume is created to the combustion chamber, so that a damping of a within the combustion chamber forming Brennschpulsation with a certain frequency is effectively possible.
  • the particular shape and size choice also applies to the connecting tube itself, which must have a certain length and a certain cross-section for damping a desired frequency.
  • connection line designed as a connecting tube passes through the space traversed by the cooling air gap of the double-walled combustion chamber and is also effectively cooled by the circulation with cooling air.
  • This has the advantage that the connecting tube does not have to be flowed through separately for cooling purposes with air. Also, heating or overheating of the absorber volume from the side of the combustion chamber through the connecting tube can be precluded, especially as this, as mentioned above, undergoes effective cooling. Nevertheless, should the cooling effect of the connecting tube surrounding the cooling air cooling air on the connecting tube are not sufficient, so can a targeted flow through the connecting tube provide with cooling air for the lack of cooling effect.
  • This additional cooling effect can be accomplished either with the cooling air from the gap and / or from outside the combustion chamber, for example. From the plenum through an opening within the third wall surface part. However, such a directed through the connecting tube cooling air flow should have a flow rate of less than 10 m / s.
  • the actuating means designed as a stamp divides the absorber volume into two spatial regions, ie into a spatial region in front of and one behind the stamp surface with respect to the connecting tube, then the volume fraction behind the stamp surface does not contribute to the acoustic absorption or damping.
  • the double-walled combustion chamber wall is composed of two wall surface parts, both of which can be produced by means of a casting process.
  • the inner wall surface part provides so-called longitudinal ribs as spacers and retaining ribs as fastening webs, by which both wall surface parts can be firmly connected while maintaining an exact distance.
  • the connecting conduits formed as connecting tubes are provided along an already provided retaining rib, so that the connecting tube and the retaining rib can be made as a one-piece assembly together with the inner wall surface portion in a single casting step. This measure also facilitates the casting technology production of the inner wall surface part with a precisely predetermined wall surface thickness considerably, thereby also large-scale wall surface parts can be realized with a predetermined constant dimensioning without thickness deviations.
  • Fig. 1 shows a cross-sectional partial view of a damping arrangement for reducing resonant vibrations in a combustion chamber 1, which is surrounded by a double-walled combustion chamber wall 2, which encloses a gap 3 gas-tight with an outer wall surface portion 22 and an inner wall surface portion 21, in the cooling air for purposes of convective cooling of the combustion chamber wall 2, in particular of the inner wall surface part 21 can be fed.
  • a third wall surface portion 4 is provided, which includes a gas-tight volume, the so-called resonance or absorber volume 5 with the outer wall surface part 22.
  • the absorber volume 5 Via a connecting line 6, in the form of a connecting tube, the absorber volume 5 is connected directly to the combustion chamber 1 and at the same time provides an acoustic operative connection between the combustion chamber 1 and the absorber volume 5 ago.
  • the geometric sizes of the connecting line 6 and the absorber volume 5 are individually adapted.
  • the inner and outer wall surface part 21 and 22 are manufactured by casting, wherein the wall surface part 21 longitudinal ribs 7, which serve as spacers and provide a predetermined exact distance between the outer wall surface part 22 and the inner wall surface part 21. Furthermore, the inner wall surface part 21 usually provides retaining ribs 8, which are longer than the longitudinal ribs 7 and protrude through a corresponding opening 9 within the outer wall surface part 22 in the mounted state and are firmly connected to the wall surface part 22 by means of a gas-tight welded connection 10.
  • the provided for the acoustic coupling of the absorber volume 5 to the volume of the combustion chamber 1 connecting line 6 is integrally united with the retaining rib 8, which is like the longitudinal rib 7 integrally connected to the inner wall surface part 21 and produced in a single casting process can.
  • FIG. 2a shows the top view of the outer wall surface part 22 of a combustion chamber with locally applied thereto absorber volume 5, each bounded by a third wall surface part 4.
  • Fig. 2b shows a sectional view along the section line AA in Fig. 2a , along the double-walled combustion chamber wall 2 and the third wall surface portions 4, which are respectively connected gas-tightly connected to the outer wall surface part 22.
  • Each individual absorber volume 5 projects beyond a connecting line 6, which acoustically establishes effective connection between the absorber volume 5 and the combustion chamber 1.
  • Fig. 2c shows a sectional view along section line BB in Fig. 2b showing a cross section through the combustion chamber wall 2. Clearly visible are the individual of the third wall surface part 4 bounded absorber volume 5, each individually overflow a connecting line 6 gas-tight.
  • a stamp-like trained adjusting means 11 through which the acoustically effective volume 5 'can be varied continuously by appropriate linear movement (see double arrow representation).
  • the acoustically effective volume 5 ' is connected to the combustion chamber 1 via two connecting lines 6 and is thus able to selectively attenuate combustion chamber pulsations forming within the combustion chamber 1 according to the frequency.
  • a plurality of connecting lines are preferably provided along the combustion chamber within the double-walled combustion chamber wall.
  • the connecting lines are just to provide straight at those points of the combustion chamber at which form oscillation bellies.
  • the corresponding, introduced within the combustion chamber wall 2 connecting lines 6 are provided in the combustion chamber longitudinal axis x at those points at which combustion chamber vibrations each with different Frequencies f1, f2 have amplitude maxima.
  • one or more connecting lines 6 can be combined in a common absorber volume 5. From the FIG. 4 also shows that only a certain frequency can be effectively damped per absorber volume.
  • the absorber volumes are arranged axially one behind the other on the combustion chamber housing.
  • the absorber volume distributed to attenuation of different frequencies in the circumferential direction of the combustion chamber housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Claims (13)

  1. Ensemble amortisseur pour réduire les oscillations résonantes dans une chambre de combustion (1), comprenant une paroi de chambre de combustion (2) réalisée à double paroi, qui entoure de manière étanche aux gaz un espace intermédiaire (3) avec une partie de surface de paroi extérieure (22) et une partie de surface de paroi intérieure (21) tournée vers la chambre de combustion (1), de l'air de refroidissement pouvant être injecté dans l'espace intermédiaire (3) pour refroidir par convexion la paroi de chambre de combustion (2), caractérisé en ce qu'au moins une troisième partie de surface de paroi (4) est prévue et entoure un volume étanche aux gaz (5) avec la partie de surface de paroi extérieure (22), et en ce que le volume étanche aux gaz (5) est connecté de manière étanche aux gaz à la chambre de combustion (1) par le biais d'au moins une conduite de connexion (6).
  2. Ensemble amortisseur selon la revendication 1, caractérisé en ce que la troisième partie de surface de paroi (4) est prévue du côté de la partie de surface de paroi extérieure (22) opposé à la chambre de combustion (1) et entoure le volume étanche aux gaz (5).
  3. Ensemble amortisseur selon la revendication 1 ou 2, caractérisé en ce que la troisième partie de surface de paroi (4) est connectée indirectement par le biais d'au moins un élément d'espacement ou directement à la partie de surface de paroi extérieure (22).
  4. Ensemble amortisseur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la paroi de chambre de combustion (2) à double paroi présente des nervures longitudinales (7) et/ou de fixation (8) pour l'espacement exact et/ou pour la fixation mutuelle de la partie de surface de paroi intérieure et de la partie de surface de paroi extérieure (21, 22), et en ce que la conduite de connexion (6) est prévue à l'endroit de la nervure longitudinale (7) et/ou de fixation (8) et est réalisée avec celle-ci sous forme d'unité constructive.
  5. Ensemble amortisseur selon la revendication 4, caractérisé en ce que les nervures longitudinales (7) et/ou de fixation (8) sont connectées d'une seule pièce à la paroi de chambre de combustion intérieure (21), qui peut être fabriquée au cours d'un procédé de coulage.
  6. Ensemble amortisseur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la conduite de connexion (6) est réalisée sous forme de petit tube de connexion, traverse l'espace intermédiaire (3) et peut être parcourue par de l'air de refroidissement.
  7. Ensemble amortisseur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le volume étanche aux gaz (5) est réalisé sous la forme d'un résonateur de Helmholtz, dont l'intensité volumique acoustiquement efficace (5') est obtenue en fonction de l'amortissement acoustique d'une oscillation se produisant à l'intérieur de la chambre de combustion (1) avec une fréquence de résonance f.
  8. Ensemble amortisseur selon la revendication 7, caractérisé en ce que l'on prévoit à l'intérieur du volume étanche aux gaz (5) un moyen de commande (11) pouvant régler de manière variable l'intensité volumique acoustiquement efficace.
  9. Ensemble amortisseur selon la revendication 8, caractérisé en ce que le moyen de commande (11) est réalisé sous forme de poinçon, qui est disposé de manière mobile à l'intérieur du volume étanche aux gaz (5).
  10. Ensemble amortisseur selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la troisième partie de surface de paroi (4) est réalisée sous forme élastique.
  11. Ensemble amortisseur selon l'une quelconque des revendications 7 à 10, caractérisé en ce que la conduite de connexion (6) est disposée par rapport à la chambre de combustion (1) à l'endroit où l'oscillation acoustique à amortir présente un ventre d'oscillation.
  12. Installation de génération de chaleur ou d'énergie comprenant une chambre de combustion, caractérisée en ce que la chambre de combustion présente un ensemble amortisseur selon l'une quelconque des revendications 1 à 11.
  13. Chambre de combustion de turbine à gaz, caractérisée en ce qu'elle présente un ensemble amortisseur selon l'une quelconque des revendications 1 à 11.
EP02758740A 2001-09-07 2002-08-28 Ensemble amortisseur concu pour reduire les pulsations d'une chambre de combustion dans une installation de turbine a gaz Expired - Lifetime EP1423645B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH16632001 2001-09-07
CH166301 2001-09-07
PCT/IB2002/003492 WO2003023281A1 (fr) 2001-09-07 2002-08-28 Ensemble amortisseur concu pour reduire les pulsations d'une chambre de combustion dans une installation de turbine a gaz

Publications (2)

Publication Number Publication Date
EP1423645A1 EP1423645A1 (fr) 2004-06-02
EP1423645B1 true EP1423645B1 (fr) 2008-10-08

Family

ID=4565804

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02758740A Expired - Lifetime EP1423645B1 (fr) 2001-09-07 2002-08-28 Ensemble amortisseur concu pour reduire les pulsations d'une chambre de combustion dans une installation de turbine a gaz

Country Status (6)

Country Link
US (1) US7104065B2 (fr)
EP (1) EP1423645B1 (fr)
JP (1) JP2005527761A (fr)
CN (1) CN1250906C (fr)
DE (1) DE50212871D1 (fr)
WO (1) WO2003023281A1 (fr)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20031013A1 (it) * 2003-12-16 2005-06-17 Ansaldo Energia Spa Sistema di smorzamento di instabilita' termoacustiche in un dispositivo combustore per una turbina a gas.
DE502004011481D1 (de) * 2004-06-07 2010-09-16 Siemens Ag Brennkammer mit einer Dämpfungseinrichtung zur Dämpfung von thermoakustischen Schwingungen
US7334408B2 (en) * 2004-09-21 2008-02-26 Siemens Aktiengesellschaft Combustion chamber for a gas turbine with at least two resonator devices
US7278256B2 (en) * 2004-11-08 2007-10-09 United Technologies Corporation Pulsed combustion engine
EP1762786A1 (fr) 2005-09-13 2007-03-14 Siemens Aktiengesellschaft Procédé et appareil pour réduire les vibrations thermo-accoustiques, en particulier dans une turbine
EP1862740B1 (fr) * 2006-05-31 2015-09-16 Siemens Aktiengesellschaft Paroi de chambre de combustion
GB0610800D0 (en) * 2006-06-01 2006-07-12 Rolls Royce Plc Combustion chamber for a gas turbine engine
JP4773904B2 (ja) * 2006-07-11 2011-09-14 三菱重工業株式会社 ガスタービン燃焼器
US20090061369A1 (en) * 2007-08-28 2009-03-05 Gas Technology Institute Multi-response time burner system for controlling combustion driven pulsation
JP4981615B2 (ja) * 2007-10-19 2012-07-25 三菱重工業株式会社 ガスタービン
US8151570B2 (en) * 2007-12-06 2012-04-10 Alstom Technology Ltd Transition duct cooling feed tubes
EP2116770B1 (fr) * 2008-05-07 2013-12-04 Siemens Aktiengesellschaft Atténuation dynamique de chambre de combustion et agencement de refroidissement
US9046269B2 (en) * 2008-07-03 2015-06-02 Pw Power Systems, Inc. Impingement cooling device
US20100236245A1 (en) * 2009-03-19 2010-09-23 Johnson Clifford E Gas Turbine Combustion System
EP2299177A1 (fr) * 2009-09-21 2011-03-23 Alstom Technology Ltd Chambre de combustion de turbine à gaz
US8973365B2 (en) * 2010-10-29 2015-03-10 Solar Turbines Incorporated Gas turbine combustor with mounting for Helmholtz resonators
US8720204B2 (en) 2011-02-09 2014-05-13 Siemens Energy, Inc. Resonator system with enhanced combustor liner cooling
JP5693293B2 (ja) * 2011-02-25 2015-04-01 三菱重工業株式会社 燃焼器
EP2500648B1 (fr) * 2011-03-15 2013-09-04 Siemens Aktiengesellschaft Chambre de combustion de turbines à gaz
JP5804808B2 (ja) * 2011-07-07 2015-11-04 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器及びその燃焼振動減衰方法
US8966903B2 (en) * 2011-08-17 2015-03-03 General Electric Company Combustor resonator with non-uniform resonator passages
US20140345282A1 (en) * 2011-09-01 2014-11-27 Siemens Aktiengesellschaft Combustion chamber for a gas turbine plant
US9395082B2 (en) * 2011-09-23 2016-07-19 Siemens Aktiengesellschaft Combustor resonator section with an internal thermal barrier coating and method of fabricating the same
EP2818670B1 (fr) * 2012-02-24 2017-09-20 Mitsubishi Heavy Industries, Ltd. Amortisseur acoustique, chambre de combustion et turbine à gaz
JP6071664B2 (ja) * 2012-03-14 2017-02-01 三菱重工業株式会社 排気煙道
EP2642204A1 (fr) 2012-03-21 2013-09-25 Alstom Technology Ltd Amortissement à large bande simultanée à de multiples emplacements dans une chambre de combustion
US20130255260A1 (en) * 2012-03-29 2013-10-03 Solar Turbines Inc. Resonance damper for damping acoustic oscillations from combustor
CN104204677B (zh) * 2012-03-30 2016-07-06 通用电器技术有限公司 装备有阻尼装置的燃烧器密封段
US20130283799A1 (en) * 2012-04-25 2013-10-31 Solar Turbines Inc. Resonance damper for damping acoustic oscillations from combustor
US9447971B2 (en) * 2012-05-02 2016-09-20 General Electric Company Acoustic resonator located at flow sleeve of gas turbine combustor
US8684130B1 (en) * 2012-09-10 2014-04-01 Alstom Technology Ltd. Damping system for combustor
JP6231114B2 (ja) 2012-10-24 2017-11-15 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 希釈ガス混合器を備えた2段燃焼
WO2014133645A2 (fr) 2013-02-20 2014-09-04 Rolls-Royce North American Technologies Inc. Turbine à gaz dotée d'un passage de dérivation configurable
KR101316202B1 (ko) * 2013-03-12 2013-10-08 신대원보일러 주식회사 소각로용 워터자켓
US20160076766A1 (en) * 2013-04-23 2016-03-17 Siemens Aktiengesellschaft Combustion system of a flow engine and method for determining a dimension of a resonator cavity
EP2851618A1 (fr) * 2013-04-24 2015-03-25 Siemens Aktiengesellschaft Système de combustion d'un moteur d'écoulement
EP2816288B1 (fr) 2013-05-24 2019-09-04 Ansaldo Energia IP UK Limited Chambre de combustion de turbine à gaz avec amortisseur de vibrations
US9410484B2 (en) * 2013-07-19 2016-08-09 Siemens Aktiengesellschaft Cooling chamber for upstream weld of damping resonator on turbine component
WO2015023576A1 (fr) * 2013-08-15 2015-02-19 United Technologies Corporation Panneau de protection et cadre à cet effet
US10359194B2 (en) * 2014-08-26 2019-07-23 Siemens Energy, Inc. Film cooling hole arrangement for acoustic resonators in gas turbine engines
EP3227611A1 (fr) * 2014-12-01 2017-10-11 Siemens Aktiengesellschaft Résonateurs comprenant des tubes de mesure interchangeables pour des turbines à gaz
EP3029377B1 (fr) * 2014-12-03 2018-04-11 Ansaldo Energia Switzerland AG Amortisseur pour une turbine à gaz
EP3032177B1 (fr) 2014-12-11 2018-03-21 Ansaldo Energia Switzerland AG Ensemble de compensation pour un amortisseur d'une turbine à gaz
EP3048370A1 (fr) 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Chambre de combustion pour un moteur de turbine à gaz
CN104896514A (zh) * 2015-05-13 2015-09-09 广东电网有限责任公司电力科学研究院 燃气轮机主燃烧室防振隔热壁
DE102015215138A1 (de) * 2015-08-07 2017-02-09 Siemens Aktiengesellschaft Brennkammer für eine Gasturbine mit mindestens einem Resonator
WO2018021996A1 (fr) 2016-07-25 2018-02-01 Siemens Aktiengesellschaft Turbine à gaz à anneaux de résonateur
US20180209650A1 (en) * 2017-01-24 2018-07-26 Doosan Heavy Industries Construction Co., Ltd. Resonator for damping acoustic frequencies in combustion systems by optimizing impingement holes and shell volume
JP7045851B2 (ja) * 2017-12-28 2022-04-01 三菱重工業株式会社 燃焼器及びガスタービン
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
DE102020200583A1 (de) * 2020-01-20 2021-07-22 Siemens Aktiengesellschaft Resonatorring für Brennkammersysteme
CN116293795A (zh) * 2021-12-06 2023-06-23 通用电气阿维奥有限责任公司 用于燃气涡轮燃烧器应用的圆顶集成声学阻尼器
CN117109030A (zh) * 2022-05-16 2023-11-24 通用电气公司 燃烧器衬里中的热声阻尼器
US11898755B2 (en) * 2022-06-08 2024-02-13 General Electric Company Combustor with a variable volume primary zone combustion chamber

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705492A (en) * 1971-01-11 1972-12-12 Gen Motors Corp Regenerative gas turbine system
FR2191025B1 (fr) * 1972-07-04 1975-03-07 Aerospatiale
GB1581531A (en) * 1976-09-09 1980-12-17 Rolls Royce Control of airflow in combustion chambers by variable rate diffuser
US4112676A (en) * 1977-04-05 1978-09-12 Westinghouse Electric Corp. Hybrid combustor with staged injection of pre-mixed fuel
US4296606A (en) * 1979-10-17 1981-10-27 General Motors Corporation Porous laminated material
US4297842A (en) * 1980-01-21 1981-11-03 General Electric Company NOx suppressant stationary gas turbine combustor
JPS56124834A (en) * 1980-03-05 1981-09-30 Hitachi Ltd Gas-turbine combustor
US4432207A (en) * 1981-08-06 1984-02-21 General Electric Company Modular catalytic combustion bed support system
US5024058A (en) * 1989-12-08 1991-06-18 Sundstrand Corporation Hot gas generator
JPH07501137A (ja) * 1991-11-15 1995-02-02 シーメンス アクチエンゲゼルシヤフト ガスタービン設備の燃焼室内の燃焼振動抑制装置
EP0576717A1 (fr) * 1992-07-03 1994-01-05 Abb Research Ltd. Chambre de combustion de turbine à gaz
CA2141066A1 (fr) 1994-02-18 1995-08-19 Urs Benz Procede de refroidissement d'une chambre de combustion a auto-allumage
US5737922A (en) * 1995-01-30 1998-04-14 Aerojet General Corporation Convectively cooled liner for a combustor
DE19520291A1 (de) * 1995-06-02 1996-12-05 Abb Management Ag Brennkammer
US5758504A (en) * 1996-08-05 1998-06-02 Solar Turbines Incorporated Impingement/effusion cooled combustor liner
FR2752916B1 (fr) * 1996-09-05 1998-10-02 Snecma Chemise de protection thermique pour chambre de combustion de turboreacteur
DE19640980B4 (de) * 1996-10-04 2008-06-19 Alstom Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
GB2328011A (en) * 1997-08-05 1999-02-10 Europ Gas Turbines Ltd Combustor for gas or liquid fuelled turbine
DE19751299C2 (de) * 1997-11-19 1999-09-09 Siemens Ag Brennkammer sowie Verfahren zur Dampfkühlung einer Brennkammer
US6098397A (en) * 1998-06-08 2000-08-08 Caterpillar Inc. Combustor for a low-emissions gas turbine engine
US6494044B1 (en) * 1999-11-19 2002-12-17 General Electric Company Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
US6973790B2 (en) * 2000-12-06 2005-12-13 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor, gas turbine, and jet engine
US6606861B2 (en) * 2001-02-26 2003-08-19 United Technologies Corporation Low emissions combustor for a gas turbine engine
JP3962554B2 (ja) * 2001-04-19 2007-08-22 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン
DE50107283D1 (de) * 2001-06-18 2005-10-06 Siemens Ag Gasturbine mit einem Verdichter für Luft
JP4709433B2 (ja) * 2001-06-29 2011-06-22 三菱重工業株式会社 ガスタービン燃焼器
DE10214570A1 (de) * 2002-04-02 2004-01-15 Rolls-Royce Deutschland Ltd & Co Kg Mischluftloch in Gasturbinenbrennkammer mit Brennkammerschindeln
US6761031B2 (en) * 2002-09-18 2004-07-13 General Electric Company Double wall combustor liner segment with enhanced cooling
US6826913B2 (en) * 2002-10-31 2004-12-07 Honeywell International Inc. Airflow modulation technique for low emissions combustors
US7152411B2 (en) * 2003-06-27 2006-12-26 General Electric Company Rabbet mounted combuster
US6955038B2 (en) * 2003-07-02 2005-10-18 General Electric Company Methods and apparatus for operating gas turbine engine combustors
US7146815B2 (en) * 2003-07-31 2006-12-12 United Technologies Corporation Combustor
US7114321B2 (en) * 2003-07-31 2006-10-03 General Electric Company Thermal isolation device for liquid fuel components
US20050044857A1 (en) * 2003-08-26 2005-03-03 Boris Glezer Combustor of a gas turbine engine

Also Published As

Publication number Publication date
DE50212871D1 (de) 2008-11-20
JP2005527761A (ja) 2005-09-15
US7104065B2 (en) 2006-09-12
CN1551965A (zh) 2004-12-01
WO2003023281A1 (fr) 2003-03-20
CN1250906C (zh) 2006-04-12
US20040248053A1 (en) 2004-12-09
EP1423645A1 (fr) 2004-06-02

Similar Documents

Publication Publication Date Title
EP1423645B1 (fr) Ensemble amortisseur concu pour reduire les pulsations d'une chambre de combustion dans une installation de turbine a gaz
EP2334558B1 (fr) Silencieux pour un groupe auxiliaire d'un avion
EP1158247B1 (fr) Dispositif pour la réduction des vibrations accoustiques dans une chambre de combustion
EP2167796B1 (fr) Dispositif et procédé d'amélioration de l'atténuation d'ondes acoustiques
DE10058688B4 (de) Dämpferanordnung zur Reduktion von Brennkammerpulsationen
EP0577862B1 (fr) Dispositif de post-combustion
DE19851636A1 (de) Dämpfungsvorrichtung zur Reduzierung der Schwingungsamplitude akustischer Wellen für einen Brenner
DE10325691A1 (de) Wiederaufheizverbrennungssystem für eine Gasturbine
EP1265029A2 (fr) Ensemble brûleur
EP0971172B1 (fr) Chambre de combustion pour turbine à gaz avec paroi à structure silencieuse
EP2500648B1 (fr) Chambre de combustion de turbines à gaz
EP0985882A1 (fr) Amortissement des vibrations dans des combusteurs
DE4316475A1 (de) Gasturbinen-Brennkammer
DE10040869A1 (de) Verfahren und Vorrichtung zur Unterdrückung von Strömungswirbeln innerhalb einer Strömungskraftmaschine
DE19640980A1 (de) Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
DE19948674B4 (de) Verbrennungseinrichtung, insbesondere für den Antrieb von Gasturbinen
EP1342953A1 (fr) Turbine à gaz
EP0892217B1 (fr) Dispositif d'atténuation des vibrations d'une chambre de combustion
EP2354659A1 (fr) Amortisseur de Helmholtz pour l'intégration dans la chambre de combustion d'une turbine à gaz et procédé d'intégration d'un tel amortisseur de Helmholtz
EP0990851B1 (fr) Chambre de combustion pour une turbine à gaz
DE2712326A1 (de) Brenner
EP1605209A1 (fr) Chambre de combustion avec dispositif d'amortissement des vibrations thermo-acoustiques
DE102004010620B4 (de) Brennkammer zur wirksamen Nutzung von Kühlluft zur akustischen Dämpfung von Brennkammerpulsation
DE102006040760A1 (de) Gasturbinenbrennkammerwand für eine mager-brennende Gasturbinenbrennkammer
DE19939235B4 (de) Verfahren zum Erzeugen von heissen Gasen in einer Verbrennungseinrichtung sowie Verbrennungseinrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50212871

Country of ref document: DE

Date of ref document: 20081120

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090821

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50212871

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170822

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828