EP0990851B1 - Chambre de combustion pour une turbine à gaz - Google Patents

Chambre de combustion pour une turbine à gaz Download PDF

Info

Publication number
EP0990851B1
EP0990851B1 EP98810983A EP98810983A EP0990851B1 EP 0990851 B1 EP0990851 B1 EP 0990851B1 EP 98810983 A EP98810983 A EP 98810983A EP 98810983 A EP98810983 A EP 98810983A EP 0990851 B1 EP0990851 B1 EP 0990851B1
Authority
EP
European Patent Office
Prior art keywords
perforated plate
openings
combustion chamber
cooling air
perforated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810983A
Other languages
German (de)
English (en)
Other versions
EP0990851A1 (fr
Inventor
Jakob Prof. Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP98810983A priority Critical patent/EP0990851B1/fr
Priority to DE59809097T priority patent/DE59809097D1/de
Publication of EP0990851A1 publication Critical patent/EP0990851A1/fr
Application granted granted Critical
Publication of EP0990851B1 publication Critical patent/EP0990851B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03341Sequential combustion chambers or burners

Definitions

  • the present invention relates to the field of gas turbines. It affects a combustion chamber for a gas turbine, in which combustion chamber the hot combustion gases a combustion zone are enclosed by inner walls, which by cooling air, which by outside of the inner walls by a The outer wall of the combustion chamber and the inner walls formed cooling air channels is introduced, cooled.
  • Such a combustion chamber is in the form of a secondary combustion chamber e.g. from the Document EP-A1 0 669 500 of the applicant is known.
  • Gas turbines can cause pressure vibrations during operation under certain conditions or acoustic vibrations that occur in terms of frequency Range of several kHz, e.g. are in the range of 2-6 kHz. Such vibrations prove to be disruptive to the operation and are therefore undesirable.
  • damping or suppressing such vibrations in providing fluidic means in the combustion chamber which influence the flow of hot gases in such a way that the acoustic Vibrations are not excited or only to a small extent.
  • Helmholtz resonators on the combustion chamber to attach, which couple to the vibrations as damping elements and dampen the vibrations or make them disappear completely.
  • a gas turbine combustor is described in US Pat. No. 5,644,918, with the leading within the cooling air surrounding the combustion chamber Double jacket and on the front of the combustion chamber in the area of the burner by pulling in additional dividing walls Helmholtz resonators 48 and 56 are formed, the constrictions 50 and 58 in connection with the combustion chamber stand, but are otherwise completely completed, so that a Flow of cooling air through the resonator rooms does not take place.
  • European publication EP-A1-0 576 717 discloses a gas turbine combustor.
  • the flame tube is located away from the combustion chamber Side exposed to an air flow supplied by the gas turbine compressor.
  • the flame tube is essentially composed of wall parts, the combustion chamber outer wall parts facing away from each have a plurality of inlet openings distributed over the circumference have, introduced via the cooling air into an intermediate space arranged in the flame tube becomes. From the intermediate space, the cooling air is passed through outlet bores into the combustion chamber facing inner wall parts introduced into the combustion chamber.
  • the space between the wall parts is on to form a Helmholtz resonator large, closed additional volume coupled, with the inlet openings in the outer wall parts as feed pipes and the outlet bores as damping pipes of the Helmholtz resonator, are formed.
  • EP-A1-0 971 172 discloses a gas turbine.
  • this combustion chamber in which the hot combustion gases of a combustion zone are enclosed by inner walls, which is cooled by cooling air brought in outside the inner walls a simultaneous efficient acoustic damping and cooling achieved that at least in a partial area on the outside of the inner walls, a distance from the inner walls, perforated plate arranged essentially parallel to the inner walls which, together with the associated inner wall, is a closed damping volume forms that the inner walls in the region of the damping volume a plurality of distributed first openings through which the damping volume with the combustion zone of the combustion chamber communicates that the perforated plate is a Has a plurality of distributed second openings through which cooling air from flows into the outside of the damping volume and in the manner of an impingement cooling between the first openings meets the opposite outside of the inner wall, and that the Distance between the perforated plate and the inner wall and the geometric dimensions of the first openings are selected so that the first openings together with the damping volume form a plurality
  • the task is thereby in a combustion chamber of the type mentioned solved that at least in a partial area of the inner walls of the inner wall at least two perforated plates arranged essentially parallel to one another is formed that a first perforated plate borders directly on the cooling air channels and is provided with a plurality of first openings through which cooling air from the cooling air channels into a first intermediate volume lying behind the first perforated plate flows that behind the first perforated plate, towards the combustion zone, a further perforated plate is arranged, which with a plurality of further openings is provided that the distance between the first perforated plate and the other perforated plate and the geometric dimensions of the others Openings and are selected so that the openings together with between the perforated plates existing intermediate volumes a plurality of one another connected Helmholtz resonators and as a silencer for in acoustic vibrations arising in the combustion chamber act, and that in addition there are other agents which have a sound-absorbing effect.
  • the essence of the invention is therefore that the combination of Helmholtz
  • a first preferred embodiment of the invention is characterized by that at least in a partial area of the inner walls, the inner wall of three, in perforated plates arranged substantially parallel to each other is formed that a first perforated plate directly adjoins the cooling air ducts and with a plurality is provided by first openings through which cooling air from the cooling air channels into a first intermediate volume lying behind the first perforated plate flows, which on the side facing the cooling air ducts from the first Perforated plate and on the opposite side of a second perforated plate is limited, which second perforated plate with a plurality of second openings is provided that on the side facing away from the first intermediate volume of the second perforated plate, a third perforated plate is arranged, which has a plurality is provided by third openings, and which to the combustion zone borders, and that at least one of the perforated plates additionally sound-absorbing acts.
  • the essence of the embodiment is that a of the three perforated plates by appropriate hole design, or by appropriate Contraction ratio, the most possible reflection-free sound transmission has, and that the combination and the geometric design of two further perforated plates a plurality of interconnected Helmholtz resonators creates a phase shift.
  • the whole Absorption system flushed by cooling air, making the resonators thermal and frequency stabilized. The additional effort to create of the absorption system - if there is effusion cooling the large openings in the inner wall already exist - only from attaching two more perforated plates.
  • a second preferred embodiment of the combustion chamber according to the invention is characterized in that the contraction ratio, defined as the Ratio between the area of the opening and that towards the combustion zone surface in front, for the second or third openings in the is essentially the same as the largest Mach number that occurs in the combustion chamber, which is defined as the ratio of the source velocity and the Speed of sound, and that the perforated plate provided with such openings has a sound-absorbing effect.
  • the contraction ratio defined as the Ratio between the area of the opening and that towards the combustion zone surface in front
  • the second or third openings in the is essentially the same as the largest Mach number that occurs in the combustion chamber, which is defined as the ratio of the source velocity and the Speed of sound, and that the perforated plate provided with such openings has a sound-absorbing effect.
  • a second preferred embodiment of the combustion chamber according to the invention is characterized in that the distance between the first perforated plate and of the second perforated plate and the geometric dimensions of the second openings be chosen such that the second openings in combination with the first space arranged between the first and the second perforated plate Helmholtz resonators result in their resonance frequency essentially in the area of acoustic vibrations occurring in the combustion chamber lies, and that further preferably the third perforated plate is designed to be sound-absorbing is.
  • the third perforated plate leads to anechoic transmission of the Noise and the Helmholtz resonators behind it in the direction of sound propagation push its phase.
  • the second perforated plate has a thickness in the range from 0.1 to 1 cm, in particular preferably from 0.6 cm, the area ratio of the acoustically relevant Partial areas of the first intermediate volume and the areas of the second openings are in the range from 5 to 10, particularly preferably from 8, the distance between the first of the second perforated plate is 0.1 to 1 cm, particularly preferred 0.6 cm, the product of the contraction ratio of the third openings and the largest Mach number ranges from 1 to 0.5, and the area ratio of the acoustic relevant areas in the combustion chamber and the acoustically relevant areas the first intermediate volume is in a range from 1 to 2.
  • Another preferred embodiment of the combustion chamber according to the invention is characterized in that the distance between the first perforated plate and of the third perforated plate and the geometric dimensions of the third openings be chosen such that the third openings in combination with the between the first and the third perforated plate arranged Helmholtz resonators result, whose resonance frequency is essentially in the range the acoustic vibrations occurring in the combustion chamber, and that the second perforated plate is preferably also sound-absorbing.
  • the sound-absorbing arrangement can be designed acoustically, if, according to a further embodiment, the second and the third Perforated plate with even and concentric arrangement of the holes in the two perforated plates can be joined directly and without spacing, or that the two perforated plates can even be covered by a single perforated plate holes drilled on both sides with different diameters become.
  • a secondary combustion chamber is shown in a simplified longitudinal section, which is known from EP-A1 0 669 500, and which is preferred for implementation the invention is suitable.
  • the combustion chamber 10 includes a combustion zone 23, which of an inner wall extending in the axial direction 12 and a radial inner wall 17 is limited.
  • the inflow zone 20 is delimited by an inner wall 15. Protrudes into the inflow zone 20 a fuel lance 18 from the side, a nozzle at the front end 19 for fuel injection.
  • the inner walls 12, 15 and 17 are from an outer wall 11 extending in the axial direction.
  • a cooling air duct 14 remains free through the inner wall 12 and the outer wall 11 which cooling air against the flow direction of the hot gases in between the inner wall 15 and the outer wall 11 formed rear cooling air duct 16 streams.
  • the inner wall 12 is convectively cooled by the cooling air.
  • the cooling air flows from the rear cooling air duct 16 through openings 21 in the inner wall 15 in the inflow zone 20, and through further openings 22 in the radial Inner wall 17 into the combustion zone 23, thereby causing effusion cooling.
  • a Helmholtz resonator arrangement in combination with a sound-absorbing third perforated plate 29 are integrated, which at the same time effective cooling of the arrangement guaranteed.
  • a first perforated plate 24 is arranged in parallel at a distance (L in FIG. 4), which together with the actual radial inner wall, which is a forms second perforated plate 17a, includes a first (annular) intermediate volume 26.
  • the second perforated plate 17a has a plurality of more or less regularly distributed openings 27a, which are identical to the openings 22 for the effusion cooling in the combustion chamber according to FIG. 1 can be, but also deviating can have geometric dimensions.
  • the as through holes with a diameter a and a length I (Fig. 4) formed openings 27a each act individually as a damping tube of a Helmholtz partial resonator, that of the respective opening 27a and the partial volume behind it first intermediate volume 26 is formed.
  • the first intermediate volume 26 in total and the entirety of the openings 27a can be used as individual Helmholtz resonators understand, the individual damping volumes with each other to first intermediate volume 26 are connected.
  • the first perforated plate 24 has in addition to the limitation of the first intermediate volume two other important tasks. Those provided in the first perforated plate 24 Openings 25 let cooling air from the rear cooling air duct 16 into the first intermediate volume 26 flow in.
  • the incoming cooling air cools the one hand Helmholtz arrangement. This is the geometry and thus the Damping frequency of the arrangement kept stable.
  • the openings 25 offset relative to the second openings 27a or arranged "on gap".
  • the diameter of the openings 25 is compared to the diameter a small (Fig. 4). This ensures that the cooling air flowing through one suffers sufficient pressure drop.
  • a third perforated plate 29 arranged in parallel, which together with the second perforated plate 17a a second (ring-shaped) intermediate volume 30 includes.
  • the third perforated plate 29 has a plurality of distributed ones Openings 28 on. These openings 28 are preferably designed such that the third perforated plate 29 the sound generated in the combustion zone 23 transmits echo-free, i.e. that no sound is reflected and therefore this third Perforated plate has a sound-absorbing effect.
  • the second intermediate volume 30 and the third perforated plate are the by the first intermediate volume and the Cooling air flowing through second openings 27a and cooled accordingly.
  • FIG 3 shows schematically the structure of the embodiment shown in Figure 2 the invention again.
  • the incoming from the combustion zone 23 Sound 31 first passes through the openings 28 of the third perforated plate in an echo-free manner 29 into the second intermediate volume 30. Then the sound hits that from the first 24 and the second 17a perforated plate with the Helmholtz resonators formed with the openings 27a, which push the phase of the sound waves. Flows at the same time by the arrangement in the opposite direction to the sound of the cooling air flow 22 after he through the openings 25 in the first perforated plate 24 into the first intermediate volume 26 has arrived.
  • a schematic representation of the arrangement, which can be used to calculate its Properties is particularly suitable, together with the specification of the dimensions shown in Figure 4.
  • the main characteristics of this series of elements can be easily calculated by calculating the transformation behavior the Riemannin variants for each element and subsequent determine sequential sequence of transformations.
  • particularly important property of the sound absorbing perforated plate applies that the transmission of the sound absorbing perforated plate for flow lower Mach numbers then echo-free, i.e. is reflection-free if the contraction ratio, defined as the ratio of the area of the aperture or opening b to the area B in front of the aperture (b / B) is essentially the same as the largest in the Mach number that occurs in the chamber.
  • the resonance frequency of the resonator arrangement or the partial resonators is in the essentially by the area A, the thickness I of the second perforated plate 17a or Length of the openings 27a, the diameter of the openings 27a and spacing L of the plates determined.
  • the openings 27a are as through holes with a length I of a few millimeters and a diameter a of a few millimeters.
  • the distance L between the first 24 and the second 17a perforated plate is a few millimeters, and the ratio of area A to hole area a is in the range from 5 to 10.
  • Fig. 5a The damping behavior of the arrangement for the values from the table from Helmholtz resonators and sound-absorbing perforated plate 29 is in Fig. 5a) reproduced.
  • 5 shows the squared reflection coefficient in each case (reflection coefficient squared) over the frequency in Hz.
  • Fig. 5a One can see Fig. 5a), that for the above values in the whole range from 2 to 6 kHz significant absorption takes place, and that resonant absorption occurs at 4720 Hz.
  • Very strong Absorption is in the range from 3.5 to 5.5 kHz, where more than 75% of the acoustic Power to be absorbed.
  • FIG 6 Another embodiment of an embodiment of the invention is shown in FIG 6 shown.
  • the sound-absorbing sheet is in the actual damping volume of the Helmholtz resonators.
  • the Helmholtz resonators are in in this case from a first perforated plate facing the rear cooling air duct 16 24 and a third perforated plate directly adjacent to the combustion zone 23 17b formed.
  • the first perforated plate 24 in turn has openings 25, through which cooling air 22 flows into the arrangement.
  • the third perforated plate 17b has Openings 27b, which serve as damping tubes of the Helmholtz resonators.
  • the damping volume of the Helmholtz resonators exposes itself in this case the two intermediate volumes 32 and 35 together, which by the between the first 24 and the third 17b perforated plate retracted second perforated plate 34 be formed.
  • the second perforated plate 34 is provided with openings 33 which are designed such that this second perforated plate 34 is sound-absorbing, i.e. appears anechoic. As described above, this is done by adjusting to the highest Mach number Contraction ratio.
  • FIG. 7 again shows a schematic illustration of how the sound 31 from the Combustion zone 23 strikes the arrangement with internal absorber, and how the cooling air 22 through the openings 25 from the opposite side flows.
  • the one used to calculate the main characteristic properties of a is analogous to FIG. 4 given in Figure 8 along with the dimensions.
  • the resonance frequency of the In this case, the resonator arrangement or the partial resonators essentially becomes by the area A, the thickness I1 of the third perforated plate 17b or the length of the openings 27b, the diameter of the openings 27b and spacing L1 of the plates.
  • the openings 27b are the openings 27b as through holes with a length I1 of a few Millimeters and a diameter of a few millimeters.
  • the distance L1 between the first 24 and the third 17b perforated plate is a few Millimeters, and the ratio of area A to hole area a is in the range from 5 to 10.
  • Fig. 9a The damping behavior of the arrangement for the values from the table from Helmholtz resonators and internal sound-absorbing perforated plate 34 is shown in Fig. 9a).
  • Fig. 9 again shows the squared Reflection coefficient squared over frequency in Hz. It can be seen in FIG. 9 a) that for the above values in the entire range from 2 to 6 kHz significant absorption takes place, and that at 3880 Hz resonant absorption occurs. One has very strong absorption in the range from 2.9 to 5.2 kHz, where more than 75% of the acoustic power is consumed.
  • a perforated plate 37 is for an arrangement with internal absorber shown in Figure 10.
  • the perforated plate 37 has openings of different diameters from the two sides, wherein the second stage part 39 facing the combustion zone 23 to the damping tubes 27b from FIG.
  • first step part 38 ensures anechoic transmission and corresponds to the openings 33 from FIG. 6. In this way you have the advantage of only having to provide two perforated plates, which greatly simplifies cooling and construction, and still one efficient combined arrangement of Helmholtz resonators and sound absorbers to have.
  • All of the above exemplary embodiments are distinguished in that they are based on can be easily installed in an existing combustion chamber.
  • the exemplary embodiments described here become the former radial Inner wall 17 once as the second 17a and once as the third 17b perforated plate three-part arrangement used.
  • the former radial Inner wall 17 but take over the task of each of the three perforated plates or else that of the perforated plate 37 with stepped openings.
  • Retrofitting can be done in one way or another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Claims (12)

  1. Chambre de combustion (10) pour une turbine à gaz, chambre de combustion (10) dans laquelle les gaz de combustion chauds d'une zone de combustion (23) sont entourés par des parois intérieures (12, 17), lesquelles sont refroidies par de l'air de refroidissement qui est acheminé par des canaux pour air de refroidissement (14, 16) formés à l'extérieur des parois intérieures (12, 17) par une paroi extérieure (11) de la chambre de combustion (10) et les parois intérieures (12, 17), la paroi intérieure (17) étant constituée au moins dans une section partielle des parois intérieures (12, 17) d'au moins deux plaques perforées (24, 17a ; 24, 17a) disposées pour l'essentiel parallèlement l'une à l'autre, une première plaque perforée (24) se terminant directement au niveau des canaux pour air de refroidissement (14, 16) et étant munie d'une pluralité de premières ouvertures (25) à travers lesquelles l'air de refroidissement (22) s'écoule hors des canaux pour air de refroidissement (14, 16) dans un premier volume intermédiaire (26, 32) qui se trouve derrière la première plaque perforée, une plaque perforée supplémentaire (17a, 17b) étant disposée derrière la première plaque perforée (24) en direction de la zone de combustion (23), laquelle est munie d'une pluralité d'ouvertures supplémentaires (27a, 27b), la distance (L, L1) entre la première plaque perforée (24) et la plaque perforée supplémentaire (17a, 17b) ainsi que les dimensions géométriques (I, I1, a, A) des ouvertures supplémentaires (27a, 27b) étant ainsi choisies, caractérisée en ce que les ouvertures (27a, 27b), combinées avec le volume intermédiaire (26, 32, 35) qui se trouve entre les plaques perforées (24, 17a, 17b), forment une pluralité de résonateurs de Helmholtz reliés entre eux et agissent comme des silencieux pour les vibrations acoustiques (31) produites dans la chambre de combustion et que sont prévus des moyens d'absorption du son supplémentaires (29, 34).
  2. Chambre de combustion (10) selon la revendication 1, caractérisée en ce que la paroi intérieure (17) est constituée au moins dans une section partielle des parois intérieures (12, 17) d'au moins trois plaques perforées (24, 17a, 29 ; 24, 34, 17a) disposées pour l'essentiel parallèlement l'une à l'autre, la première plaque perforée (24) se terminant directement au niveau des canaux pour air de refroidissement (14, 16) et étant munie d'une pluralité de premières ouvertures (25) à travers lesquelles l'air de refroidissement (22) s'écoule hors des canaux pour air de refroidissement (14, 16) dans un premier volume intermédiaire (26, 32) qui se trouve derrière la première plaque perforée, lequel est délimité du côté faisant face aux canaux pour air de refroidissement (14, 16) par la première plaque perforée (24) et par une deuxième plaque perforée (17a, 34) du côté opposé, laquelle deuxième plaque perforée (17a, 34) est munie d'une pluralité de deuxièmes ouvertures (27a, 33), qu'une troisième plaque perforée (17b, 29) est disposée sur le côté de la deuxième plaque perforée (17a, 34) à l'opposé du premier volume intermédiaire (26, 32), laquelle est munie d'une pluralité de troisièmes ouvertures (27b, 28) et laquelle se termine au niveau de la zone de combustion (23), et qu'au moins l'une des plaques perforées (29, 34) est configurée de manière à absorber le son.
  3. Chambre de combustion (10) selon la revendication 2, caractérisée en ce que le rapport de contraction, défini comme étant le rapport entre la surface (b) de l'ouverture (28, 33) et la surface (B) qui se trouve devant elle en direction de la zone de combustion (23), est quasiment identique pour les deuxièmes (33) ou les troisièmes ouvertures (28) que le plus grand nombre de Mach produit dans l'espace de combustion (23), lequel est défini comme étant le rapport entre la vitesse d'écoulement et la vitesse du son, et que la plaque perforée (29, 34) munie de telles ouvertures (33, 28) a un effet d'absorption du son.
  4. Chambre de combustion (10) selon l'une des revendications 2 ou 3, caractérisée en ce que la deuxième (17a, 34) et la troisième (17b, 29) plaque perforée sont espacées l'une de l'autre de telle manière à former un deuxième volume intermédiaire (30, 35).
  5. Chambre de combustion (10) selon l'une des revendications 2 à 4, caractérisée en ce que la distance (L) entre la première plaque perforée (24) et la deuxième plaque perforée (17a) ainsi que les dimensions géométriques (I, a, A) des deuxièmes ouvertures (27a) sont choisies de telle manière que les deuxièmes ouvertures (27a), combinées avec le premier espace intermédiaire (26) qui se trouve entre la première (24) et la deuxième plaque perforée (17a), forment des résonateurs de Helmholtz dont la fréquence de résonance se trouve pour l'essentiel dans la gamme des vibrations acoustiques (31) produites dans l'espace de combustion (23).
  6. Chambre de combustion (10) selon l'une des revendications 3 et 5, caractérisée en ce que la troisième plaque perforée (29) est configurée de manière à absorber le son.
  7. Chambre de combustion (10) selon la revendication 6, caractérisée en ce que la deuxième plaque perforée (17a) présente une épaisseur (I) comprise entre 0,1 et 1 cm, notamment de préférence de 0,6 cm, que le rapport de surface entre la surface partielle (A) importante du point de vue acoustique du premier volume intermédiaire (26) et la surface (a) des deuxièmes ouvertures (27a) est compris entre 5 et 10, notamment de préférence égal à 8, que la distance (L) entre la première (24) et la deuxième (17a) plaque perforée est comprise entre 0,1 et 1 cm, notamment de préférence égale à 0,6 cm, que le produit du rapport de contraction des troisièmes ouvertures (28) et du nombre de Mach le plus élevé est compris entre 1 et 0,5, et que le rapport de surface entre la surface partielle (B) importante du point de vue acoustique dans l'espace de combustion (23) et la surface partielle (A) importante du point de vue acoustique du premier volume intermédiaire (26) est compris entre 1 et 2 de manière à ce que les résonateurs de Helmholtz, combinés avec la plaque perforée absorbant le son (29), absorbent les vibrations acoustiques (31) produites dans l'espace de combustion (23) à des fréquences comprises entre 2 et 6 kHz.
  8. Chambre de combustion (10) selon l'une des revendications 2 à 4, caractérisée en ce que la distance (L1) entre la première plaque perforée (24) et la troisième plaque perforée (17b) ainsi que les dimensions géométriques (I1, a, A) des troisièmes ouvertures (27b) sont choisies de telle manière que les troisièmes ouvertures (27a), combinées avec l'espace intermédiaire qui se trouve entre la première (24) et la troisième plaque perforée (17b), forment des résonateurs de Helmholtz dont la fréquence de résonance se trouve pour l'essentiel dans la gamme des vibrations acoustiques (31) produites dans l'espace de combustion (23).
  9. Chambre de combustion (10) selon l'une des revendications 3 et 8, caractérisée en ce que la deuxième plaque perforée (34) est configurée de manière à absorber le son.
  10. Chambre de combustion (10) selon la revendication 9, caractérisée en ce que la troisième plaque perforée (17b) présente une épaisseur (I1) comprise entre 0,1 et 1 cm, notamment de préférence de 0,6 cm, que le rapport de surface entre la surface partielle (A) importante du point de vue acoustique de l'espace intermédiaire et la surface (a) des troisièmes ouvertures (27b) est compris entre 5 et 10, notamment de préférence égal à 8, que la distance (L1) entre la première (24) et la troisième (17b) plaque perforée est comprise entre 0,1 et 1 cm, notamment de préférence égale à 0,6 cm, que le produit du rapport de contraction des deuxièmes ouvertures (33) et du nombre de Mach le plus élevé est compris entre 2,5 et 0,5, et que le rapport de surface entre la surface partielle (B) importante du point de vue acoustique dans l'espace de combustion (23) et la surface partielle (A) importante du point de vue acoustique du premier volume intermédiaire (26) est compris entre 1 et 2 de manière à ce que les résonateurs de Helmholtz, combinés avec la plaque perforée absorbant le son (34), absorbent les vibrations acoustiques (31) produites dans l'espace de combustion (23) à des fréquences comprises entre 2 et 6 kHz.
  11. Chambre de combustion (10) selon l'une des revendications 2 à 10, caractérisée en ce que la deuxième (17a, 34) et la troisième (29, 17b) plaque perforée reposent directement l'une sur l'autre, et que les deuxièmes (27a, 33) et les troisièmes (28, 27b) ouvertures sont distribuées de manière régulière et concentrique.
  12. Chambre de combustion (10) selon la revendication 11, caractérisée en ce que la deuxième (17a, 34) et la troisième (29, 17b) plaque perforée sont réalisées dans une tôle perforée (36) qui présente des ouvertures étagées (37) dont les premières parties étagées (38) qui font face à la première plaque perforée (24) correspondent aux deuxièmes ouvertures (27a, 33) et dont parties étagées (39) qui font face à l'espace de combustion (23) correspondent aux troisièmes ouvertures (28, 27b).
EP98810983A 1998-09-30 1998-09-30 Chambre de combustion pour une turbine à gaz Expired - Lifetime EP0990851B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98810983A EP0990851B1 (fr) 1998-09-30 1998-09-30 Chambre de combustion pour une turbine à gaz
DE59809097T DE59809097D1 (de) 1998-09-30 1998-09-30 Brennkammer für eine Gasturbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810983A EP0990851B1 (fr) 1998-09-30 1998-09-30 Chambre de combustion pour une turbine à gaz

Publications (2)

Publication Number Publication Date
EP0990851A1 EP0990851A1 (fr) 2000-04-05
EP0990851B1 true EP0990851B1 (fr) 2003-07-23

Family

ID=8236361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810983A Expired - Lifetime EP0990851B1 (fr) 1998-09-30 1998-09-30 Chambre de combustion pour une turbine à gaz

Country Status (2)

Country Link
EP (1) EP0990851B1 (fr)
DE (1) DE59809097D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752846B2 (en) 2004-05-05 2010-07-13 Alstom Technology Ltd Combustion chamber for a gas turbine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039533A (ja) * 2000-07-21 2002-02-06 Mitsubishi Heavy Ind Ltd 燃焼器、ガスタービン及びジェットエンジン
US6530221B1 (en) 2000-09-21 2003-03-11 Siemens Westinghouse Power Corporation Modular resonators for suppressing combustion instabilities in gas turbine power plants
US6973790B2 (en) 2000-12-06 2005-12-13 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor, gas turbine, and jet engine
JP3676228B2 (ja) 2000-12-06 2005-07-27 三菱重工業株式会社 ガスタービン燃焼器およびガスタービン並びにジェットエンジン
DE60135436D1 (de) * 2001-01-09 2008-10-02 Mitsubishi Heavy Ind Ltd Gasturbinenbrennkammer
EP1568869B1 (fr) * 2002-12-02 2016-09-14 Mitsubishi Hitachi Power Systems, Ltd. Chambre de combustion de turbine a gaz et turbine a gaz equipee de cette chambre de combustion
EP1624250A1 (fr) * 2004-08-03 2006-02-08 Siemens Aktiengesellschaft Dispositif pour atténuer les oscillations acoustiques dans les chambres combustion
GB0425794D0 (en) 2004-11-24 2004-12-22 Rolls Royce Plc Acoustic damper
EP2282120A1 (fr) * 2009-06-26 2011-02-09 Siemens Aktiengesellschaft Agencement de chambre de combustion destiné à l'amortissement d'oscillations thermoacoustiques, turbine à gaz et procédé de fonctionnement d'une telle turbine à gaz
ES2400267T3 (es) 2009-08-31 2013-04-08 Alstom Technology Ltd Dispositivo de combustión de una turbina de gas
EP2385303A1 (fr) 2010-05-03 2011-11-09 Alstom Technology Ltd Dispositif de combustion pour turbine à gaz
US20140123649A1 (en) * 2012-11-07 2014-05-08 Juan E. Portillo Bilbao Acoustic damping system for a combustor of a gas turbine engine
EP3051206B1 (fr) * 2015-01-28 2019-10-30 Ansaldo Energia Switzerland AG Agencement de combustion séquentielle d'une turbine à gaz avec un mélangeur et un amortisseur
CN113757720B (zh) * 2021-09-18 2023-01-31 北京航空航天大学 燃烧振荡控制装置、方法及燃烧室

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH284190A (de) * 1950-09-04 1952-07-15 Bbc Brown Boveri & Cie Metallene Brennkammer zur Erzeugung heisser Gase, insbesondere Treibgase für Gasturbinenanlagen.
EP0576717A1 (fr) * 1992-07-03 1994-01-05 Abb Research Ltd. Chambre de combustion de turbine à gaz
DE59208193D1 (de) 1992-07-03 1997-04-17 Abb Research Ltd Nachbrenner
DE59208715D1 (de) 1992-11-09 1997-08-21 Asea Brown Boveri Gasturbinen-Brennkammer
CA2141066A1 (fr) 1994-02-18 1995-08-19 Urs Benz Procede de refroidissement d'une chambre de combustion a auto-allumage
EP0702141B1 (fr) * 1994-09-14 2002-05-08 Mitsubishi Jukogyo Kabushiki Kaisha Ensemble parois pour une tuyére de propulsion d'un moteur reacteur supersonique
US5644918A (en) 1994-11-14 1997-07-08 General Electric Company Dynamics free low emissions gas turbine combustor
GB2309296B (en) * 1995-10-11 2000-02-09 Europ Gas Turbines Ltd Gas turbine engine combuster
DE59709276D1 (de) * 1997-07-15 2003-03-13 Alstom Switzerland Ltd Schwingungsdämpfende Brennkammerwandstruktur

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752846B2 (en) 2004-05-05 2010-07-13 Alstom Technology Ltd Combustion chamber for a gas turbine

Also Published As

Publication number Publication date
EP0990851A1 (fr) 2000-04-05
DE59809097D1 (de) 2003-08-28

Similar Documents

Publication Publication Date Title
EP0990851B1 (fr) Chambre de combustion pour une turbine à gaz
EP2334558B1 (fr) Silencieux pour un groupe auxiliaire d'un avion
DE2404001C2 (de) Schallunterdrückungsverkleidung für Strömungskanäle von Gasturbinentriebwerken
DE2822971C2 (de) Auspuffvorrichtung für Verbrennungsmotoren
DE102004058418B4 (de) Auspuffschalldämpfervorrichtung
EP1423645B1 (fr) Ensemble amortisseur concu pour reduire les pulsations d'une chambre de combustion dans une installation de turbine a gaz
EP0971172B1 (fr) Chambre de combustion pour turbine à gaz avec paroi à structure silencieuse
DE10325691A1 (de) Wiederaufheizverbrennungssystem für eine Gasturbine
EP1715189B1 (fr) Silencieux développé pour et destiné à un compresseur
EP2559942A1 (fr) Tête de chambre de combustion d'une turbine à gaz dotée d'un refroidissement et d'un amortissement
DE4316475C2 (de) Gasturbinen-Brennkammer
CH680523A5 (fr)
DE102010028089B4 (de) Rohrschalldämpfer für eine Strömungsmaschine und Verfahren zum Einbau eines Rohrschalldämpfers
EP2394033B1 (fr) Silencieux avec inserts hélicoïdaux
EP1483536B1 (fr) Turbine a gaz
DE2920278A1 (de) Verfahren und einrichtung zur schalldaempfung in insbesondere gasfoermigen ausbreitungsmedien
EP1832812A2 (fr) Paroi de chambre de combustion de turbine à gaz avec amortissement des vibrations de la chambre de combustion
DE112005001089T5 (de) Integrierte Wärmetauscher- und Schalldämpfer-Einheit
DE102011018937A1 (de) Verbrennungsvorrichtung für eine Gasturbine
EP0791135B1 (fr) Silencieux
DE102004010620B4 (de) Brennkammer zur wirksamen Nutzung von Kühlluft zur akustischen Dämpfung von Brennkammerpulsation
DE19948674B4 (de) Verbrennungseinrichtung, insbesondere für den Antrieb von Gasturbinen
EP3117148B1 (fr) Système de combustion avec résonateur
WO2019092038A1 (fr) Dispositif de réduction de bruits transmis par l'air et des structures
DE69917917T2 (de) Reaktiver schalldämpfer für lüftungskanäle und dessen verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000927

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB (SCHWEIZ) AG

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20020724

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59809097

Country of ref document: DE

Date of ref document: 20030828

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809097

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809097

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809097

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809097

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170921

Year of fee payment: 20

Ref country code: DE

Payment date: 20170928

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59809097

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180929