EP2282120A1 - Agencement de chambre de combustion destiné à l'amortissement d'oscillations thermoacoustiques, turbine à gaz et procédé de fonctionnement d'une telle turbine à gaz - Google Patents

Agencement de chambre de combustion destiné à l'amortissement d'oscillations thermoacoustiques, turbine à gaz et procédé de fonctionnement d'une telle turbine à gaz Download PDF

Info

Publication number
EP2282120A1
EP2282120A1 EP09163849A EP09163849A EP2282120A1 EP 2282120 A1 EP2282120 A1 EP 2282120A1 EP 09163849 A EP09163849 A EP 09163849A EP 09163849 A EP09163849 A EP 09163849A EP 2282120 A1 EP2282120 A1 EP 2282120A1
Authority
EP
European Patent Office
Prior art keywords
resonator
combustion chamber
heat shield
shield element
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09163849A
Other languages
German (de)
English (en)
Inventor
Jens Kleinfeld
Andre Kluge
Jürgen MEISL
Sabine Tüschen
Ulrich Wörz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09163849A priority Critical patent/EP2282120A1/fr
Priority to EP10739305A priority patent/EP2446194A1/fr
Priority to PCT/EP2010/056153 priority patent/WO2010149420A1/fr
Publication of EP2282120A1 publication Critical patent/EP2282120A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to a combustion chamber arrangement for damping thermoacoustic vibrations comprising a combustion chamber having a combustion chamber wall with a hot gas side exposed to the hot gas, and a cold side, wherein the combustion chamber wall comprises a support structure and heat gas side, attached to the support structure heat shield elements. Furthermore, the invention relates to a gas turbine and a method for operating such a gas turbine.
  • a gas turbine plant comprises in the simplest case a compressor, a combustion chamber and a turbine.
  • the compressor there is a compression of sucked air, which is then admixed with a fuel.
  • the combustion chamber the mixture is combusted, the combustion exhaust gases being supplied to the turbine, from which energy is withdrawn from the combustion exhaust gases and converted into mechanical energy.
  • a combustion chamber is provided with ceramic heat shield plates.
  • thermoacoustic oscillations in the combustion chambers of gas turbines - or turbomachines in general - represent a problem in the design and operation of new combustors, combustor parts and burners for such turbomachines.
  • thermoacoustic vibrations can increase. This can lead to an oscillating interaction between thermal and acoustic disturbances, which can cause high loads on the combustion chamber and rising emissions.
  • Such Helmholtz resonators attenuate depending on the cross-sectional area of the connecting tube and the resonator volume in particular the amplitude of oscillations with the Helmholtz frequency.
  • a problem, however, is to be able to ensure sufficient damping for the system as a whole.
  • a device for damping thermoacoustic oscillations has become known in which a wall of the resonator volume of the Helmholtz resonator is designed as a mechanical spring, are arranged on the vibrating masses.
  • the spring may consist of a plurality of gas-tight stapled together disc springs or an elastic bellows element, which surrounds the resonator chamber.
  • An additional mass on the oscillating suspended side wall of the resonator volume then oscillates depending on the mechanical spring. This affects the virtual volume and provides greater damping.
  • the Side wall forms the spring, the design effort is high, since the resonator has to be redesigned in itself. In particular, by changing the resonator design, the surrounding system parts must also be adapted.
  • this object is achieved by a combustion chamber arrangement for damping thermoacoustic oscillations according to claim 1 and by a gas turbine according to claim 11.
  • Another object is the specification of a method for operating such a gas turbine.
  • a combustion chamber arrangement according to the invention for damping thermoacoustic oscillations comprises a combustion chamber having a combustion chamber wall with a hot gas side exposed to the hot gas and a cold side, wherein the combustion chamber wall comprises a support structure and hot gas side, at least one fixed heat shield element on the support structure.
  • the heat shield element is completely formed as a resonator.
  • the invention provides for the implementation of the resonators in the heat shield elements. In other words, this means that the quasi-heat shield elements replaced by resonators become.
  • the resonators in the heat shield elements By using the resonators in the heat shield elements, there is no additional narrowing of the already limited space in the machine.
  • a uniform arrangement of the resonators can be achieved. Due to the high number of heat shield elements, the accumulated volume is enough to dampen the combustion chamber. Thus, unwanted hum of the combustion chamber can be prevented by thermoacoustic vibrations or at least damped. Since no resonators on the cold side of the support structure - as is the case in the combustion chamber of the prior art - are provided, thus resulting in no reduction of the space in the machine by additional attached to the support structure or on the outer shell resonators.
  • the heat shield element according to the invention thus has the effect of a heat shield as well as the effect of a resonator.
  • the heat shield element formed entirely as a resonator is essentially a Helmholtz resonator. This is advantageous because Helmholtz resonators offer many design possibilities.
  • Helmholtz resonators are used to amplify certain frequencies.
  • the object of the resonator is to remove oscillations from the system and to guide it in a reinforced and phase-shifted manner back to the combustion chamber. The critical vibrations are thus neutralized.
  • the resonator has a resonator neck with a length L and a surface S, which is mounted in the heat shield element.
  • the resonator has a resonator chamber with a volume V, wherein the volume V of the heat shield element is provided as the volume V of the resonator chamber.
  • the heat shield element is replaced by the resonator. It can also lead a plurality of resonator necks in a volume or the volume can be designed according to the acoustics in the combustion chamber. Different resonators i. Heat shield elements may have different volumes aligned with the combustion chamber.
  • c is the speed of sound in the medium
  • V is the volume of the resonator chamber
  • L is the length
  • S is the area of the resonator neck between the resonator chamber and the surroundings.
  • the volume V thus influences the resonant frequency of the resonator. Increasing the volume causes a reduction in the resonator frequency and vice versa.
  • the resonator frequency can be adapted to changing conditions.
  • the resonator neck L is adjustable in length.
  • different frequencies can be attenuated.
  • the adjustment of the resonator neck L can be done manually or automatically.
  • Different heat shield elements can also have different resonator neck lengths L, so that the resonator dampens the desired resonance oscillations in this area. These resonant vibrations can vary.
  • the ratio of S, L and V can thus be easily adjusted so that the critical resonances (here, for example, between ⁇ 90-110 Hz) are attenuated.
  • the support structure has cooling openings.
  • the resonator or the heat shield element completely formed as a resonator can be rinsed.
  • the heat shield element is cooled.
  • the heat shield element formed entirely of a resonator is made of metal or a metallic alloy.
  • the heat shield element formed entirely as a resonator has a TBC (thermal barrier coating) at least on the hot gas side.
  • TBC thermal barrier coating
  • the ceramic heat shield elements in the combustion chambers of the prior art are completely replaced by metallic or metallic alloy heat shield elements.
  • As heat and flame or hot gas protection is a corresponding TBC (Thermal Barrier Coating). Since the heat shield elements are made relatively thick, the volume can be used according to the invention for the Helmholtz resonator.
  • the heat shield element designed completely as a resonator preferably has a heat shield element side a facing the hot gas side and a heat shield element side b facing the support structure.
  • the heat shield element side b facing the support structure has passage openings.
  • the heat shield element completely formed as a resonator is cooled. Cooling air flows through the cooling holes in the support structure through the passage openings in the heat shield element. The heat shield element formed completely as a resonator is thus flushed and cooled at the same time.
  • the object directed to the method is achieved by specifying a method for operating such a gas turbine, wherein a heat shield element designed completely as a resonator has at least partially a TBC and thus assumes the function of a heat shield element, and at the same time causes a damping of thermo-acoustic vibrations by the complete training as a resonator.
  • annular combustion chamber 1 is excited by resonance thermoakkustician certain frequencies (eg 90-110Hz) to resonance.
  • the resulting humming leads to power reduction and affects the life of the individual combustion chamber components. In the worst case, it comes directly to a component damage. Therefore, resonators 5 are attached to the outer shell, that is to say the support structure 2 of the annular combustion chamber 1 ( Fig.1 ). Due to the limited space between the support structure 2 and the individual burner components, however, the use is limited. In addition, no uniform arrangement over the annular combustion chamber 1 is possible because obstacles such as braces must be avoided.
  • the annular combustion chamber 1 is designed on the hot gas side for protection against hot gas with ceramic heat shield elements 7.
  • the heat shield element 10 is now completely formed as a resonator.
  • the heat shield element is preferably designed as a Helmholtz resonator.
  • the invention now provides for the implementation of the Helmholtz resonators as ceramic heat shield elements. Since the heat shield elements are made relatively thick, the volume can be used for the Helmholtz resonator.
  • Helmholtz resonators are used to amplify certain frequencies.
  • the heat shield element 10 embodied completely as a resonator in this case comprises a resonator neck 15 with a length L and a cross-sectional area S.
  • the heat shield element 10 formed entirely as a resonator comprises the volume V. The ratio of S, L and V can be easily adjusted so that the are damped critical resonance vibrations.
  • the variables V, L and S are now brought into the appropriate ratio.
  • the length L of the Resonatorhalses 15 can be made variable adjustable so that, for example, in part-load operation other resonant frequency can be attenuated than in full load operation.
  • the length L of the resonator neck 15 can be adjustable automatically or manually.
  • the heat shield elements 10 of the combustion chamber formed as a resonator can also be set differently at different regions of the combustion chamber, depending on the resonant frequency to be damped.
  • the heat shield element 10 designed as a resonator is preferably made of metal or a metallic alloy.
  • the thermal protection is provided by a corresponding TBC (Thermal Barrier Coating).
  • the heat shield element embodied completely as a resonator has a heat shield element side a facing the hot gas side and a heat shield element side b facing the support structure. Furthermore, the heat shield element side b facing the support structure has passage openings 13. In addition, the support structure 2 also has cooling openings 17. In operation, cooling air is now conducted via the cooling air openings 17 and the passage openings 13 into the heat shield element 10, which is formed completely as a resonator. Thus, the heat shield element 10, which is formed completely as a resonator, is flushed on the one hand, and at the same time cooled thereby.
  • the heat shield element formed entirely as a resonator has at least partially a TBC and thus assumes the function of a heat shield element.
  • the heat shield element designed as a resonator effects, due to its complete design as a resonator, an attenuation of thermoacoustic oscillations.
  • the use of the heat shield element 10, which is embodied completely as a resonator, does not result in any additional narrowing of the already limited space available in the machine.
  • a uniform arrangement of the resonators can be achieved by lining the combustion chamber. Due to the high number of heat shield elements 10 formed completely as a resonator, the accumulated volume for damping the combustion chamber is sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
EP09163849A 2009-06-26 2009-06-26 Agencement de chambre de combustion destiné à l'amortissement d'oscillations thermoacoustiques, turbine à gaz et procédé de fonctionnement d'une telle turbine à gaz Withdrawn EP2282120A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09163849A EP2282120A1 (fr) 2009-06-26 2009-06-26 Agencement de chambre de combustion destiné à l'amortissement d'oscillations thermoacoustiques, turbine à gaz et procédé de fonctionnement d'une telle turbine à gaz
EP10739305A EP2446194A1 (fr) 2009-06-26 2010-05-06 Agencement de chambre de combustion pour l'amortissement de vibrations thermo-acoustiques, turbine à gaz et procédé pour utiliser une telle turbine à gaz
PCT/EP2010/056153 WO2010149420A1 (fr) 2009-06-26 2010-05-06 Agencement de chambre de combustion pour l'amortissement de vibrations thermo-acoustiques, turbine à gaz et procédé pour utiliser une telle turbine à gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09163849A EP2282120A1 (fr) 2009-06-26 2009-06-26 Agencement de chambre de combustion destiné à l'amortissement d'oscillations thermoacoustiques, turbine à gaz et procédé de fonctionnement d'une telle turbine à gaz

Publications (1)

Publication Number Publication Date
EP2282120A1 true EP2282120A1 (fr) 2011-02-09

Family

ID=41401740

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09163849A Withdrawn EP2282120A1 (fr) 2009-06-26 2009-06-26 Agencement de chambre de combustion destiné à l'amortissement d'oscillations thermoacoustiques, turbine à gaz et procédé de fonctionnement d'une telle turbine à gaz
EP10739305A Withdrawn EP2446194A1 (fr) 2009-06-26 2010-05-06 Agencement de chambre de combustion pour l'amortissement de vibrations thermo-acoustiques, turbine à gaz et procédé pour utiliser une telle turbine à gaz

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10739305A Withdrawn EP2446194A1 (fr) 2009-06-26 2010-05-06 Agencement de chambre de combustion pour l'amortissement de vibrations thermo-acoustiques, turbine à gaz et procédé pour utiliser une telle turbine à gaz

Country Status (2)

Country Link
EP (2) EP2282120A1 (fr)
WO (1) WO2010149420A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140245746A1 (en) * 2013-03-04 2014-09-04 General Electric Company Combustion arrangement and method of reducing pressure fluctuations of a combustion arrangement
ES2767054T3 (es) 2015-04-15 2020-06-16 Alcon Inc Un aparato para modelar estructuras oculares
US10513984B2 (en) 2015-08-25 2019-12-24 General Electric Company System for suppressing acoustic noise within a gas turbine combustor
US10197275B2 (en) 2016-05-03 2019-02-05 General Electric Company High frequency acoustic damper for combustor liners
US11898497B2 (en) 2019-12-26 2024-02-13 General Electric Company Slotted ceramic coatings for improved CMAS resistance and methods of forming the same
DE102020200204A1 (de) * 2020-01-09 2021-07-15 Siemens Aktiengesellschaft Keramischer Resonator für Brennkammersysteme und Brennkammersystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640980A1 (de) 1996-10-04 1998-04-16 Asea Brown Boveri Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
EP0990851A1 (fr) * 1998-09-30 2000-04-05 Asea Brown Boveri AG Chambre de combustion pour une turbine à gaz
WO2002025174A1 (fr) * 2000-09-21 2002-03-28 Siemens Westinghouse Power Corporation Resonateurs modulaires permettant de supprimer les instabilites de combustion dans des centrales electriques de turbine a gaz
DE102006040760A1 (de) * 2006-08-31 2008-03-06 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammerwand für eine mager-brennende Gasturbinenbrennkammer
EP1990579A1 (fr) * 2007-05-10 2008-11-12 Siemens Aktiengesellschaft Dispositif et procédé destinés à la mesure d'oscillations pour un écoulement fluidique tout comme installation de turbine à gaz dotée d'un tel dispositif

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640980A1 (de) 1996-10-04 1998-04-16 Asea Brown Boveri Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
EP0990851A1 (fr) * 1998-09-30 2000-04-05 Asea Brown Boveri AG Chambre de combustion pour une turbine à gaz
WO2002025174A1 (fr) * 2000-09-21 2002-03-28 Siemens Westinghouse Power Corporation Resonateurs modulaires permettant de supprimer les instabilites de combustion dans des centrales electriques de turbine a gaz
DE102006040760A1 (de) * 2006-08-31 2008-03-06 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammerwand für eine mager-brennende Gasturbinenbrennkammer
EP1990579A1 (fr) * 2007-05-10 2008-11-12 Siemens Aktiengesellschaft Dispositif et procédé destinés à la mesure d'oscillations pour un écoulement fluidique tout comme installation de turbine à gaz dotée d'un tel dispositif

Also Published As

Publication number Publication date
WO2010149420A1 (fr) 2010-12-29
EP2446194A1 (fr) 2012-05-02

Similar Documents

Publication Publication Date Title
EP2500648B1 (fr) Chambre de combustion de turbines à gaz
DE10058688B4 (de) Dämpferanordnung zur Reduktion von Brennkammerpulsationen
DE19640980B4 (de) Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
EP2282120A1 (fr) Agencement de chambre de combustion destiné à l'amortissement d'oscillations thermoacoustiques, turbine à gaz et procédé de fonctionnement d'une telle turbine à gaz
DE4316475C2 (de) Gasturbinen-Brennkammer
EP1483536B1 (fr) Turbine a gaz
DE102010028089B4 (de) Rohrschalldämpfer für eine Strömungsmaschine und Verfahren zum Einbau eines Rohrschalldämpfers
EP1762786A1 (fr) Procédé et appareil pour réduire les vibrations thermo-accoustiques, en particulier dans une turbine
EP1423645A1 (fr) Ensemble amortisseur concu pour reduire les pulsations d'une chambre de combustion dans une installation de turbine a gaz
WO2014131876A1 (fr) Dispositif d'amortissement pour une turbine à gaz, turbine à gaz et procédé permettant d'amortir des vibrations thermoacoustiques
EP1605209B1 (fr) Chambre de combustion avec dispositif d'amortissement des vibrations thermo-acoustiques
EP3117148B1 (fr) Système de combustion avec résonateur
DE102006040760A1 (de) Gasturbinenbrennkammerwand für eine mager-brennende Gasturbinenbrennkammer
EP2187125A1 (fr) Dispositif et procédé destinés à l'amortissement d'oscillations de combustion
EP0974788A1 (fr) Dispositif d'atténuation adaptée de bruit dans une turbomachine
DE102011016917A1 (de) Gasturbinenbrennkammer mit einer Halterung einer Dichtung für ein Anbauteil
DE102004010620A1 (de) Verfahren zur wirksamen Nutzung von Kühlung zur akustischen Dämpfung von Brennkammerpulsationen sowie Brennkammer
EP0892219B1 (fr) Procédé et dispositif pour minimiser les vibrations thermoacoustiques dans les chambres de combustion de turbines à gaz
EP1624251B1 (fr) Dispositif pour atténuer les oscillations acoustiques dans les chambres combustion avec fréquence de résonance ajustable
EP1624250A1 (fr) Dispositif pour atténuer les oscillations acoustiques dans les chambres combustion
EP1559874B1 (fr) Diffuseur et turbine
EP1596130B1 (fr) Appareil pour absorber les oscillations thermo-acoustiques dans une chambre de combustion, présentant une fréquence de résonance variable
EP1990579A1 (fr) Dispositif et procédé destinés à la mesure d'oscillations pour un écoulement fluidique tout comme installation de turbine à gaz dotée d'un tel dispositif
EP1114967B1 (fr) Procédé et dispositif pour supprimer les tourbillons dans une chambre à combustion d'une turbomachine
WO2017097606A1 (fr) Chambre de combustion munie d'un résonateur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110810