EP0974788A1 - Dispositif d'atténuation adaptée de bruit dans une turbomachine - Google Patents

Dispositif d'atténuation adaptée de bruit dans une turbomachine Download PDF

Info

Publication number
EP0974788A1
EP0974788A1 EP98810714A EP98810714A EP0974788A1 EP 0974788 A1 EP0974788 A1 EP 0974788A1 EP 98810714 A EP98810714 A EP 98810714A EP 98810714 A EP98810714 A EP 98810714A EP 0974788 A1 EP0974788 A1 EP 0974788A1
Authority
EP
European Patent Office
Prior art keywords
helmholtz resonator
combustion chamber
volume
fuel
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98810714A
Other languages
German (de)
English (en)
Other versions
EP0974788B1 (fr
Inventor
Jakob Prof. Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
ABB Alstom Power Switzerland Ltd
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Alstom Power Switzerland Ltd, ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Alstom Power Switzerland Ltd
Priority to EP98810714.0A priority Critical patent/EP0974788B1/fr
Publication of EP0974788A1 publication Critical patent/EP0974788A1/fr
Application granted granted Critical
Publication of EP0974788B1 publication Critical patent/EP0974788B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a device for targeted sound attenuation within a turbomachine with a combustion chamber, into which a compressible medium, preferably air, is fed via a flow channel, in which the compressible medium is flammable with the addition of fuel, and a Helmholtz resonator volume, which is connected to the flow channel in the flow direction before entering the combustion chamber.
  • a compressible medium preferably air
  • a Helmholtz resonator volume which is connected to the flow channel in the flow direction before entering the combustion chamber.
  • Precautions for sound attenuation of the aforementioned type are for the operation of gas turbine plants with a view to improving the combustion process vital within the combustion chamber. So occur when operating gas turbine systems in certain areas of the supply air and Fuel gas flow as well as acoustic within the combustion chamber Vibration phenomena, which change depending on the load conditions, under which the gas turbine is operated, train more or less strongly. For Suppression of such acoustic vibrations became measures on the design and undertake the design of such thermodynamic machines, but the effects achieved with it were of little success, in particular, it was not possible to have thermoacoustically induced instabilities within of gas flow completely suppressing, causing oscillations that significantly impair the operation of gas turbine plants.
  • Oscillations occurring in the flow of gas turbines are not only capable permanently influence the combustion process of the air-gas mixture, but transmit the pressure waves propagating in the gaseous medium also refer to the housing parts immediately surrounding the flow paths the gas turbine plant, which due to temperature and pressure loads the mechanical oscillating vibrations another, significant Material fatigue criteria are subject, which last but not least the service life a gas turbine plant is decisively influenced.
  • Helmholtz resonators have become known as sound-absorbing elements, which are used within the inflow of gas turbines.
  • the use of Helmholtz resonators in gas turbines is in a contribution by J. J. Keller and E. Zauner, "On the Use of Helmholtz-Resonators as Sound Attentuators ", Z. Appl. Math. Phys., 46 (1995), pages 297 to 326.
  • Helmholtz resonators are characterized in particular by the fact that they have a so-called Have Helmholtz resonator volume through which the flow flow passes through.
  • the Helmholtz resonator volume also has at least a flow inlet and an outlet channel, the flow channel diameter are dimensioned smaller than the flow cross section within the Helmholtz resonator volume.
  • Helmholtz resonators be carried out in the respective flow systems, but the well-known Helmholtz resonator systems offer due to their unique specified size and design only limited possibilities individual Frequency adjustments to set a desired low resonance frequency, typically less than 100 Hz.
  • the invention has for its object a device for targeted sound attenuation according to a turbomachine with a combustion chamber the preamble of claim 1 using a Helmholtz resonator to further develop in such a way that measures for noise reduction are avoided of thermoacoustic oscillations within the flow flow with the simplest possible means can be further improved. Furthermore, these should Measures are associated with the lowest possible investment.
  • soundproofing is intended to offer expanded options, desired Resonance frequency shifts of the damper elements in a large Range to small frequencies and also the size the Helmholtz resonators as small as possible.
  • a first inventive concept for sound attenuation within a Vibration machine with a combustion chamber sees an injector assembly within the Helmholtz resonator volume before entering the flow channel before the Helmholtz resonator volume connects to the combustion chamber. From the injector assembly becomes liquid, preferably water, in the direction of the flow channel atomized into the finest liquid droplets to the combustion chamber, so that before entry forms a liquid-air mixture in the combustion chamber.
  • This device is based on the idea of the speed of sound within the flow channel by targeted introduction of a To change the liquid-air mixture in order to change the resonance behavior of the to influence the entire sound system in a targeted manner.
  • the injector assembly is formed such that the liquid droplet size by appropriate nozzle variation and the degree of atomization regulated in the desired manner can be. Thanks to the injection nozzle arrangement, which can be adjusted over a wide range it is possible through the targeted introduction of an additional mass flow in the form of liquid drops the sound propagation behavior within to influence the flow channel and individually to the existing flow geometries to adapt so that the occurrence of thermoacoustic Oscillations can be effectively countered. So it succeeds the Tuning silencers also to very low vibration frequencies
  • Another advantage is the targeted introduction of a liquid-gas mixture connected within the Helmholtz resonator volume protection of the Helmholtz resonator against overheating caused by heat radiation from the combustion chamber through the flow channel towards the Helmholtz resonator volume could result. So it is from cooling technology View with the previous use of Helmholtz resonators required that a certain minimum throughput of cooling air flow through the Helmholtz resonator prevails. In the case of the atomization of liquid drops according to the invention within the Helmholtz resonator volume in front of the flow channel leading to the Combustion chamber leads, but is no additional air flow for cooling purposes required.
  • a Helmholtz resonator volume that has at least one feed and discharge, can be introduced or removed from the liquid into the Helmholtz resonator volume this can be derived.
  • a liquid into the interior of the Helmholtz resonator volume, it is possible for the flow volume or the Flow cross section for the one flowing through the Helmholtz resonator volume Supply air can be varied continuously and according to the currently prevailing acoustic conditions adapt.
  • the Helmholtz resonator volume By filling the Helmholtz resonator volume with Liquid is the sound-absorbing behavior of the Helmholtz resonator in terms of to those arising within the flow area of the gas turbine system individually adjust disturbing oscillations.
  • the fill the sound-absorbing resonator structure with liquid in such a way that the resonance frequency depending on the degree of filling of the resonator is just that Frequency of the oscillations due to the thermoacoustic vibrations corresponds.
  • the operation of a Helmholtz resonator the is provided with the injection nozzle arrangement described above.
  • the different resonance behavior of the resonator due to the mass flow the droplet and the degree of atomization are adjustable.
  • Another advantageous aspect of filling the Helmholtz resonator volume connected to water affects the cooling of the resonator.
  • Water is due to the prevailing temperature conditions due to the proximity of the combustion chamber, kept in the boiling state - typical Combustion pressures of 20 bar and temperatures around 250 ° C - so that for cooling purposes on an additional air supply within the resonator area can be dispensed with.
  • a third, alternative solution to noise reduction within a turbomachine with a combustion chamber sees an injector assembly for the fuel within the flow channel that connects the Helmholtz resonator volume to the combustion chamber.
  • the injector assembly atomizes fuel toward the combustion chamber.
  • the fuel feed line faces in the fuel feed direction Injection nozzle arrangement also has a Helmholtz resonator volume the gaseous fuel supplied has a certain resonant natural frequency is imposed. Which is between the disturbing oscillation within the combustion chamber forming vibration and the vibration of the The phase oscillation which sets the fuel oscillation is to be selected such that at the so-called Rayleigh criterion for each operating state of the gas turbine system is not met.
  • the Rayleigh criterion for fanning or damping thermoacoustic Vibrations is satisfied when the phase difference between reaction rate fluctuations and pressure fluctuations is less than ⁇ / 2.
  • a fourth and last alternative solution for vibration damping or sound damping inside a turbomachine with a combustion chamber sees a Helmholtz resonator volume before, which is designed as a Fluidix switch.
  • the "Helmholtz Resonator Fluidix switch” is connected to the fuel gas stream and at the same time with a connecting channel that opens directly into the combustion chamber.
  • the Combination "Helmholtz resonator fluidix switch” has the task of the fuel mass flow in opposition to any combustion chamber vibration that may occur to modulate and thus dampen the vibration. So one can Vibration are always damped when the reaction, for example in Form of an increase in volume, increasing with decreasing pressure.
  • Figure 1 shows a sound damping device for a turbomachine, for example Gas turbine plant with a combustion chamber 1, into which a flow channel 2 pre-compressed air is introduced with the addition of fuel.
  • a turbomachine for example Gas turbine plant with a combustion chamber 1 into which a flow channel 2 pre-compressed air is introduced with the addition of fuel.
  • the representation according to FIG. 1 shows a related one Fuel supply line does not open.
  • thermoacoustic occur within the combustion chamber 1 Vibrations, which apply with the device shown in Figure 1 to dampen. So is in the flow direction in front of the flow channel 2 Helmholtz resonator volume 3 is provided, which has an air supply line 4.
  • the Helmholtz resonator volume is capable 3 only a certain, limited damping effect to the thermoacoustic that is developing inside the combustion chamber 1 To exert vibrations, but it is only through the provision of an injector assembly 5 possible within the Helmholtz resonator volume 3, the Sound damping effect individually on those developing within the combustion chamber adapt thermoacoustic vibrations.
  • the injector arrangement 5 which in front of the flow channel 2 in the flow direction in the Combustion chamber entering incoming air is arranged, preferably a liquid Water atomized into the finest drops of liquid, so that within the Flow channel 2 forms a liquid-air mixture 5 ', which preferably the entire flow channel 2 fills.
  • the injection nozzle arrangement 5 is preferred arranged concentrically within the air supply line 4, so that sufficient a lot of supply air (see arrows) is introduced into the interior of the Helmholtz resonator 3 becomes.
  • Liquid changes the prevailing within the liquid-gas mixture
  • Speed of sound which has a targeted influence on the resonance behavior of the Helmholtz resonator volume 3 can be taken. With increasing The proportion of liquid in the liquid-gas mixture decreases the speed of sound significantly.
  • the high variability of the is particularly advantageous due to a suitable choice of liquid droplet size and degree of atomization Influence on the resonance behavior of the Helmholtz resonator volume without the need to use a large volume of the Helmholtz resonator Training construction, as is the case with the prior art.
  • the mass flow of the atomized liquid must be regulated individually.
  • FIG. 2 shows a damping arrangement with a Helmholtz resonator volume 3 shown, which in addition to an air supply line 4 and the flow channel 2 towards Combustion chamber 1 has a water inlet or outlet channel 6 through which depending on the level within the Helmholtz resonator volume, add 3 water can be dissipated.
  • a water inlet or outlet channel 6 through which depending on the level within the Helmholtz resonator volume, add 3 water can be dissipated.
  • the total resonance behavior is within the Helmholtz resonator volume 3 of the Helmholtz resonator can be set individually, comparable to the arrangement described in Figure 1 by varying the mass flow through the injector assembly.
  • stepless adjustable water level within the resonator volume 3 carries that in the resonator volume 3 water, which is at about 250 ° C and 20 bar prevailing pressure is in the boiling state, for cooling the resonator arrangement even at, so that additional cooling air supply can be dispensed with can.
  • FIG. 3 shows a further alternative sound attenuation system for suppression represented by thermoacoustic vibrations within the combustion chamber 1.
  • the Helmholtz resonator volume 3 is supplied with supply air via an air supply line 4, which are forwarded via a flow channel 2 in the direction of combustion chamber 1 becomes.
  • the Helmholtz resonator volume 3 as well as partially Passing through flow channel 2, a fuel feed line 7 for gaseous Provided fuel that provides a nozzle outlet 8 at the outlet end by which a conical fuel cloud 9 emerges and into the interior of the combustion chamber 1 occurs.
  • the Fuel supply line 7 also a Helmholtz resonator volume 10 before that a certain gaseous fuel flowing out of the nozzle outlet 8 Forces resonance frequency.
  • thermoacoustic vibrations occur within the fuel chamber 1 in relation to the resonance frequency of the from the nozzle outlet 8 outflowing gaseous fuel.
  • Helmholtz resonator volume 10 within the fuel supply line 7 can a certain phase difference between the fuel vibration and the thermoacoustic vibrations within the combustion chamber 1 set in this way be that the Rayleigh criterion for the stimulation of thermoacoustic vibrations is not met.
  • FIG. 1 Another concept for sound absorption within a turbomachine a combustion chamber 1 is shown in FIG.
  • Essential components of this Arrangement consist of a Helmholtz resonator volume 3 whose inner Volume size can be changed with a movable piston 11.
  • a flip-flop damping channel 12 is provided within the volume 3.
  • Such an arrangement is also known as "Helmholtz resonator fluidix switch” known.
  • This arrangement is via an opening with the fuel feed line 7 connected in the same way via a connecting channel 13 is connected to the combustion chamber 1.
  • the fuel feed line 7 opens into the shown Fall into the air supply line 4 through which the fuel supplied by the flow channel 2 is introduced into the combustion chamber 1.
  • the idea behind the construction is the use of a "Fluidix switch", its vibration behavior due to the inside of the combustion chamber 1 forming thermoacoustic vibrations via the connecting channel 13 being affected.
  • the aim is to match the resonance behavior of the Fluidix switch Frequency of the thermoacoustic vibrations within the combustion chamber 1 adapt.
  • the adjustment can be done with the help of the movable piston 11 or as in the exemplary embodiment according to FIG. 2 with a corresponding one Degree of filling of the resonator volume 3 with a liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
EP98810714.0A 1998-07-23 1998-07-23 Dispositif d'atténuation adaptée de bruit dans une turbomachine Expired - Lifetime EP0974788B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98810714.0A EP0974788B1 (fr) 1998-07-23 1998-07-23 Dispositif d'atténuation adaptée de bruit dans une turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810714.0A EP0974788B1 (fr) 1998-07-23 1998-07-23 Dispositif d'atténuation adaptée de bruit dans une turbomachine

Publications (2)

Publication Number Publication Date
EP0974788A1 true EP0974788A1 (fr) 2000-01-26
EP0974788B1 EP0974788B1 (fr) 2014-11-26

Family

ID=8236211

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810714.0A Expired - Lifetime EP0974788B1 (fr) 1998-07-23 1998-07-23 Dispositif d'atténuation adaptée de bruit dans une turbomachine

Country Status (1)

Country Link
EP (1) EP0974788B1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1004823A3 (fr) * 1998-11-10 2000-11-29 Asea Brown Boveri AG Dispositif d'amortissement pour la réduction de l'amplitude d'oscillation d'ondes acoustiques pour un brûleur
US6634457B2 (en) * 2000-05-26 2003-10-21 Alstom (Switzerland) Ltd Apparatus for damping acoustic vibrations in a combustor
US6705428B2 (en) 2000-12-08 2004-03-16 Abb Turbo Systems Ag Exhaust gas system with helmholtz resonator
EP1557609A1 (fr) 2004-01-21 2005-07-27 Siemens Aktiengesellschaft Appareil et procédé d'amortissement des oscillations thermoacoustiques dans une chambre de combustion
EP1434006A3 (fr) * 2002-12-23 2006-03-01 Rolls-Royce Plc Chambre de combustion pour turbine à gaz
EP1762786A1 (fr) * 2005-09-13 2007-03-14 Siemens Aktiengesellschaft Procédé et appareil pour réduire les vibrations thermo-accoustiques, en particulier dans une turbine
EP2378199A1 (fr) 2010-04-13 2011-10-19 Siemens Aktiengesellschaft Dispositif résonateur pour amortir la variation de pression dans une chambre de combustion et procédé d'opération d'un agencement de combustion
EP2397761A1 (fr) * 2010-06-16 2011-12-21 Alstom Technology Ltd Amortisseur de Helmholtz et procédé de régulation de la fréquence à résonance d'un amortisseur de Helmholtz
EP2397759A1 (fr) * 2010-06-16 2011-12-21 Alstom Technology Ltd Agencement d'amortisseur
CN102356278A (zh) * 2009-03-19 2012-02-15 西门子公司 燃气轮机燃烧系统
EP2474784A1 (fr) 2011-01-07 2012-07-11 Siemens Aktiengesellschaft Système de combustion pour turbine à gaz comprenant un résonateur
CN103032898A (zh) * 2012-12-31 2013-04-10 中国人民解放军国防科学技术大学 一种燃烧室混合增强装置
US8789372B2 (en) 2009-07-08 2014-07-29 General Electric Company Injector with integrated resonator
US8966903B2 (en) 2011-08-17 2015-03-03 General Electric Company Combustor resonator with non-uniform resonator passages
US9341375B2 (en) 2011-07-22 2016-05-17 General Electric Company System for damping oscillations in a turbine combustor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4305333C1 (de) * 1993-02-20 1994-07-07 Fasag Ag Suhr Geräuschdämpfungsvorrichtung zur Reduktion von Mündungsgeräuschen bei Anlagen mit pulsierenden Gasströmungen
US5431018A (en) * 1992-07-03 1995-07-11 Abb Research Ltd. Secondary burner having a through-flow helmholtz resonator
GB2288660A (en) * 1994-04-23 1995-10-25 Abb Management Ag Apparatus for damping thermoacoustic vibrations in combustion chamber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431018A (en) * 1992-07-03 1995-07-11 Abb Research Ltd. Secondary burner having a through-flow helmholtz resonator
DE4305333C1 (de) * 1993-02-20 1994-07-07 Fasag Ag Suhr Geräuschdämpfungsvorrichtung zur Reduktion von Mündungsgeräuschen bei Anlagen mit pulsierenden Gasströmungen
GB2288660A (en) * 1994-04-23 1995-10-25 Abb Management Ag Apparatus for damping thermoacoustic vibrations in combustion chamber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABOTT A. PUTNAM: "Combustion-Driven Oscillations in Industry", 1971, AMERICAN ELSEVIER, NEW YORK, XP002087281 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1004823A3 (fr) * 1998-11-10 2000-11-29 Asea Brown Boveri AG Dispositif d'amortissement pour la réduction de l'amplitude d'oscillation d'ondes acoustiques pour un brûleur
US6370879B1 (en) 1998-11-10 2002-04-16 Alstom Damping device for reducing the vibration amplitude of acoustic waves for a burner
US6634457B2 (en) * 2000-05-26 2003-10-21 Alstom (Switzerland) Ltd Apparatus for damping acoustic vibrations in a combustor
US6705428B2 (en) 2000-12-08 2004-03-16 Abb Turbo Systems Ag Exhaust gas system with helmholtz resonator
EP1434006A3 (fr) * 2002-12-23 2006-03-01 Rolls-Royce Plc Chambre de combustion pour turbine à gaz
EP1557609A1 (fr) 2004-01-21 2005-07-27 Siemens Aktiengesellschaft Appareil et procédé d'amortissement des oscillations thermoacoustiques dans une chambre de combustion
EP1762786A1 (fr) * 2005-09-13 2007-03-14 Siemens Aktiengesellschaft Procédé et appareil pour réduire les vibrations thermo-accoustiques, en particulier dans une turbine
WO2007031376A1 (fr) * 2005-09-13 2007-03-22 Siemens Aktiengesellschaft Procede et dispositif pour l'amortissement d'oscillations thermo-acoustiques, notamment dans une turbine a gaz
US8919128B2 (en) 2005-09-13 2014-12-30 Siemens Aktiengesellschaft Method and device for damping thermoacoustic oscillations, in particular in a gas turbine
CN101263343B (zh) * 2005-09-13 2012-09-05 西门子公司 尤其在燃气轮机内阻尼热声振荡的方法和装置
CN102356278A (zh) * 2009-03-19 2012-02-15 西门子公司 燃气轮机燃烧系统
US8789372B2 (en) 2009-07-08 2014-07-29 General Electric Company Injector with integrated resonator
US9279586B2 (en) 2010-04-13 2016-03-08 Siemens Aktiengesellschaft Resonator device for damping the pressure oscillation within a combustion chamber and a method for operating a combustion arrangement
EP2378199A1 (fr) 2010-04-13 2011-10-19 Siemens Aktiengesellschaft Dispositif résonateur pour amortir la variation de pression dans une chambre de combustion et procédé d'opération d'un agencement de combustion
WO2011128158A1 (fr) 2010-04-13 2011-10-20 Siemens Aktiengesellschaft Dispositif de résonateur pour amortir l'oscillation de pression à l'intérieur d'une chambre de combustion et procédé pour faire fonctionner un agencement de combustion
CN102822601A (zh) * 2010-04-13 2012-12-12 西门子公司 衰减燃烧室内压力振荡的谐振装置和操作燃烧布置结构的方法
CN102822601B (zh) * 2010-04-13 2014-11-12 西门子公司 衰减燃烧室内压力振荡的谐振装置和操作燃烧布置结构的方法
EP2397759A1 (fr) * 2010-06-16 2011-12-21 Alstom Technology Ltd Agencement d'amortisseur
EP2397761A1 (fr) * 2010-06-16 2011-12-21 Alstom Technology Ltd Amortisseur de Helmholtz et procédé de régulation de la fréquence à résonance d'un amortisseur de Helmholtz
US8727070B2 (en) 2010-06-16 2014-05-20 Alstom Technology Ltd Helmholtz damper and method for regulating the resonance frequency of a Helmholtz damper
US8869533B2 (en) 2011-01-07 2014-10-28 Siemens Aktiengesellschaft Combustion system for a gas turbine comprising a resonator
WO2012093011A1 (fr) 2011-01-07 2012-07-12 Siemens Aktiengesellschaft Système de combustion pour turbine à gaz comprenant un résonateur
EP2474784A1 (fr) 2011-01-07 2012-07-11 Siemens Aktiengesellschaft Système de combustion pour turbine à gaz comprenant un résonateur
US9341375B2 (en) 2011-07-22 2016-05-17 General Electric Company System for damping oscillations in a turbine combustor
US8966903B2 (en) 2011-08-17 2015-03-03 General Electric Company Combustor resonator with non-uniform resonator passages
CN103032898A (zh) * 2012-12-31 2013-04-10 中国人民解放军国防科学技术大学 一种燃烧室混合增强装置

Also Published As

Publication number Publication date
EP0974788B1 (fr) 2014-11-26

Similar Documents

Publication Publication Date Title
EP0974788A1 (fr) Dispositif d'atténuation adaptée de bruit dans une turbomachine
EP1476699B1 (fr) Chambre de combustion et dispositif d'amortissement destiné a reduire des pulsations de chambre de combustion dans un système de turbines a gaz
DE60132691T2 (de) Kombiniertes System zur Wassereinspritzung zum Kühlen und zum Waschen eines Gasturbinenkompressors
EP0985882B1 (fr) Amortissement des vibrations dans des combusteurs
EP1336800A1 (fr) Procédé de réduction des oscillations induites par la combustion dans les dispositifs de combustion ainsi que brûleur à prémélange pour la mise en oeuvre du procédé
EP1004823B1 (fr) Dispositif d'amortissement pour la réduction de l'amplitude d'oscillation d'ondes acoustiques pour un brûleur
DE102010000254B4 (de) Landgestütztes Einfachzyklus-Hybridtriebwerk auf der Basis eines Pulsdetonationsbrenners zur Energieerzeugung
DE19640980B4 (de) Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
EP0990801A1 (fr) Compression isothermique avec un compresseur hydraulique
EP1342952A1 (fr) Brûleur, procédé de fonctionnement d'un brûleur et turbine à gaz
WO2005100858A1 (fr) Amortissement de vibrations d'une chambre de combustion au moyen de resonateurs
DE10254825A1 (de) Wassersprühvorrichtung für Gasturbinen
DE19948674B4 (de) Verbrennungseinrichtung, insbesondere für den Antrieb von Gasturbinen
EP0971172B1 (fr) Chambre de combustion pour turbine à gaz avec paroi à structure silencieuse
EP0849532A2 (fr) Procédé de fonctionnement d'un brûleur
EP1010939B1 (fr) Chambre de combustion avec système d'alimentation en carburant amorti acoustiquement
DE4336096A1 (de) Vorrichtung zur Reduktion von Schwingungen in Brennkammern
EP0924459A1 (fr) Procédé et dispositif pour l'injection d'un mélange de carburant et de liquide dans une chambre de combustion
DE102016002566B4 (de) Vorrichtung und Verfahren zur thermischen Materialbehandlung
EP0892219B1 (fr) Procédé et dispositif pour minimiser les vibrations thermoacoustiques dans les chambres de combustion de turbines à gaz
EP1002992A1 (fr) Brûleur
EP1624251B1 (fr) Dispositif pour atténuer les oscillations acoustiques dans les chambres combustion avec fréquence de résonance ajustable
EP1182399A2 (fr) Procédé pour la réduction des oscillations thermoacoustiques dans une turbomachine en utilisant le dispositif de combustion
EP1596130B1 (fr) Appareil pour absorber les oscillations thermo-acoustiques dans une chambre de combustion, présentant une fréquence de résonance variable
EP1114967B1 (fr) Procédé et dispositif pour supprimer les tourbillons dans une chambre à combustion d'une turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000510

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17Q First examination report despatched

Effective date: 20130917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 59814553

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F23M0013000000

Ipc: F23R0003020000

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/02 20060101AFI20140618BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140819

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59814553

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ABB (SCHWEIZ) AG, BADEN, AARGAU, CH

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 59814553

Country of ref document: DE

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 59814553

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150721

Year of fee payment: 18

Ref country code: GB

Payment date: 20150721

Year of fee payment: 18

26N No opposition filed

Effective date: 20150827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59814553

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59814553

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160723