EP0990851B1 - Gas turbine combustor - Google Patents

Gas turbine combustor Download PDF

Info

Publication number
EP0990851B1
EP0990851B1 EP98810983A EP98810983A EP0990851B1 EP 0990851 B1 EP0990851 B1 EP 0990851B1 EP 98810983 A EP98810983 A EP 98810983A EP 98810983 A EP98810983 A EP 98810983A EP 0990851 B1 EP0990851 B1 EP 0990851B1
Authority
EP
European Patent Office
Prior art keywords
perforated plate
openings
combustion chamber
cooling air
perforated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810983A
Other languages
German (de)
French (fr)
Other versions
EP0990851A1 (en
Inventor
Jakob Prof. Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to DE59809097T priority Critical patent/DE59809097D1/en
Priority to EP98810983A priority patent/EP0990851B1/en
Publication of EP0990851A1 publication Critical patent/EP0990851A1/en
Application granted granted Critical
Publication of EP0990851B1 publication Critical patent/EP0990851B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03341Sequential combustion chambers or burners

Definitions

  • the present invention relates to the field of gas turbines. It affects a combustion chamber for a gas turbine, in which combustion chamber the hot combustion gases a combustion zone are enclosed by inner walls, which by cooling air, which by outside of the inner walls by a The outer wall of the combustion chamber and the inner walls formed cooling air channels is introduced, cooled.
  • Such a combustion chamber is in the form of a secondary combustion chamber e.g. from the Document EP-A1 0 669 500 of the applicant is known.
  • Gas turbines can cause pressure vibrations during operation under certain conditions or acoustic vibrations that occur in terms of frequency Range of several kHz, e.g. are in the range of 2-6 kHz. Such vibrations prove to be disruptive to the operation and are therefore undesirable.
  • damping or suppressing such vibrations in providing fluidic means in the combustion chamber which influence the flow of hot gases in such a way that the acoustic Vibrations are not excited or only to a small extent.
  • Helmholtz resonators on the combustion chamber to attach, which couple to the vibrations as damping elements and dampen the vibrations or make them disappear completely.
  • a gas turbine combustor is described in US Pat. No. 5,644,918, with the leading within the cooling air surrounding the combustion chamber Double jacket and on the front of the combustion chamber in the area of the burner by pulling in additional dividing walls Helmholtz resonators 48 and 56 are formed, the constrictions 50 and 58 in connection with the combustion chamber stand, but are otherwise completely completed, so that a Flow of cooling air through the resonator rooms does not take place.
  • European publication EP-A1-0 576 717 discloses a gas turbine combustor.
  • the flame tube is located away from the combustion chamber Side exposed to an air flow supplied by the gas turbine compressor.
  • the flame tube is essentially composed of wall parts, the combustion chamber outer wall parts facing away from each have a plurality of inlet openings distributed over the circumference have, introduced via the cooling air into an intermediate space arranged in the flame tube becomes. From the intermediate space, the cooling air is passed through outlet bores into the combustion chamber facing inner wall parts introduced into the combustion chamber.
  • the space between the wall parts is on to form a Helmholtz resonator large, closed additional volume coupled, with the inlet openings in the outer wall parts as feed pipes and the outlet bores as damping pipes of the Helmholtz resonator, are formed.
  • EP-A1-0 971 172 discloses a gas turbine.
  • this combustion chamber in which the hot combustion gases of a combustion zone are enclosed by inner walls, which is cooled by cooling air brought in outside the inner walls a simultaneous efficient acoustic damping and cooling achieved that at least in a partial area on the outside of the inner walls, a distance from the inner walls, perforated plate arranged essentially parallel to the inner walls which, together with the associated inner wall, is a closed damping volume forms that the inner walls in the region of the damping volume a plurality of distributed first openings through which the damping volume with the combustion zone of the combustion chamber communicates that the perforated plate is a Has a plurality of distributed second openings through which cooling air from flows into the outside of the damping volume and in the manner of an impingement cooling between the first openings meets the opposite outside of the inner wall, and that the Distance between the perforated plate and the inner wall and the geometric dimensions of the first openings are selected so that the first openings together with the damping volume form a plurality
  • the task is thereby in a combustion chamber of the type mentioned solved that at least in a partial area of the inner walls of the inner wall at least two perforated plates arranged essentially parallel to one another is formed that a first perforated plate borders directly on the cooling air channels and is provided with a plurality of first openings through which cooling air from the cooling air channels into a first intermediate volume lying behind the first perforated plate flows that behind the first perforated plate, towards the combustion zone, a further perforated plate is arranged, which with a plurality of further openings is provided that the distance between the first perforated plate and the other perforated plate and the geometric dimensions of the others Openings and are selected so that the openings together with between the perforated plates existing intermediate volumes a plurality of one another connected Helmholtz resonators and as a silencer for in acoustic vibrations arising in the combustion chamber act, and that in addition there are other agents which have a sound-absorbing effect.
  • the essence of the invention is therefore that the combination of Helmholtz
  • a first preferred embodiment of the invention is characterized by that at least in a partial area of the inner walls, the inner wall of three, in perforated plates arranged substantially parallel to each other is formed that a first perforated plate directly adjoins the cooling air ducts and with a plurality is provided by first openings through which cooling air from the cooling air channels into a first intermediate volume lying behind the first perforated plate flows, which on the side facing the cooling air ducts from the first Perforated plate and on the opposite side of a second perforated plate is limited, which second perforated plate with a plurality of second openings is provided that on the side facing away from the first intermediate volume of the second perforated plate, a third perforated plate is arranged, which has a plurality is provided by third openings, and which to the combustion zone borders, and that at least one of the perforated plates additionally sound-absorbing acts.
  • the essence of the embodiment is that a of the three perforated plates by appropriate hole design, or by appropriate Contraction ratio, the most possible reflection-free sound transmission has, and that the combination and the geometric design of two further perforated plates a plurality of interconnected Helmholtz resonators creates a phase shift.
  • the whole Absorption system flushed by cooling air, making the resonators thermal and frequency stabilized. The additional effort to create of the absorption system - if there is effusion cooling the large openings in the inner wall already exist - only from attaching two more perforated plates.
  • a second preferred embodiment of the combustion chamber according to the invention is characterized in that the contraction ratio, defined as the Ratio between the area of the opening and that towards the combustion zone surface in front, for the second or third openings in the is essentially the same as the largest Mach number that occurs in the combustion chamber, which is defined as the ratio of the source velocity and the Speed of sound, and that the perforated plate provided with such openings has a sound-absorbing effect.
  • the contraction ratio defined as the Ratio between the area of the opening and that towards the combustion zone surface in front
  • the second or third openings in the is essentially the same as the largest Mach number that occurs in the combustion chamber, which is defined as the ratio of the source velocity and the Speed of sound, and that the perforated plate provided with such openings has a sound-absorbing effect.
  • a second preferred embodiment of the combustion chamber according to the invention is characterized in that the distance between the first perforated plate and of the second perforated plate and the geometric dimensions of the second openings be chosen such that the second openings in combination with the first space arranged between the first and the second perforated plate Helmholtz resonators result in their resonance frequency essentially in the area of acoustic vibrations occurring in the combustion chamber lies, and that further preferably the third perforated plate is designed to be sound-absorbing is.
  • the third perforated plate leads to anechoic transmission of the Noise and the Helmholtz resonators behind it in the direction of sound propagation push its phase.
  • the second perforated plate has a thickness in the range from 0.1 to 1 cm, in particular preferably from 0.6 cm, the area ratio of the acoustically relevant Partial areas of the first intermediate volume and the areas of the second openings are in the range from 5 to 10, particularly preferably from 8, the distance between the first of the second perforated plate is 0.1 to 1 cm, particularly preferred 0.6 cm, the product of the contraction ratio of the third openings and the largest Mach number ranges from 1 to 0.5, and the area ratio of the acoustic relevant areas in the combustion chamber and the acoustically relevant areas the first intermediate volume is in a range from 1 to 2.
  • Another preferred embodiment of the combustion chamber according to the invention is characterized in that the distance between the first perforated plate and of the third perforated plate and the geometric dimensions of the third openings be chosen such that the third openings in combination with the between the first and the third perforated plate arranged Helmholtz resonators result, whose resonance frequency is essentially in the range the acoustic vibrations occurring in the combustion chamber, and that the second perforated plate is preferably also sound-absorbing.
  • the sound-absorbing arrangement can be designed acoustically, if, according to a further embodiment, the second and the third Perforated plate with even and concentric arrangement of the holes in the two perforated plates can be joined directly and without spacing, or that the two perforated plates can even be covered by a single perforated plate holes drilled on both sides with different diameters become.
  • a secondary combustion chamber is shown in a simplified longitudinal section, which is known from EP-A1 0 669 500, and which is preferred for implementation the invention is suitable.
  • the combustion chamber 10 includes a combustion zone 23, which of an inner wall extending in the axial direction 12 and a radial inner wall 17 is limited.
  • the inflow zone 20 is delimited by an inner wall 15. Protrudes into the inflow zone 20 a fuel lance 18 from the side, a nozzle at the front end 19 for fuel injection.
  • the inner walls 12, 15 and 17 are from an outer wall 11 extending in the axial direction.
  • a cooling air duct 14 remains free through the inner wall 12 and the outer wall 11 which cooling air against the flow direction of the hot gases in between the inner wall 15 and the outer wall 11 formed rear cooling air duct 16 streams.
  • the inner wall 12 is convectively cooled by the cooling air.
  • the cooling air flows from the rear cooling air duct 16 through openings 21 in the inner wall 15 in the inflow zone 20, and through further openings 22 in the radial Inner wall 17 into the combustion zone 23, thereby causing effusion cooling.
  • a Helmholtz resonator arrangement in combination with a sound-absorbing third perforated plate 29 are integrated, which at the same time effective cooling of the arrangement guaranteed.
  • a first perforated plate 24 is arranged in parallel at a distance (L in FIG. 4), which together with the actual radial inner wall, which is a forms second perforated plate 17a, includes a first (annular) intermediate volume 26.
  • the second perforated plate 17a has a plurality of more or less regularly distributed openings 27a, which are identical to the openings 22 for the effusion cooling in the combustion chamber according to FIG. 1 can be, but also deviating can have geometric dimensions.
  • the as through holes with a diameter a and a length I (Fig. 4) formed openings 27a each act individually as a damping tube of a Helmholtz partial resonator, that of the respective opening 27a and the partial volume behind it first intermediate volume 26 is formed.
  • the first intermediate volume 26 in total and the entirety of the openings 27a can be used as individual Helmholtz resonators understand, the individual damping volumes with each other to first intermediate volume 26 are connected.
  • the first perforated plate 24 has in addition to the limitation of the first intermediate volume two other important tasks. Those provided in the first perforated plate 24 Openings 25 let cooling air from the rear cooling air duct 16 into the first intermediate volume 26 flow in.
  • the incoming cooling air cools the one hand Helmholtz arrangement. This is the geometry and thus the Damping frequency of the arrangement kept stable.
  • the openings 25 offset relative to the second openings 27a or arranged "on gap".
  • the diameter of the openings 25 is compared to the diameter a small (Fig. 4). This ensures that the cooling air flowing through one suffers sufficient pressure drop.
  • a third perforated plate 29 arranged in parallel, which together with the second perforated plate 17a a second (ring-shaped) intermediate volume 30 includes.
  • the third perforated plate 29 has a plurality of distributed ones Openings 28 on. These openings 28 are preferably designed such that the third perforated plate 29 the sound generated in the combustion zone 23 transmits echo-free, i.e. that no sound is reflected and therefore this third Perforated plate has a sound-absorbing effect.
  • the second intermediate volume 30 and the third perforated plate are the by the first intermediate volume and the Cooling air flowing through second openings 27a and cooled accordingly.
  • FIG 3 shows schematically the structure of the embodiment shown in Figure 2 the invention again.
  • the incoming from the combustion zone 23 Sound 31 first passes through the openings 28 of the third perforated plate in an echo-free manner 29 into the second intermediate volume 30. Then the sound hits that from the first 24 and the second 17a perforated plate with the Helmholtz resonators formed with the openings 27a, which push the phase of the sound waves. Flows at the same time by the arrangement in the opposite direction to the sound of the cooling air flow 22 after he through the openings 25 in the first perforated plate 24 into the first intermediate volume 26 has arrived.
  • a schematic representation of the arrangement, which can be used to calculate its Properties is particularly suitable, together with the specification of the dimensions shown in Figure 4.
  • the main characteristics of this series of elements can be easily calculated by calculating the transformation behavior the Riemannin variants for each element and subsequent determine sequential sequence of transformations.
  • particularly important property of the sound absorbing perforated plate applies that the transmission of the sound absorbing perforated plate for flow lower Mach numbers then echo-free, i.e. is reflection-free if the contraction ratio, defined as the ratio of the area of the aperture or opening b to the area B in front of the aperture (b / B) is essentially the same as the largest in the Mach number that occurs in the chamber.
  • the resonance frequency of the resonator arrangement or the partial resonators is in the essentially by the area A, the thickness I of the second perforated plate 17a or Length of the openings 27a, the diameter of the openings 27a and spacing L of the plates determined.
  • the openings 27a are as through holes with a length I of a few millimeters and a diameter a of a few millimeters.
  • the distance L between the first 24 and the second 17a perforated plate is a few millimeters, and the ratio of area A to hole area a is in the range from 5 to 10.
  • Fig. 5a The damping behavior of the arrangement for the values from the table from Helmholtz resonators and sound-absorbing perforated plate 29 is in Fig. 5a) reproduced.
  • 5 shows the squared reflection coefficient in each case (reflection coefficient squared) over the frequency in Hz.
  • Fig. 5a One can see Fig. 5a), that for the above values in the whole range from 2 to 6 kHz significant absorption takes place, and that resonant absorption occurs at 4720 Hz.
  • Very strong Absorption is in the range from 3.5 to 5.5 kHz, where more than 75% of the acoustic Power to be absorbed.
  • FIG 6 Another embodiment of an embodiment of the invention is shown in FIG 6 shown.
  • the sound-absorbing sheet is in the actual damping volume of the Helmholtz resonators.
  • the Helmholtz resonators are in in this case from a first perforated plate facing the rear cooling air duct 16 24 and a third perforated plate directly adjacent to the combustion zone 23 17b formed.
  • the first perforated plate 24 in turn has openings 25, through which cooling air 22 flows into the arrangement.
  • the third perforated plate 17b has Openings 27b, which serve as damping tubes of the Helmholtz resonators.
  • the damping volume of the Helmholtz resonators exposes itself in this case the two intermediate volumes 32 and 35 together, which by the between the first 24 and the third 17b perforated plate retracted second perforated plate 34 be formed.
  • the second perforated plate 34 is provided with openings 33 which are designed such that this second perforated plate 34 is sound-absorbing, i.e. appears anechoic. As described above, this is done by adjusting to the highest Mach number Contraction ratio.
  • FIG. 7 again shows a schematic illustration of how the sound 31 from the Combustion zone 23 strikes the arrangement with internal absorber, and how the cooling air 22 through the openings 25 from the opposite side flows.
  • the one used to calculate the main characteristic properties of a is analogous to FIG. 4 given in Figure 8 along with the dimensions.
  • the resonance frequency of the In this case, the resonator arrangement or the partial resonators essentially becomes by the area A, the thickness I1 of the third perforated plate 17b or the length of the openings 27b, the diameter of the openings 27b and spacing L1 of the plates.
  • the openings 27b are the openings 27b as through holes with a length I1 of a few Millimeters and a diameter of a few millimeters.
  • the distance L1 between the first 24 and the third 17b perforated plate is a few Millimeters, and the ratio of area A to hole area a is in the range from 5 to 10.
  • Fig. 9a The damping behavior of the arrangement for the values from the table from Helmholtz resonators and internal sound-absorbing perforated plate 34 is shown in Fig. 9a).
  • Fig. 9 again shows the squared Reflection coefficient squared over frequency in Hz. It can be seen in FIG. 9 a) that for the above values in the entire range from 2 to 6 kHz significant absorption takes place, and that at 3880 Hz resonant absorption occurs. One has very strong absorption in the range from 2.9 to 5.2 kHz, where more than 75% of the acoustic power is consumed.
  • a perforated plate 37 is for an arrangement with internal absorber shown in Figure 10.
  • the perforated plate 37 has openings of different diameters from the two sides, wherein the second stage part 39 facing the combustion zone 23 to the damping tubes 27b from FIG.
  • first step part 38 ensures anechoic transmission and corresponds to the openings 33 from FIG. 6. In this way you have the advantage of only having to provide two perforated plates, which greatly simplifies cooling and construction, and still one efficient combined arrangement of Helmholtz resonators and sound absorbers to have.
  • All of the above exemplary embodiments are distinguished in that they are based on can be easily installed in an existing combustion chamber.
  • the exemplary embodiments described here become the former radial Inner wall 17 once as the second 17a and once as the third 17b perforated plate three-part arrangement used.
  • the former radial Inner wall 17 but take over the task of each of the three perforated plates or else that of the perforated plate 37 with stepped openings.
  • Retrofitting can be done in one way or another.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Gasturbinen. Sie betrifft eine Brennkammer für eine Gasturbine, in welcher Brennkammer die heissen Verbrennungsgase einer Verbrennungszone durch Innenwände umschlossen werden, welche durch Kühlluft, welche durch ausserhalb der Innenwände durch von einer Aussenwand der Brennkammer und den Innenwänden gebildete Kühlluftkanäle herangeführt wird, gekühlt werden.The present invention relates to the field of gas turbines. It affects a combustion chamber for a gas turbine, in which combustion chamber the hot combustion gases a combustion zone are enclosed by inner walls, which by cooling air, which by outside of the inner walls by a The outer wall of the combustion chamber and the inner walls formed cooling air channels is introduced, cooled.

Eine solche Brennkammer ist in Form einer Sekundärbrennkammer z.B. aus der Druckschrift EP-A1 0 669 500 der Anmelderin bekannt.Such a combustion chamber is in the form of a secondary combustion chamber e.g. from the Document EP-A1 0 669 500 of the applicant is known.

STAND DER TECHNIKSTATE OF THE ART

In den Brennkammern, insbesondere den Sekundärbrennkammem, herkömmlicher Gasturbinen kann es im Betrieb unter bestimmten Bedingungen zu Druckschwingungen bzw. akustischen Schwingungen kommen, die frequenzmässig im Bereich von mehreren kHz, z.B. im Bereich von 2-6 kHz liegen. Derartige Schwingungen erweisen sich als störend für den Betrieb und sind daher unerwünscht. Eine Möglichkeit zur Dämpfung oder Unterdrückung derartiger Schwingungen besteht darin, strömungstechnische Mittel in der Brennkammer vorzusehen, welche die Strömung der heissen Gase dahingehend beeinflussen, dass die akustischen Schwingungen nicht oder nur in geringem Masse angeregt werden. Eine andere Möglichkeit besteht darin, an der Brennkammer sogenannte Helmholtzresonatoren anzubringen, die als Dämpfungselemente an die Schwingungen ankoppeln und die Schwingungen dämpfen oder vollständig zum Verschwinden bringen.More conventional in the combustion chambers, especially the secondary combustion chambers Gas turbines can cause pressure vibrations during operation under certain conditions or acoustic vibrations that occur in terms of frequency Range of several kHz, e.g. are in the range of 2-6 kHz. Such vibrations prove to be disruptive to the operation and are therefore undesirable. There is a possibility of damping or suppressing such vibrations in providing fluidic means in the combustion chamber which influence the flow of hot gases in such a way that the acoustic Vibrations are not excited or only to a small extent. Another One possibility is to have so-called Helmholtz resonators on the combustion chamber to attach, which couple to the vibrations as damping elements and dampen the vibrations or make them disappear completely.

Aus dem Stand der Technik sind verschiedene Beispiele für den Einsatz von Helmholtzresonatoren bekannt. In der Druckschrift US-A 5,373,695 wird eine Ringbrennkammer für eine Gasturbine beschrieben, bei welcher an der Stirnseite neben den Brennern einzelne, mit Kühlluft gespülte Helmholtzresonatoren angeordnet sind, die jeweils ein aussenliegendes Dämpfungsvolumen umfassen, das über ein Dämpfungsrohr mit der Brennkammer in Verbindung steht und zur Verhinderung einer hitzebedingten frequenzmässigen Verstimmung über ein dünnes Versorgungsrohr von aussen mit Kühlluft beaufschlagt wird.Various examples of the use of are from the prior art Helmholtz resonators known. In US-A 5,373,695 a Annular combustion chamber for a gas turbine described, in which on the front side individual Helmholtz resonators flushed with cooling air are arranged next to the burners are, each comprising an external damping volume, the is connected to the combustion chamber via a damping tube and for prevention a heat-related frequency detuning over a thin one Cooling air is applied to the supply pipe from the outside.

In der Druckschrift US-A 5,644,918 wird eine Gasturbinen-Brennkammer beschrieben, bei der innerhalb des die Brennkammer umgebenden Kühlluft führenden Doppelmantels und an der Stirnseite der Brennkammer im Bereich der Brenner durch Einziehen zusätzlicher Trennwände Helmholtzresonatoren 48 und 56 gebildet werden, die über Verengungen 50 bzw. 58 mit der Brennkammer in Verbindung stehen, im übrigen aber vollkommen abgeschlossen sind, so dass ein Durchfluss von Kühlluft durch die Resonatorräume nicht stattfindet.A gas turbine combustor is described in US Pat. No. 5,644,918, with the leading within the cooling air surrounding the combustion chamber Double jacket and on the front of the combustion chamber in the area of the burner by pulling in additional dividing walls Helmholtz resonators 48 and 56 are formed, the constrictions 50 and 58 in connection with the combustion chamber stand, but are otherwise completely completed, so that a Flow of cooling air through the resonator rooms does not take place.

Eine andere Lösung, die sich speziell auf eine Sekundärbrennkammer bezieht, ist in der Druckschrift US-A 5, 431,018 dargestellt. Ein mit Kühlluft gespülter Helmholtzresonator umgibt hier konzentrisch die radial in die Brennkammer einmündende Brennstoffleitung, durch welche der Brennstoff für die Nachverbrennung in die Brennkammer eingedüst wird.Another solution that specifically relates to a secondary combustion chamber is in US-A 5, 431,018. A Helmholtz resonator flushed with cooling air surrounds concentrically the one that opens radially into the combustion chamber Fuel line through which the fuel for afterburning in the combustion chamber is injected.

Die bekannten, mit Helmholtzresonatoren arbeitenden Lösungen sind aufwendig in der Konstruktion, lassen sich bei vorhandenen Gasturbinen nur schwer nachrüsten, nehmen, wenn sie in einer Mehrzahl eingesetzt werden, erheblichen Platz ein, und sind nicht kompatibel mit Kühlkonzepten, bei denen die Innenwand der Brennkammer durch von aussen herangeführte Kühlluft gekühlt wird. Zusätzlich weisen Lösungen mit Verwendung von Helmholtzresonatoren meist den Nachteil auf, dass ihr Schallabsorptionsprofil im Frequenzbereich ziemlich schmalbandig ist, und nicht annäherungsweise den oben genannten und typischerweise relevanten Bereich von 2-6 kHz abzudecken vermag. Wohl können die Resonatoren individuell oder in Gruppen unterschiedlich abgestimmt werden, was dann zu einer inhomogenen Verbreiterung des Absorptionsprofils führt, so eine Lösung hat aber inhärent den Nachteil, dass bei einer bestimmten Frequenz weniger Leistung absorbiert werden kann.The known solutions working with Helmholtz resonators are complex in the construction, is difficult to retrofit with existing gas turbines, take up considerable space when used in a plurality a, and are not compatible with cooling concepts where the inner wall of the Combustion chamber is cooled by cooling air brought in from the outside. additionally solutions using Helmholtz resonators usually have the disadvantage on that their sound absorption profile is pretty narrow-band in the frequency domain and is not approximately the above and typically relevant Can cover the range from 2-6 kHz. The resonators can individually or in groups, which then becomes one leads to inhomogeneous broadening of the absorption profile, but has such a solution inherent the disadvantage that less power absorbs at a certain frequency can be.

Die Europäische Veröffentlichung EP-A1-0 576 717 offenbart eine Gasturbinenbrennkammer. In dieser Brennkammer ist das Flammrohr aus seiner vom Verbrennungsraum abgewandten Seite einem vom Verdichter des Gasturbine gelieferten Luftstrom ausgesetzt. Das Flammrohr setzt sich im wesentlichen aus Wandteilen zusammen, wobei die dem Verbrennungsraum abgewandten äusseren Wandteile jeweils mehrere über den Umfang verteilte Einlassöffnungen aufweisen, über die Kühlluft in einen im Flammrohr angeordneten Zwischenraum eingeleitet wird. Aus den Zwischenraum wird die Kühlluft über Austrittsbohrungen in den dem Verbrennungsraum zugewandten inneren Wandteilen in den Verbrennungsraum eingeleitet. Der Zwischenraum zwischen den Wandteilen ist zwecks Bildung eines Helmholtzresonators an ein grosses, abgeschlossenes Zusatzvolumen angekoppelt, wobei die Einlassöffnungen in den äusseren Wandteilen als Zuführrohre und die Austrittsbohrungen als Dämpfungsrohre des Helmholtzresonators, ausgebildet sind.European publication EP-A1-0 576 717 discloses a gas turbine combustor. In this combustion chamber the flame tube is located away from the combustion chamber Side exposed to an air flow supplied by the gas turbine compressor. The flame tube is essentially composed of wall parts, the combustion chamber outer wall parts facing away from each have a plurality of inlet openings distributed over the circumference have, introduced via the cooling air into an intermediate space arranged in the flame tube becomes. From the intermediate space, the cooling air is passed through outlet bores into the combustion chamber facing inner wall parts introduced into the combustion chamber. The The space between the wall parts is on to form a Helmholtz resonator large, closed additional volume coupled, with the inlet openings in the outer wall parts as feed pipes and the outlet bores as damping pipes of the Helmholtz resonator, are formed.

Die EP-A1-0 971 172 offenbart eine Gasturbine. Bei dieser Brennkammer, in welcher die heissen Verbrennungsgase einer Verbrennungszone durch Innenwände umschlossen werden, welche durch ausserhalb der Innenwände herangeführte Kühlluft gekühlt werden, wird eine gleichzeitige effiziente akustische Dämpfung und Kühlung dadurch erreicht, dass zumindest in einem Teilbereich an der Aussenseite der Innenwände eine von den Innenwänden beabstandete, im wesentlichen parallel zu den Innenwänden verlaufende Lochplatte angeordnet ist, welche zusammen mit der zugehörigen Innenwand ein geschlossenes Dämpfungsvolumen bildet, dass die Innenwände im Bereich des Dämpfungsvolumens eine Mehrzahl von verteilt angeordneten ersten Öffnungen aufweist, durch welche das Dämpfungsvolumen mit der Verbrennungszone der Brennkammer in Verbindung steht, dass die Lochplatte eine Mehrzahl von verteilt angeordneten zweiten Öffnungen aufweist, durch welche Kühlluft von aussen in das Dämpfungsvolumen einströmt und nach Art einer Prallkühlung zwischen den ersten Öffnungen auf die gegenüberliegende Aussenseite der Innenwand trifft, und dass der Abstand zwischen der Lochplatte und der Innenwand und die geometrischen Abmessungen der ersten Öffnungen so gewählt sind, dass die ersten Öffnungen zusammen mit den Dämpfungsvolumen eine Mehrzahl von untereinander verbundenen Helmholtzresonatoren bilden und als Schalldämpfer für in der Brennkammer entstehende akustische Schwingungen wirken.EP-A1-0 971 172 discloses a gas turbine. In this combustion chamber, in which the hot combustion gases of a combustion zone are enclosed by inner walls, which is cooled by cooling air brought in outside the inner walls a simultaneous efficient acoustic damping and cooling achieved that at least in a partial area on the outside of the inner walls, a distance from the inner walls, perforated plate arranged essentially parallel to the inner walls which, together with the associated inner wall, is a closed damping volume forms that the inner walls in the region of the damping volume a plurality of distributed first openings through which the damping volume with the combustion zone of the combustion chamber communicates that the perforated plate is a Has a plurality of distributed second openings through which cooling air from flows into the outside of the damping volume and in the manner of an impingement cooling between the first openings meets the opposite outside of the inner wall, and that the Distance between the perforated plate and the inner wall and the geometric dimensions of the first openings are selected so that the first openings together with the damping volume form a plurality of interconnected Helmholtz resonators and act as a silencer for acoustic vibrations arising in the combustion chamber.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist daher Aufgabe der Erfindung, eine durch eine Kombination von Helmholtzresonatoren und einem schallabsorbierenden Lochblech akustisch bedämpfte Brennkammer für Gasturbinen zu schaffen, welche die Nachteile der bekannten Lösungen vermeidet und sich insbesondere durch einen geringen zusätzlichen Aufwand und Platzbedarf für die integrierten Resonatoren auszeichnet, und zugleich eine effektive Kühlung der Innenwände der Brennkammer erlaubt, und welche ein möglichst breites Schallabsorptionsprofil im Frequenzbereich aufweist.It is therefore an object of the invention to use a combination of Helmholtz resonators and a sound-absorbing perforated plate acoustically damped To create combustion chamber for gas turbines, which have the disadvantages of the known Avoids solutions and especially by a small additional Characterized effort and space requirements for the integrated resonators, and at the same time allows effective cooling of the inner walls of the combustion chamber, and which has the broadest possible sound absorption profile in the frequency range.

Die Aufgabe wird bei einer Brennkammer der eingangs genannten Art dadurch gelöst, dass zumindest in einem Teilbereich der Innenwände die Innenwand aus wenigstens zwei, im wesentlichen parallel zueinander angeordneten Lochplatten gebildet wird, dass eine erste Lochplatte unmittelbar an die Kühlluftkanäle grenzt und mit einer Mehrzahl von ersten Öffnungen versehen ist, durch welche Kühlluft aus den Kühlluftkanälen in ein hinter der ersten Lochplatte liegendes erstes Zwischenvolumen strömt, dass hinter der ersten Lochplatte, in Richtung der Verbrennungszone, eine weitere Lochplatte angeordnet ist, welche mit einer Mehrzahl von weiteren Öffnungen versehen ist, dass der Abstand zwischen der ersten Lochplatte und der weiteren Lochplatte und die geometrischen Abmessungen der weiteren Öffnungen und so gewählt sind, dass die Öffnungen zusammen mit zwi-schen den Lochplatten vorhandenen Zwischenvolumina eine Mehrzahl von untereinander verbundenen Helmholtzresonatoren bilden und als Schalldämpfer für in der Brennkammer entstehende akustische Schwingungen wirken, und dass zusätzlich weitere Mittel vorhanden sind, welche schallabsorbierend wirken. Der Kern der Erfindung besteht somit darin, dass die Kombination von Helmholtzresonatoren mit weiteren schallabsorbierenden Mitteln zu einer breiten Schallabsorptionscharakteristik bei geringem Platzbedarf führt.The task is thereby in a combustion chamber of the type mentioned solved that at least in a partial area of the inner walls of the inner wall at least two perforated plates arranged essentially parallel to one another is formed that a first perforated plate borders directly on the cooling air channels and is provided with a plurality of first openings through which cooling air from the cooling air channels into a first intermediate volume lying behind the first perforated plate flows that behind the first perforated plate, towards the combustion zone, a further perforated plate is arranged, which with a plurality of further openings is provided that the distance between the first perforated plate and the other perforated plate and the geometric dimensions of the others Openings and are selected so that the openings together with between the perforated plates existing intermediate volumes a plurality of one another connected Helmholtz resonators and as a silencer for in acoustic vibrations arising in the combustion chamber act, and that in addition there are other agents which have a sound-absorbing effect. The The essence of the invention is therefore that the combination of Helmholtz resonators with further sound-absorbing means for a broad sound absorption characteristic leads to a small footprint.

Ein erste bevorzugte Ausführungsform der Erfindung zeichnet sich dadruch aus, dass zumindest in einem Teilbereich der Innenwände die Innenwand aus drei, im wesentlichen parallel zueinander angeordneten Lochplatten gebildet wird, dass eine erste Lochplatte unmittelbar an die Kühlluftkanäle grenzt und mit einer Mehrzahl von ersten Öffnungen versehen ist, durch welche Kühlluft aus den Kühlluftkanälen in ein hinter der ersten Lochplatte liegendes erstes Zwischenvolumen strömt, welches auf der den Kühlluftkanälen zugewandten Seite von der ersten Lochplatte und auf der gegenüberliegenden Seite von einer zweiten Lochplatte begrenzt ist, welche zweite Lochplatte mit einer Mehrzahl von zweiten Öffnungen versehen ist, dass auf der dem ersten Zwischenvolumen abgewandten Seite der zweiten Lochplatte eine dritte Lochplatte angeordnet ist, welche mit einer Mehrzahl von dritten Öffnungen versehen ist, und welche an die Verbrennungszone grenzt, und dass wenigstens eine der Lochplatten zusätzlich schallabsorbierend wirkt. Der Kern der Ausführungsform besteht mit anderen Worten darin, dass eine der drei Lochplatten durch entsprechende Lochgestaltung, bzw. durch entsprechendes Kontraktionsverhältnis, eine möglichst reflexionsfreie Schalltransmission aufweist, und dass die Kombination und die geometrische Ausgestaltung von zwei weiteren Lochplatten eine Mehrzahl von miteinander verbundenen Helmholtzresonatoren schafft, die eine Phasendrehung bewirken. Ausserdem wird das ganze Absorptionssystem von Kühlluft durchspült, so dass die Resonatoren thermisch und frequenzmässig stabilisiert werden. Der zusätzliche Aufwand zur Schaffung des Absorptionssystems besteht dabei - wenn bei vorhandener Effusionskühlung die grossen Öffnungen in der Innenwand bereits vorhanden sind - lediglich aus dem Anbringen zwei weiterer Lochplatten. A first preferred embodiment of the invention is characterized by that at least in a partial area of the inner walls, the inner wall of three, in perforated plates arranged substantially parallel to each other is formed that a first perforated plate directly adjoins the cooling air ducts and with a plurality is provided by first openings through which cooling air from the cooling air channels into a first intermediate volume lying behind the first perforated plate flows, which on the side facing the cooling air ducts from the first Perforated plate and on the opposite side of a second perforated plate is limited, which second perforated plate with a plurality of second openings is provided that on the side facing away from the first intermediate volume of the second perforated plate, a third perforated plate is arranged, which has a plurality is provided by third openings, and which to the combustion zone borders, and that at least one of the perforated plates additionally sound-absorbing acts. In other words, the essence of the embodiment is that a of the three perforated plates by appropriate hole design, or by appropriate Contraction ratio, the most possible reflection-free sound transmission has, and that the combination and the geometric design of two further perforated plates a plurality of interconnected Helmholtz resonators creates a phase shift. In addition, the whole Absorption system flushed by cooling air, making the resonators thermal and frequency stabilized. The additional effort to create of the absorption system - if there is effusion cooling the large openings in the inner wall already exist - only from attaching two more perforated plates.

Eine zweite bevorzugte Ausführungsform der erfindungsgemässen Brennkammer ist dadurch gekennzeichnet, dass das Kontraktionsverhältnis, definiert als das Verhältnis zwischen der Fläche der Öffnung und der in Richtung der Verbrennungszone davor liegenden Fläche, für die zweiten oder die dritten Öffnungen im wesentlichen gleich ist wie die grösste, im Verbrennungsraum auftretende, Machzahl, welche definiert ist als das Verhältnis der Quellengeschwindigkeit und der Schallgeschwindigkeit, und dass die mit solchen Öffnungen versehene Lochplatte schallabsorbierend wirkt. Auf diese Weise wird entweder die zweite oder die dritte Lochplatte zur schallabsorbierenden Platte, indem durch die Lochwahl eine frequenzunabhängige, echofreie Transmission eingestellt wird.A second preferred embodiment of the combustion chamber according to the invention is characterized in that the contraction ratio, defined as the Ratio between the area of the opening and that towards the combustion zone surface in front, for the second or third openings in the is essentially the same as the largest Mach number that occurs in the combustion chamber, which is defined as the ratio of the source velocity and the Speed of sound, and that the perforated plate provided with such openings has a sound-absorbing effect. This way either the second or the third Perforated panel for sound-absorbing panel, in that a frequency-independent, echo-free transmission is set.

Eine zweite bevorzugte Ausführungsform der Brennkammer nach der Erfindung zeichnet sich dadurch aus, dass der Abstand zwischen der ersten Lochplatte und der zweiten Lochplatte und die geometrischen Abmessungen der zweiten Öffnungen derart gewählt werden, dass die zweiten Öffnungen in Kombination mit dem zwischen der ersten und der zweiten Lochplatte angeordneten ersten Zwischenraum Helmholtzresonatoren ergeben, deren Resonanzfrequenz im wesentlichen im Bereich der im Verbrennungsraum auftretenden akustischen Schwingungen liegt, und dass weiterhin bevorzugt die dritte Lochplatte schallabsorbierend ausgestaltet ist. So führt die dritte Lochplatte zu einer echofreien Transmission des Schalls und die in Schallausbreitungsrichtung dahinterliegenden Helmholtzresonatoren schieben dessen Phase.A second preferred embodiment of the combustion chamber according to the invention is characterized in that the distance between the first perforated plate and of the second perforated plate and the geometric dimensions of the second openings be chosen such that the second openings in combination with the first space arranged between the first and the second perforated plate Helmholtz resonators result in their resonance frequency essentially in the area of acoustic vibrations occurring in the combustion chamber lies, and that further preferably the third perforated plate is designed to be sound-absorbing is. The third perforated plate leads to anechoic transmission of the Noise and the Helmholtz resonators behind it in the direction of sound propagation push its phase.

Für übliche Frequenzwerte der Brennkammerschwingungen im Bereich von 2-6 kHz weist die zweite Lochplatte eine Dicke im Bereich von 0.1 bis 1 cm, insbesondere bevorzugt von 0.6 cm auf, das Flächenverhältnis der akustisch relevanten Teilflächen des ersten Zwischenvolumens und der Flächen der zweiten Öffnungen liegen im Bereich von 5 bis 10, insbesondere bevorzugt von 8, der Abstand der ersten von der zweiten Lochplatte beträgt 0.1 bis 1 cm, insbesondere bevorzugt 0.6 cm, das Produkt aus Kontraktionsverhältnis der dritten Öffnungen und grösster Machzahl liegt im Bereich von 1 bis 0.5, und das Flächenverhältnis der akustisch relevanten Teilflächen im Verbrennungsraum und der akustisch relevanten Teilflächen des ersten Zwischenvolumens liegt in einem Bereich von 1 bis 2. For common frequency values of combustion chamber vibrations in the range of 2-6 kHz, the second perforated plate has a thickness in the range from 0.1 to 1 cm, in particular preferably from 0.6 cm, the area ratio of the acoustically relevant Partial areas of the first intermediate volume and the areas of the second openings are in the range from 5 to 10, particularly preferably from 8, the distance between the first of the second perforated plate is 0.1 to 1 cm, particularly preferred 0.6 cm, the product of the contraction ratio of the third openings and the largest Mach number ranges from 1 to 0.5, and the area ratio of the acoustic relevant areas in the combustion chamber and the acoustically relevant areas the first intermediate volume is in a range from 1 to 2.

Eine andere bevorzugte Ausführungsform der erfindungsgemässen Brennkammer ist dadurch gekennzeichnet, dass der Abstand zwischen der ersten Lochplatte und der dritten Lochplatte und die geometrischen Abmessungen der dritten Öffnungen derart gewählt werden, dass die dritten Öffnungen in Kombination mit dem zwischen der ersten und der dritten Lochplatte angeordneten Zwischenraum Helmholtzresonatoren ergeben, deren Resonanzfrequenz im wesentlichen im Bereich der im Verbrennungsraum auftretenden akustischen Schwingungen liegt, und dass weiterhin bevorzugt die zweite Lochplatte schallabsorbierend ausgebildet ist. So entsteht eine schallabsorbierende Anordnung, bei welcher die schallabsorbierende Lochplatte im eigentlichen Dämpfungsvolumen der Helmholtzresonatoren angeordnet ist, was sich als platzsparend und dennoch effizient erweist.Another preferred embodiment of the combustion chamber according to the invention is characterized in that the distance between the first perforated plate and of the third perforated plate and the geometric dimensions of the third openings be chosen such that the third openings in combination with the between the first and the third perforated plate arranged Helmholtz resonators result, whose resonance frequency is essentially in the range the acoustic vibrations occurring in the combustion chamber, and that the second perforated plate is preferably also sound-absorbing. This creates a sound-absorbing arrangement in which the sound-absorbing Perforated plate in the actual damping volume of the Helmholtz resonators is arranged, which proves to be space-saving and yet efficient.

Besonders platzsparend und kühlungstechnisch optimal ohne wesentliche Einbussen in akustischer Hinsicht lässt sich die schallabsorbierende Anordnung ausgestalten, wenn gemäss einer weiteren Ausführungsform die zweite und die dritte Lochplatte bei gleichmässiger und konzentrischer Anordnung der Löcher in den beiden Lochplatten unmittelbar und ohne Beabstandung aneinandergefügt werden, oder dass die beiden Lochplatten sogar durch eine einzige Lochplatte mit von den beiden Seiten in unterschiedlichem Durchmesser gebohrten Löchern ersetzt werden.Particularly space-saving and optimal in terms of cooling technology without significant losses the sound-absorbing arrangement can be designed acoustically, if, according to a further embodiment, the second and the third Perforated plate with even and concentric arrangement of the holes in the two perforated plates can be joined directly and without spacing, or that the two perforated plates can even be covered by a single perforated plate holes drilled on both sides with different diameters become.

Weitere Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.Further embodiments result from the dependent claims.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen

Fig. 1
im vereinfachten Längsschnitt eine Sekundärbrennkammer, wie sie aus dem Stand der Technik, insbesondere der EP-A1 0 669 500, bekannt ist;
Fig. 2
einen vergrösserten Ausschnitt der Brennkammer nach Fig. 1 im Bereich des stufenartigen Übergangs zwischen Zuströmzone und Verbrennungszone mit einer integrierten Helmholtzresonator-Anordnung und einem extern angeordneten Dämpfungsblech gemäss einem bevorzugten Ausführungsbeispiel der Erfindung;
Fig. 3
eine schematische Darstellung eines Schnittes der Anordnung nach Figur 2;
Fig. 4
eine vereinfachte kleinste Berechnungseinheit für eine Anordnung gemäss Fig. 2 mit externem Dämpfungsblech;
Fig. 5
die quadrierten Reflexionskoeffizienten als Funktion der Frequenz in verschiedenen Anordnungen mir externem Dämpfungsblech;
Fig. 6
einen vergrösserten Ausschnitt der Brennkammer nach Fig. 1 im Bereich des stufenartigen Übergangs zwischen Zuströmzone und Verbrennungszone mit einer integrierten Helmholtzresonator-Anordnung und einem intern angeordneten Dämpfungsblech gemäss einem bevorzugten Ausführungsbeispiel der Erfindung;
Fig. 7
eine schematische Darstellung eines Schnittes der Anordnung nach Figur 6;
Fig. 8
eine vereinfachte kleinste Berechnungseinheit für eine Anordnung gemäss Fig. 6 mit internem Dämpfungsblech;
Fig. 9
die quadrierten Reflexionskoeffizienten als Funktion der Frequenz in verschiedenen Anordnungen mir internem Dämpfungsblech; und
Fig. 10
einen Schnitt durch ein Lochblech, welches das zweite und das dritte Lochblech ersetzt für den Fall eines internen Dämpfungsblechs.
The invention will be explained in more detail below on the basis of exemplary embodiments in connection with the drawing. Show it
Fig. 1
in a simplified longitudinal section, a secondary combustion chamber, as is known from the prior art, in particular EP-A1 0 669 500;
Fig. 2
an enlarged section of the combustion chamber of Figure 1 in the region of the step-like transition between the inflow zone and combustion zone with an integrated Helmholtz resonator arrangement and an externally arranged damping plate according to a preferred embodiment of the invention.
Fig. 3
is a schematic representation of a section of the arrangement of Figure 2;
Fig. 4
a simplified smallest calculation unit for an arrangement according to FIG 2 with an external damping plate.
Fig. 5
the squared reflection coefficients as a function of frequency in various arrangements with an external damping plate;
Fig. 6
an enlarged section of the combustion chamber of Figure 1 in the region of the step-like transition between the inflow zone and combustion zone with an integrated Helmholtz resonator arrangement and an internally arranged damping plate according to a preferred embodiment of the invention.
Fig. 7
is a schematic representation of a section of the arrangement of Figure 6;
Fig. 8
a simplified smallest calculation unit for an arrangement according to FIG 6 with an internal damping plate.
Fig. 9
the squared reflection coefficients as a function of frequency in various arrangements with an internal damping plate; and
Fig. 10
a section through a perforated plate, which replaces the second and third perforated plate in the case of an internal damping plate.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

In Fig. 1 ist im vereinfachten Längsschnitt eine Sekundärbrennkammer wiedergegeben, die aus der EP-A1 0 669 500, bekannt ist, und die sich bevorzugt zur Verwirklichung der Erfindung eignet. Die Brennkammer 10 umfasst eine Verbrennungszone 23, welche von einer sich in axialer Richtung erstreckenden Innenwand 12 und einer radialen Innenwand 17 begrenzt ist. In die Verbrennungszone 23 treten die heissen Gase einer vorgeschalteten Verbrennungsstufe durch eine Zuströmzone 20 ein und durch einen Heissgasauslass 13 wieder aus. Die Zuströmzone 20 ist durch eine Innenwand 15 begrenzt. In die Zuströmzone 20 ragt von der Seite her eine Brennstofflanze 18 hinein, die am vorderen Ende eine Düse 19 zum Eindüsen von Brennstoff aufweist. Die Innenwände 12, 15 und 17 sind von einer sich in axialer Richtung erstreckenden Aussenwand 11 umgeben. Zwischen der Innenwand 12 und der Aussenwand 11 bleibt ein Kühlluftkanal 14 frei, durch welchen Kühlluft entgegen der Strömungsrichtung der heissen Gase in einen zwischen der Innenwand 15 und der Aussenwand 11 gebildeten hinteren Kühlluftkanal 16 strömt. Die Innenwand 12 wird dabei von der Kühlluft konvektiv gekühlt. Vom hinteren Kühlluftkanal 16 strömt die Kühlluft durch Öffnungen 21 in der Innenwand 15 in die Zuströmzone 20, und durch weitere Öffnungen 22 in der radialen Innenwand 17 in die Verbrennungszone 23 ein, und bewirkt dabei eine Effusionskühlung.In Fig. 1 a secondary combustion chamber is shown in a simplified longitudinal section, which is known from EP-A1 0 669 500, and which is preferred for implementation the invention is suitable. The combustion chamber 10 includes a combustion zone 23, which of an inner wall extending in the axial direction 12 and a radial inner wall 17 is limited. In the combustion zone 23 the hot gases of an upstream combustion stage pass through a Inflow zone 20 in and out through a hot gas outlet 13. The inflow zone 20 is delimited by an inner wall 15. Protrudes into the inflow zone 20 a fuel lance 18 from the side, a nozzle at the front end 19 for fuel injection. The inner walls 12, 15 and 17 are from an outer wall 11 extending in the axial direction. Between a cooling air duct 14 remains free through the inner wall 12 and the outer wall 11 which cooling air against the flow direction of the hot gases in between the inner wall 15 and the outer wall 11 formed rear cooling air duct 16 streams. The inner wall 12 is convectively cooled by the cooling air. The cooling air flows from the rear cooling air duct 16 through openings 21 in the inner wall 15 in the inflow zone 20, and through further openings 22 in the radial Inner wall 17 into the combustion zone 23, thereby causing effusion cooling.

An der radialen Innenwand 17, d.h., der stufenartigen Erweiterung zwischen Zuströmzone 20 und Verbrennungszone 23 kann nun gemäss einem bevorzugten Ausführungsbeispiel der Erfindung, wie es in Fig. 2 dargestellt ist, eine Helmholtzresonator-Anordnung in Kombination mit einer schallabsorbierenden dritten Lochplatte 29 integriert werden, die gleichzeitig eine effektive Kühlung der Anordnung gewährleistet. Auf der Aussenseite der vormals radialen Innenwand 17a wird dazu gemäss Fig. 2 in einem Abstand (L in Fig. 4) eine erste Lochplatte 24 parallel angeordnet, die zusammen mit der eigentlichen radialen Innenwand, welche eine zweite Lochplatte 17a bildet, ein erstes (ringförmiges) Zwischenvolumen 26 einschliesst. Die zweite Lochplatte 17a weist eine Mehrzahl von mehr oder weniger regelmässig verteilten Öffnungen 27a auf, die identisch mit den Öffnungen 22 für die Effusionskühlung in der Brennkammer nach Fig. 1 sein können, aber auch abweichende geometrische Abmessungen haben können. Die als Durchgangsbohrungen mit einer Durchmesser a und einer Länge I (Fig. 4) ausgebildeten Öffnungen 27a wirken jede für sich als Dämpfungsrohr eines Helmholtz-Teilresonators, der aus der jeweiligen Öffnung 27a und dem dahinterliegenden Teilvolumen des ersten Zwischenvolumens 26 gebildet wird. Das erste Zwischenvolumen 26 insgesamt und die Gesamtheit der Öffnungen 27a lassen sich als einzelne Helmholtzresonatoren auffassen, deren einzelne Dämpfungsvolumina untereinander zum ersten Zwischenvolumen 26 verbunden sind.On the radial inner wall 17, i.e. the step-like expansion between the inflow zone 20 and combustion zone 23 can now according to a preferred Embodiment of the invention, as shown in Fig. 2, a Helmholtz resonator arrangement in combination with a sound-absorbing third perforated plate 29 are integrated, which at the same time effective cooling of the arrangement guaranteed. This is done on the outside of the previously radial inner wall 17a 2 a first perforated plate 24 is arranged in parallel at a distance (L in FIG. 4), which together with the actual radial inner wall, which is a forms second perforated plate 17a, includes a first (annular) intermediate volume 26. The second perforated plate 17a has a plurality of more or less regularly distributed openings 27a, which are identical to the openings 22 for the effusion cooling in the combustion chamber according to FIG. 1 can be, but also deviating can have geometric dimensions. The as through holes with a diameter a and a length I (Fig. 4) formed openings 27a each act individually as a damping tube of a Helmholtz partial resonator, that of the respective opening 27a and the partial volume behind it first intermediate volume 26 is formed. The first intermediate volume 26 in total and the entirety of the openings 27a can be used as individual Helmholtz resonators understand, the individual damping volumes with each other to first intermediate volume 26 are connected.

Die erste Lochplatte 24 hat neben der Begrenzung des ersten Zwischenvolumens zwei weitere wichtige Aufgaben. Die in der ersten Lochplatte 24 vorgesehenen Öffnungen 25 lassen aus dem hinteren Kühlluftkanal 16 Kühlluft in das erste Zwischenvolumen 26 einströmen. Die einströmende Kühlluft kühlt einerseits die Helmholtzresonator-Anordnung. Dadurch wird die Geometrie und damit die Dämpfungsfrequenz der Anordnung stabil gehalten. Andererseits sind die Öffnungen 25 relativ zu den zweiten Öffnungen 27a versetzt bzw. "auf Lücke" angeordnet. Dadurch trifft die in das erste Zwischenvolumen 26 einströmende Kühlluft auf die den Öffnungen 25 gegenüberliegende Aussenseite der zweiten Lochplatte 17a, was zu einer effektiven Prallkühlung der zweiten Lochplatte 17 führt. Der Durchmesser der Öffnungen 25 ist gegenüber dem Durchmesser a vergleichsweise klein (Fig. 4). Dadurch ist gewährleistet, dass die durchströmende Kühlluft einen ausreichenden Druckabfall erleidet.The first perforated plate 24 has in addition to the limitation of the first intermediate volume two other important tasks. Those provided in the first perforated plate 24 Openings 25 let cooling air from the rear cooling air duct 16 into the first intermediate volume 26 flow in. The incoming cooling air cools the one hand Helmholtz arrangement. This is the geometry and thus the Damping frequency of the arrangement kept stable. On the other hand, the openings 25 offset relative to the second openings 27a or arranged "on gap". As a result, the cooling air flowing into the first intermediate volume 26 hits the outside of the second perforated plate opposite the openings 25 17a, which leads to an effective impact cooling of the second perforated plate 17. The The diameter of the openings 25 is compared to the diameter a small (Fig. 4). This ensures that the cooling air flowing through one suffers sufficient pressure drop.

Auf der Innenseite der zweiten Lochplatte 17a wird des weiteren gemäss Fig. 2 in einem Abstand (X in Fig. 4) eine dritte Lochplatte 29 parallel angeordnet, die zusammen mit der zweiten Lochplatte 17a ein zweites (ringförmiges) Zwischenvolumen 30 einschliesst. Die dritte Lochplatte 29 weist eine Mehrzahl von verteilten Öffnungen 28 auf. Diese Öffnungen 28 werden vorzugsweise so gestaltet, dass die dritte Lochplatte 29 den in der Verbrennungszone 23 entstehenden Schall echofrei durchlässt, d.h. dass kein Schall reflektiert wird und somit diese dritte Lochplatte schallabsorbierend wirkt. Das zweite Zwischenvolumen 30 und die dritte Lochplatte werden dabei von der durch das erste Zwischenvolumen und die zweiten Öffnungen 27a strömenden Kühlluft durchflossen und entsprechend gekühlt.On the inside of the second perforated plate 17a, according to FIG a distance (X in Fig. 4) a third perforated plate 29 arranged in parallel, which together with the second perforated plate 17a a second (ring-shaped) intermediate volume 30 includes. The third perforated plate 29 has a plurality of distributed ones Openings 28 on. These openings 28 are preferably designed such that the third perforated plate 29 the sound generated in the combustion zone 23 transmits echo-free, i.e. that no sound is reflected and therefore this third Perforated plate has a sound-absorbing effect. The second intermediate volume 30 and the third perforated plate are the by the first intermediate volume and the Cooling air flowing through second openings 27a and cooled accordingly.

Figur 3 zeigt schematisch den Aufbau des in Figur 2 dargestellten Ausführungsbeispiels der Erfindung nochmals. Der aus der Verbrennungszone 23 ankommende Schall 31 tritt zunächst echofrei durch die Öffnungen 28 der dritten Lochplatte 29 ins zweite Zwischenvolumen 30. Danach trifft der Schall auf die von der ersten 24 und der zweiten 17a Lochplatte mit den Öffnungen 27a gebildeten Helmholtzresonatoren, welche die Phase der Schallwellen schieben. Gleichzeitig strömt durch die Anordnung in Gegenrichtung zum Schall der Kühlluftstrom 22, nachdem er durch die Öffnungen 25 in der ersten Lochplatte 24 ins erste Zwischenvolumen 26 gelangt ist.Figure 3 shows schematically the structure of the embodiment shown in Figure 2 the invention again. The incoming from the combustion zone 23 Sound 31 first passes through the openings 28 of the third perforated plate in an echo-free manner 29 into the second intermediate volume 30. Then the sound hits that from the first 24 and the second 17a perforated plate with the Helmholtz resonators formed with the openings 27a, which push the phase of the sound waves. Flows at the same time by the arrangement in the opposite direction to the sound of the cooling air flow 22 after he through the openings 25 in the first perforated plate 24 into the first intermediate volume 26 has arrived.

Eine schematische Darstellung der Anordnung, welche sich zur Berechnung ihrer Eigenschaften besonders eignet, ist zusammen mit der Angabe der Dimensionierungen in Figur 4 dargestellt. Die wesentlichen Eigenschaften dieser Aneinanderreihung von Elementen lassen sich einfach durch Berechnung des Transformationsverhaltens der Riemanninvarianten für jedes Element und anschliessendes sequentielles Aneinanderreihen der Transformationen ermitteln. Als in diesem Zusammenhang besonders wichtige Eigenschaft der schallabsorbierenden Lochplatte gilt, dass die Transmission der schallabsorbierenden Lochplatte für Fluss kleiner Machzahlen genau dann echofrei, d.h. reflexionsfrei ist, wenn das Kontraktionsverhältnis, definiert als Verhältnis der Fläche der Blende bzw. der Öffnung b zur Fläche B vor der Blende (b/B) im wesentlichen gleich der grössten in der Kammer auftretenden Machzahl ist.A schematic representation of the arrangement, which can be used to calculate its Properties is particularly suitable, together with the specification of the dimensions shown in Figure 4. The main characteristics of this series of elements can be easily calculated by calculating the transformation behavior the Riemannin variants for each element and subsequent determine sequential sequence of transformations. As in this context particularly important property of the sound absorbing perforated plate applies that the transmission of the sound absorbing perforated plate for flow lower Mach numbers then echo-free, i.e. is reflection-free if the contraction ratio, defined as the ratio of the area of the aperture or opening b to the area B in front of the aperture (b / B) is essentially the same as the largest in the Mach number that occurs in the chamber.

Die Resonanzfrequenz der Resonatoranordnung bzw. der Teilresonatoren wird im wesentlichen durch die Fläche A, die Dicke I der zweiten Lochplatte 17a bzw. die Länge der Öffnungen 27a, den Durchmesser der Öffnungen 27a und Beabstandung L der Platten bestimmt. Zur Dämpfung von Frequenzen im Bereich von mehreren kHz sind die Öffnungen 27a als Durchgangsbohrungen mit einer Länge I von wenigen Millimetern und einem Durchmesser a von wenigen Millimetern ausgebildet. Der Abstand L zwischen der ersten 24 und der zweiten 17a Lochplatte beträgt wenige Millimeter, und das Verhältnis der Fläche A zur Lochfläche a liegt im Bereich von 5 bis 10.The resonance frequency of the resonator arrangement or the partial resonators is in the essentially by the area A, the thickness I of the second perforated plate 17a or Length of the openings 27a, the diameter of the openings 27a and spacing L of the plates determined. For attenuation of frequencies in the range of several kHz are the openings 27a as through holes with a length I of a few millimeters and a diameter a of a few millimeters. The distance L between the first 24 and the second 17a perforated plate is a few millimeters, and the ratio of area A to hole area a is in the range from 5 to 10.

Für die Dämpfung von Frequenzen in Bereich von 2 bis 6 kHz können die in der nachfolgenden Tabelle aufgeführten beispielhaften Werte angegeben werden: Eingangswerte Temperatur der Luft 770 K Bohrungslänge I 6 mm Plattenabstand L 6 mm Plattenabstand X 6 mm Flächenverhältnis A/a 8 Flächenverhältnis B/A 1 Produkt aus Machzahl und inversem Kontraktionsverhältnis 1 Massenfluss der Kühlluft 3.88 kg/(s*m^2) Druck im Brenner 16.6 bar Ausgangswerte Flussgeschwindigkeit in den Öffnungen 27a 4.13 m/s Inverses Kontraktionsverhältnis 32.81 Flussgeschwindigkeit durch die dritte Lochplatte 29 16.94 m/s For the attenuation of frequencies in the range from 2 to 6 kHz, the exemplary values listed in the following table can be given: input values Temperature of the air 770 K Hole length I 6 mm Distance between plates L 6 mm Plate spacing X 6 mm Area ratio A / a 8th Area ratio B / A 1 Product of Mach number and inverse contraction ratio 1 Mass flow of the cooling air 3.88 kg / (s * m ^ 2) Burner pressure 16.6 bar output values Flow rate in the openings 27a 4.13 m / s Inverse contraction ratio 32.81 Flow speed through the third perforated plate 29 16.94 m / s

Das sich für die Werte aus der Tabelle ergebende Dämpfungsverhalten der Anordnung aus Helmholtzresonatoren und schallabsorbierender Lochplatte 29 ist in Fig. 5a) wiedergegeben. Fig. 5 zeigt jeweils den quadrierten Reflexionskoeffizienten (reflection coefficient squared) über der Frequenz in Hz. Man erkennt Fig. 5a), dass für die obigen Werte im ganzen Bereich von 2 bis 6 kHz signifikante Absorption stattfindet, und dass bei 4720 Hz resonante Absorption auftritt. Sehr starke Absorption hat man im Bereich von 3.5 bis 5.5 kHz, wo mehr als 75% der akustischen Leistung aufgenommen werden.The damping behavior of the arrangement for the values from the table from Helmholtz resonators and sound-absorbing perforated plate 29 is in Fig. 5a) reproduced. 5 shows the squared reflection coefficient in each case (reflection coefficient squared) over the frequency in Hz. One can see Fig. 5a), that for the above values in the whole range from 2 to 6 kHz significant absorption takes place, and that resonant absorption occurs at 4720 Hz. Very strong Absorption is in the range from 3.5 to 5.5 kHz, where more than 75% of the acoustic Power to be absorbed.

Verändert man von den obigen Eingangswerten allein das Flächenverhältnis B/A auf 2, d.h. verkleinert man das Verhältnis von Brennerfläche zu Dämpfungsfläche, so resultiert ein Absorptionsverhalten wie es in Figur 5b) angegeben ist, während sich die in der Tabelle angegebenen Ausgangswerte nicht verändern. Die Schallabsorption nimmt allgemein ab, und es gibt keine resonante Absorption mehr. Dies zeigt, dass man immer die ganze Anordnung berücksichtigen muss, und dass man nicht Helmholtzresonatoren und schallabsorbierende Platte separat betrachten darf. Um die Verstimmung des Systems durch die obige Veränderung wieder zu beheben, muss die dritte Lochplatte verändert werden, namentlich muss neben B/A=2 das Produkt aus Machzahl und inversem Kontraktionsverhältnis auf 0.5 gesetzt werden. Es resultieren dann die folgenden neuen Ausgangswerte: Ausgangswerte Inverses Kontraktionsverhältnis 23.21 Flussgeschwindigkeit durch die dritte Lochplatte 29 11.98 m/s If you change the area ratio B / A to 2 from the above input values alone, ie if you reduce the ratio of burner area to damping area, the result is an absorption behavior as indicated in FIG. 5b), while the output values given in the table do not change. Sound absorption generally decreases and there is no longer any resonant absorption. This shows that the whole arrangement must always be taken into account and that one should not consider Helmholtz resonators and sound absorbing plates separately. In order to remedy the detuning of the system by the above change, the third perforated plate must be changed, namely besides B / A = 2 the product of Mach number and inverse contraction ratio must be set to 0.5. The following new initial values then result: output values Inverse contraction ratio 23:21 Flow speed through the third perforated plate 29 11.98 m / s

Durch diese Reduktion der Flussgeschwindigkeit durch die dritte Lochplatte 29 resultiert ein Verhalten gemäss Figur 5c), man beobachtet wieder eine resonante Absorption bei der ungefähr gleichen Frequenz, wenn auch der Bereich starker Absorption schmaler geworden ist im Vergleich zu Figur 5a), da das Kontraktionsverhältnis nicht mehr optimal an die maximale Machzahl angepasst ist.This reduction in the flow velocity through the third perforated plate 29 the result is a behavior according to FIG. 5c), again a resonant is observed Absorption at approximately the same frequency, albeit the area is stronger Absorption has become narrower compared to Figure 5a) because of the contraction ratio is no longer optimally adapted to the maximum Mach number.

Ein weiteres Ausführungsbeispiel einer Ausführungsform der Erfindung ist in Figur 6 abgebildet. In diesem Fall handelt es sich um einen sogenannten internen Absorber, d.h. das schallabsorbierende Blech befindet sich im eigentlichen Dämpfungsvolumen der Helmholtzresonatoren. Die Helmholtzresonatoren werden in diesem Fall von einer ersten, dem hinteren Kühlluftkanal 16 zugewandten Lochplatte 24 und einer dritten, direkt an die Verbrennungszone 23 grenzenden Lochplatte 17b gebildet. Die erste Lochplatte 24 weist wiederum Öffnungen 25 auf, durch welche Kühlluft 22 in die Anordnung strömt. Die dritte Lochplatte 17b weist Öffnungen 27b auf, welche als Dämpfungsrohre der Helmholtzresonatoren dienen. Das Dämpfungsvolumen der Helmholtzresonatoren setzt sich in diesem Fall aus den beiden Zwischenvolumina 32 und 35 zusammen, welche durch die zwischen der ersten 24 und der dritten 17b Lochplatte eingezogenen zweiten Lochplatte 34 gebildet werden. Die zweite Lochplatte 34 ist mit Öffnungen 33 versehen, welche derart gestaltet sind, dass diese zweite Lochplatte 34 schallabsorbierend, d.h. echofrei wirkt. Dies wie oben beschrieben durch ein an die höchste Machzahl angepasstes Kontraktionsverhältnis.Another embodiment of an embodiment of the invention is shown in FIG 6 shown. In this case it is a so-called internal absorber, i.e. the sound-absorbing sheet is in the actual damping volume of the Helmholtz resonators. The Helmholtz resonators are in in this case from a first perforated plate facing the rear cooling air duct 16 24 and a third perforated plate directly adjacent to the combustion zone 23 17b formed. The first perforated plate 24 in turn has openings 25, through which cooling air 22 flows into the arrangement. The third perforated plate 17b has Openings 27b, which serve as damping tubes of the Helmholtz resonators. The damping volume of the Helmholtz resonators exposes itself in this case the two intermediate volumes 32 and 35 together, which by the between the first 24 and the third 17b perforated plate retracted second perforated plate 34 be formed. The second perforated plate 34 is provided with openings 33 which are designed such that this second perforated plate 34 is sound-absorbing, i.e. appears anechoic. As described above, this is done by adjusting to the highest Mach number Contraction ratio.

Figur 7 zeigt wiederum eine schematische Darstellung, wie der Schall 31 aus der Verbrennungszone 23 auf die Anordnung mit internem Absorber auftrifft, und wie von der gegenüberliegenden Seite her die Kühlluft 22 durch die Öffnungen 25 strömt. Die zur Berechnung der wichtigsten charakteristischen Eigenschaften einer solchen Anordnung einfachste Darstellung der Elemente ist in Analogie zu Figur 4 in Figur 8 zusammen mit den Dimensionen gegeben. Die Resonanzfrequenz der Resonatoranordnung bzw. der Teilresonatoren wird in diesem Fall im wesentlichen durch die Fläche A, die Dicke I1 der dritten Lochplatte 17b bzw. die Länge der Öffnungen 27b, den Durchmesser der Öffnungen 27b und Beabstandung L1 der Platten bestimmt. Zur Dämpfung von Frequenzen im Bereich von mehreren kHz sind die Öffnungen 27b als Durchgangsbohrungen mit einer Länge I1 von wenigen Millimetern und einem Durchmesser a von wenigen Millimetern ausgebildet. Der Abstand L1 zwischen der ersten 24 und der dritten 17b Lochplatte beträgt wenige Millimeter, und das Verhältnis der Fläche A zur Lochfläche a liegt im Bereich von 5 bis 10.FIG. 7 again shows a schematic illustration of how the sound 31 from the Combustion zone 23 strikes the arrangement with internal absorber, and how the cooling air 22 through the openings 25 from the opposite side flows. The one used to calculate the main characteristic properties of a Such an arrangement of the simplest representation of the elements is analogous to FIG. 4 given in Figure 8 along with the dimensions. The resonance frequency of the In this case, the resonator arrangement or the partial resonators essentially becomes by the area A, the thickness I1 of the third perforated plate 17b or the length of the openings 27b, the diameter of the openings 27b and spacing L1 of the plates. For attenuation of frequencies in the range of several kHz are the openings 27b as through holes with a length I1 of a few Millimeters and a diameter of a few millimeters. The distance L1 between the first 24 and the third 17b perforated plate is a few Millimeters, and the ratio of area A to hole area a is in the range from 5 to 10.

Für die Dämpfung von Frequenzen in Bereich von 2 bis 6 kHz können die in der nachfolgenden Tabelle aufgeführten beispielhaften Werte angegeben werden: Eingangswerte Temperatur der Luft 770 K Bohrungslänge I1 6 mm Plattenabstand L1 8 mm Plattenabstand Y 3 mm Flächenverhältnis A/a 8 Flächenverhältnis B/A 1 Produkt aus Machzahl und inversem Kontraktionsverhältnis 2.025 Massenfluss der Kühlluft 3.88 kg/(s*m^2) Druck im Brenner 16.6 bar Ausgangswerte Flussgeschwindigkeit in den Öffnungen 27b 4.13 m/s Inverses Kontraktionsverhältnis 46.68 Flussgeschwindigkeit durch die zweite Lochplatte 34 24.10 m/s For the attenuation of frequencies in the range from 2 to 6 kHz, the exemplary values listed in the following table can be given: input values Temperature of the air 770 K Hole length I1 6 mm Plate spacing L1 8th mm Plate spacing Y 3 mm Area ratio A / a 8th Area ratio B / A 1 Product of Mach number and inverse contraction ratio 2025 Mass flow of the cooling air 3.88 kg / (s * m ^ 2) Burner pressure 16.6 bar output values Flow rate in openings 27b 4.13 m / s Inverse contraction ratio 46.68 Flow velocity through the second perforated plate 34 24.10 m / s

Das sich für die Werte aus der Tabelle ergebende Dämpfungsverhalten der Anordnung aus Helmholtzresonatoren und interner schallabsorbierender Lochplatte 34 ist in Fig. 9a) wiedergegeben. Fig. 9 zeigt jeweils wiederum den quadrierten Reflexionskoeffizienten (reflection coefficient squared) über der Frequenz in Hz. Man erkennt in Fig. 9a), dass für die obigen Werte im ganzen Bereich von 2 bis 6 kHz signifikante Absorption stattfindet, und dass bei 3880 Hz resonante Absorption auftritt. Sehr starke Absorption hat man im Bereich von 2.9 bis 5.2 kHz, wo mehr als 75% der akustischen Leistung aufgenommen werden.The damping behavior of the arrangement for the values from the table from Helmholtz resonators and internal sound-absorbing perforated plate 34 is shown in Fig. 9a). Fig. 9 again shows the squared Reflection coefficient squared over frequency in Hz. It can be seen in FIG. 9 a) that for the above values in the entire range from 2 to 6 kHz significant absorption takes place, and that at 3880 Hz resonant absorption occurs. One has very strong absorption in the range from 2.9 to 5.2 kHz, where more than 75% of the acoustic power is consumed.

Verändert man von den obigen Eingangswerten wie oben allein das Flächenverhältnis B/A auf 2, d.h. verkleinert man das Verhältnis von Brennerfläche zu Dämpfungsfläche, so resultiert ein Absorptionsverhalten wie es in Figur 9b) angegeben ist, während sich die in der Tabelle angegebenen Ausgangswerte nicht verändern. Die Schallabsorption nimmt allgemein ab, und es gibt keine resonante Absorption mehr. Um die Verstimmung des Systems durch die obige Veränderung wieder zu beheben, muss die zweite Lochplatte 34 verändert werden, namentlich muss neben B/A=2 das Produkt aus Machzahl und inversem Kontraktionsverhältnis auf 0.981 gesetzt werden. Es resultieren dann die folgenden neuen Ausgangswerte: Ausgangswerte Inverses Kontraktionsverhältnis 32.50 Flussgeschwindigkeit durch die zweite Lochplatte 34 16.78 m/s If you change the area ratio B / A to 2 from the above input values as above, i.e. if you reduce the ratio of burner area to damping area, the result is an absorption behavior as indicated in FIG. 9b), while the output values given in the table do not change , Sound absorption generally decreases and there is no longer any resonant absorption. In order to remedy the detuning of the system by the above change, the second perforated plate 34 has to be changed. In addition to B / A = 2, the product of Mach number and inverse contraction ratio has to be set to 0.981. The following new initial values then result: output values Inverse contraction ratio 32.50 Flow velocity through the second perforated plate 34 16.78 m / s

Durch diese Reduktion der Flussgeschwindigkeit durch.die zweite Lochplatte 34 resultiert ein Verhalten gemäss Figur 9c), man beobachtet wieder eine resonante Absorption bei der ungefähr gleichen Frequenz, wenn auch der Bereich starker Absorption schmaler geworden ist im Vergleich zu Figur 9a), da das Kontraktionsverhältnis nicht mehr optimal an die maximale Machzahl angepasst ist.By reducing the flow rate through the second perforated plate 34 results in a behavior according to FIG. 9c), again a resonant is observed Absorption at approximately the same frequency, albeit the area is stronger Absorption has become narrower compared to Figure 9a) because of the contraction ratio is no longer optimally adapted to the maximum Mach number.

Vergleicht man die Charakteristika von internem und externem Absorber jeweils für die ersten Eingangswerte, so sieht man, dass die Absorption beim externen Absorber relativ langsam zunimmt zwischen 2 und 4.5 kHz und schnell abnimmt oberhalb 5.2 kHz, während die Absorption beim internen Absorber zwischen 2 und 3.5 kHz schnell zunimmt und oberhalb 4.5 kHz nur langsam abnimmt. Das Absorptionsverhalten einer Anordnung mit internem Absorber ist somit nicht nur symmetrischer, sondern es weist auch allgemein eine breitere Absorption auf. Je nach Anwendung und involvierten Schallfrequenzen kann sich aber die eine oder die andere Anordnung besser eignen.If you compare the characteristics of the internal and external absorber in each case for the first input values, you can see that the absorption at the external Absorber increases relatively slowly between 2 and 4.5 kHz and decreases rapidly above 5.2 kHz, while the absorption in the internal absorber is between 2 and 3.5 kHz increases quickly and decreases slowly above 4.5 kHz. The absorption behavior an arrangement with an internal absorber is therefore not only more symmetrical, but it also generally has a broader absorption. ever depending on the application and the sound frequencies involved, one or the other the other arrangement is more suitable.

Da bei einer Anordnung mit drei beabstandeten Lochplatten die Kühlung insbesondere der der Verbrennungszone 23 ausgesetzten Wand nicht mehr optimal bewerkstelligen lässt, kann es sich als vorteilhaft erweisen, gemäss einer weiteren Ausführungsform der Erfindung, die schallabsorbierende Lochplatte und die Lochplatte, welche die Dämpfungsrohre der Helmholtzresonatoren bildet, unmittelbar aneinander anliegend anzuordnen, oder sogar durch ein, mit speziellen, gestuften Öffnungen versehenes Lochblech 37 zu ersetzen. Ein solches Lochblech 37 ist für eine Anordnung mit internem Absorber in Figur 10 dargestellt. Das Lochblech 37 weist von den beiden Seiten Öffnungen verschiedenen Durchmessers auf, wobei der der Verbrennungszone 23 zugewandte zweite Stufenteil 39 den Dämpfungsrohren 27b aus Figur 6 nachzugestalten ist, und der andere, erste Stufenteil 38 die echofreie Transmission sicherstellt und den Öffnungen 33 aus Figur 6 entspricht. Auf diese Weise hat man den Vorteil, nur zwei Lochplatten vorsehen zu müssen, was die Kühlung und die Konstruktion wesentlich vereinfacht, und trotzdem eine effiziente kombinierte Anordnung von Helmholtzresonatoren und Schallabsorbierer zu haben.Because in an arrangement with three spaced perforated plates, the cooling in particular the wall exposed to the combustion zone 23 is no longer optimal can be accomplished, it can prove to be advantageous, according to another Embodiment of the invention, the sound-absorbing perforated plate and the perforated plate, which forms the damping tubes of the Helmholtz resonators, immediately to be placed next to each other, or even by one, with special, stepped Openings provided perforated plate 37 to be replaced. Such a perforated plate 37 is for an arrangement with internal absorber shown in Figure 10. The perforated plate 37 has openings of different diameters from the two sides, wherein the second stage part 39 facing the combustion zone 23 to the damping tubes 27b from FIG. 6, and the other, first step part 38 ensures anechoic transmission and corresponds to the openings 33 from FIG. 6. In this way you have the advantage of only having to provide two perforated plates, which greatly simplifies cooling and construction, and still one efficient combined arrangement of Helmholtz resonators and sound absorbers to have.

Alle der obigen Ausführungsbeispiele zeichnen sich dadurch aus, dass sie auf einfache Weise in eine bestehende Brennkammer eingebaut werden können. In den hier geschilderten Ausführungsbeispielen wird dabei die ehemalige radiale Innenwand 17 einmal als zweite 17a und einmal als dritte 17b Lochplatte der dreiteiligen Anordnung verwendet. Selbstverständlich kann die ehemalige radiale Innenwand 17 aber die Aufgabe jeder der drei Lochplatten übernehmen oder auch die des Lochblechs 37 mit gestuften Öffnungen. Je nach Platzverhältnissen und schon vorliegenden Bohrungen 22 in der radialen Innenwand 17 kann somit die Nachrüstung auf die eine oder andere Weise vorgenommen werden.All of the above exemplary embodiments are distinguished in that they are based on can be easily installed in an existing combustion chamber. In The exemplary embodiments described here become the former radial Inner wall 17 once as the second 17a and once as the third 17b perforated plate three-part arrangement used. Of course, the former radial Inner wall 17 but take over the task of each of the three perforated plates or else that of the perforated plate 37 with stepped openings. Depending on space and already existing bores 22 in the radial inner wall 17 can thus Retrofitting can be done in one way or another.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
Sekundärbrennkammersecondary combustion chamber
1111
Aussenwandouter wall
1212
Innenwand (Verbrennungszone)Inner wall (combustion zone)
1313
Heissgasauslasshot gas outlet
1414
KühlluftkanalCooling air duct
1515
Innenwand (Zuströmzone)Inner wall (inflow zone)
1616
hinterer Kühlluftkanalrear cooling air duct
1717
radiale Innenwandradial inner wall
17a17a
zweite Lochplattesecond perforated plate
17b17b
dritte Lochplattethird perforated plate
1818
Brennstofflanzefuel lance
1919
Düse (Brennstofflanze)Nozzle (fuel lance)
2020
Zuströmzoneinflow zone
2121
Öffnung (Wand 15)Opening (wall 15)
2222
Öffnung (Wand 17) Opening (wall 17)
2323
Verbrennungszonecombustion zone
2424
erste Lochplattefirst perforated plate
2525
erste Öffnungfirst opening
2626
erstes Zwischenvolumenfirst intermediate volume
27a27a
zweite Öffnungsecond opening
27b27b
dritte Öffnungthird opening
2828
dritte Öffnungthird opening
2929
Lochplatteperforated plate
3030
zweites Zwischenvolumensecond intermediate volume
3131
Schallwellensound waves
3232
erstes Zwischenvolumenfirst intermediate volume
3333
Öffnung in 34Opening in 34
3434
zweite Lochplattesecond perforated plate
3535
zweites Zwischenvolumensecond intermediate volume
3636
Lochblechperforated sheet
3737
gestufte Öffnungstepped opening
3838
erster Stufenteilfirst stage part
3939
zweiter Stufenteilsecond stage
LL
Länge des DämpfungsvolumensLength of the damping volume
II
Länge des HalsesNeck length
XX
Abstand des externen perforierten Bleches von 17Distance of the external perforated sheet of 17
L1L1
Länge des DämpfungsvolumensLength of the damping volume
I1I1
Länge des HalsesNeck length
YY
Abstand des internen perforierten Bleches von 17Internal perforated sheet spacing of 17

Claims (12)

  1. Combustion chamber (10) for a gas turbine, in which combustion chamber (10) the hot combustion gases of a combustion zone (23) are surrounded by inner walls (12, 17) which are cooled by cooling air, which is introduced through cooling air ducts (14, 16) outside the inner walls (12, 17), which cooling air ducts (14, 16) are formed by an outer wall (11) of the combustion chamber (10) and the inner walls (12, 17), the inner wall (17) being formed, at least in a partial region of the inner walls (12, 17), from at least two perforated plates (24, 17a; 24, 17a) arranged essentially parallel to one another, a first perforated plate (24) bordering directly on the cooling air ducts (14, 16) and being provided with a plurality of first openings (25) through which cooling air (22) from the cooling air ducts (14, 16) flows into a first intermediate volume (26, 32) located behind the first perforated plate, a further perforated plate (17a, 17b) being arranged behind the first perforated plate (24), in the direction of the combustion zone (23), which further perforated plate (17a, 17b) is provided with a plurality of further openings (27a, 27b), the distance (L, L1) between the first perforated plate (24) and the further perforated plate (17a, 17b) and the geometrical dimensions (I, I1, a, A) of the further openings (27a, 27b) being selected in such a way [sic], characterized in that the openings (27a, 27b), together with intermediate volumes (26, 32, 35) present between the perforated plates (24, 17a, 17b), form a plurality of mutually connected Helmholtz resonators and act as noise dampers for acoustic vibrations (31) occurring in the combustion chamber, and in addition further means (29, 34) which act to absorb noise are present.
  2. Combustion chamber (10) according to Claim 1, characterized in that, at least in a partial region of the inner walls (12, 17), the inner wall (17) is formed from three perforated plates (24, 17a, 29; 24, 34, 17a) arranged essentially parallel to one another, the first perforated plate (24) bordering directly on the cooling air ducts (14, 16) and being provided with a plurality of first openings (25) through which cooling air (22) from the cooling air ducts (14, 16) flows into a first intermediate volume (26, 32) located behind the first perforated plate, which first intermediate volume (26, 32) is bounded, on the side facing towards the cooling air ducts (14, 16), by the first perforated plate (24) and, on the opposite side, by a second perforated plate (17a, 34), which second perforated plate (17a, 34) is provided with a plurality of second openings (27a, 33), in that a third perforated plate (17b, 29) is arranged on the side of the second perforated plate (17a, 34) facing away from the first intermediate volume (26, 32), which third perforated plate (17b, 29) is provided with a plurality of third openings (27b, 28) and borders on the combustion zone (23), and in that at least one of the perforated plates (29, 34) is configured to absorb noise.
  3. Combustion chamber (10) according to Claim 2, characterized in that the contraction ratio, defined as the ratio between the area (b) of the opening (28, 33) and the area (B) located in front of it in the direction of the combustion zone (23), is essentially the same for the second (33) or the third (28) openings as the maximum Mach number occurring in the combustion space (23), which is defined as the ratio of the source velocity and the sonic velocity, and in that the perforated plate (29, 34) provided with such openings (33, 28) acts in a noise-absorbing manner.
  4. Combustion chamber (10) according to one of Claims 2 or 3, characterized in that the second (17a, 34) and the third (17b, 29) perforated plates are at such a distance from one another that a second intermediate volume (30, 35) is formed.
  5. Combustion chamber (10) according to one of Claims 2 to 4, characterized in that the distance (L) between the first perforated plate (24) and the second perforated plate (17a) and the geometrical dimensions (I, a, A) of the second openings (27a) are selected in such a way that the second openings (27a), in combination with the first intermediate space (26) arranged between the first (24) and the second (17a) perforated plates, provide Helmholtz resonators whose resonant frequency is essentially located within the range of the acoustic vibrations (31) occurring in the combustion space (23).
  6. Combustion chamber (10) according to Claims 3 and 5, characterized in that the third perforated plate (29) is configured to noise absorb.
  7. Combustion chamber (10) according to Claim 6, characterized in that the second perforated plate (17a) has a thickness (I) in the range from 0.1 to 1 cm, in particular preferably 0.6 cm, in that the area ratio of the acoustically relevant partial areas (A) of the first intermediate volume (26) and the areas (a) of the second openings (27a) is in the range from 5 to 10, in particular preferably 8, in that the distance (L) of the first (24) from the second (17a) perforated plate is 0.1 to 1 cm, in particular preferably 0.6 cm, in that the product of the contraction ratio of the third openings (28) and the maximum Mach number is in the range from 1 to 0.5, and in that the area ratio of the acoustically relevant partial areas (B) in the combustion space (23) and the acoustically relevant partial areas (A) of the first intermediate volume (26) is in a range from 1 to 2, so that the Helmholtz resonators, in combination with the noise-absorbing perforated plate (29), absorb acoustic vibrations (31) occurring in the combustion space (23) with frequencies in the range from 2 to 6 kHz.
  8. Combustion chamber (10) according to one of Claims 2 to 4, characterized in that the distance (L1) between the first perforated plate (24) and the third perforated plate (17b) and the geometrical dimensions (I1, a, A) of the third openings (27b) are selected in such a way that the third openings (27b), in combination with the intermediate space arranged between the first (24) and the third (17b) perforated plate, provide Helmholtz resonators whose resonant frequency is essentially located within the range of the acoustic vibrations (31) occurring in the combustion space (23).
  9. Combustion chamber (10) according to Claims 3 and 8, characterized in that the second perforated plate (34) is configured to absorb noise.
  10. Combustion chamber (10) according to Claim 9, characterized in that the third perforated plate (17b) has a thickness (I1) in the range from 0.1 to 1 cm, in particular preferably 0.6 cm, in that the area ratio of the acoustically relevant partial areas (A) of the intermediate space and the areas (a) of the third openings (27b) is in the range from 5 to 10, in particular preferably 8, in that the distance (L1) of the first (24) from the third (17b) perforated plate is 0.1 to 1 cm, in particular preferably 0.6 cm, in that the product of the contraction ratio of the second openings (33) and the maximum Mach number is in the range from 2.5 to 0.5, and in that the area ratio of the acoustically relevant partial areas (B) in the combustion space (23) and the acoustically relevant partial areas (A) of the first intermediate volume (26) is in a range from 1 to 2, so that the Helmholtz resonators, in combination with the noise-absorbing perforated plate (34), absorb acoustic vibrations (31) occurring in the combustion space (23) with frequencies in the range from 2 to 6 kHz.
  11. Combustion chamber (10) according to one of Claims 2 to 10, characterized in that the second (17a, 34) and the third (29, 17b) perforated plates lie directly one above the other, and in that the second (27a, 33) and the third (28, 27b) openings are arranged to be equally distributed and concentric.
  12. Combustion chamber (10) according to Claim 11, characterized in that the second (17a, 34) and the third (29, 17b) perforated plates are formed by a perforated diaphragm (36) which has stepped openings (37), whose first stepped parts (38) facing towards the first perforated plate (24) correspond to the second openings (27a, 33) and whose stepped parts (39) facing towards the combustion space (23) correspond to the third openings (28, 27b).
EP98810983A 1998-09-30 1998-09-30 Gas turbine combustor Expired - Lifetime EP0990851B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59809097T DE59809097D1 (en) 1998-09-30 1998-09-30 Combustion chamber for a gas turbine
EP98810983A EP0990851B1 (en) 1998-09-30 1998-09-30 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810983A EP0990851B1 (en) 1998-09-30 1998-09-30 Gas turbine combustor

Publications (2)

Publication Number Publication Date
EP0990851A1 EP0990851A1 (en) 2000-04-05
EP0990851B1 true EP0990851B1 (en) 2003-07-23

Family

ID=8236361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810983A Expired - Lifetime EP0990851B1 (en) 1998-09-30 1998-09-30 Gas turbine combustor

Country Status (2)

Country Link
EP (1) EP0990851B1 (en)
DE (1) DE59809097D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752846B2 (en) 2004-05-05 2010-07-13 Alstom Technology Ltd Combustion chamber for a gas turbine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039533A (en) * 2000-07-21 2002-02-06 Mitsubishi Heavy Ind Ltd Combustor, gas turbine, and jet engine
US6530221B1 (en) 2000-09-21 2003-03-11 Siemens Westinghouse Power Corporation Modular resonators for suppressing combustion instabilities in gas turbine power plants
US6973790B2 (en) 2000-12-06 2005-12-13 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor, gas turbine, and jet engine
JP3676228B2 (en) 2000-12-06 2005-07-27 三菱重工業株式会社 Gas turbine combustor, gas turbine and jet engine
ES2309029T3 (en) 2001-01-09 2008-12-16 Mitsubishi Heavy Industries, Ltd. GAS TURBINE COMBUSTION CHAMBER.
US7832211B2 (en) * 2002-12-02 2010-11-16 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor and a gas turbine equipped therewith
EP1624250A1 (en) * 2004-08-03 2006-02-08 Siemens Aktiengesellschaft Apparatus for reducing thermoacoustic oscillations in combustion chambers
GB0425794D0 (en) 2004-11-24 2004-12-22 Rolls Royce Plc Acoustic damper
EP2282120A1 (en) * 2009-06-26 2011-02-09 Siemens Aktiengesellschaft Combustion chamber assembly for dampening thermoacoustic oscillations, gas turbine and method for operating such a gas turbine
ES2400267T3 (en) 2009-08-31 2013-04-08 Alstom Technology Ltd Combustion device of a gas turbine
EP2385303A1 (en) 2010-05-03 2011-11-09 Alstom Technology Ltd Combustion Device for a Gas Turbine
US20140123649A1 (en) * 2012-11-07 2014-05-08 Juan E. Portillo Bilbao Acoustic damping system for a combustor of a gas turbine engine
EP3051206B1 (en) * 2015-01-28 2019-10-30 Ansaldo Energia Switzerland AG Sequential gas turbine combustor arrangement with a mixer and a damper
CN113757720B (en) * 2021-09-18 2023-01-31 北京航空航天大学 Combustion oscillation control device and method and combustion chamber

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH284190A (en) * 1950-09-04 1952-07-15 Bbc Brown Boveri & Cie Metal combustion chamber for generating hot gases, especially propellants for gas turbine systems.
DE59208193D1 (en) 1992-07-03 1997-04-17 Abb Research Ltd Afterburner
EP0576717A1 (en) * 1992-07-03 1994-01-05 Abb Research Ltd. Gas turbine combustor
EP0597138B1 (en) 1992-11-09 1997-07-16 Asea Brown Boveri AG Combustion chamber for gas turbine
CA2141066A1 (en) 1994-02-18 1995-08-19 Urs Benz Process for the cooling of an auto-ignition combustion chamber
DE69526615T2 (en) * 1994-09-14 2002-11-28 Mitsubishi Heavy Ind Ltd Wall structure for the outlet nozzle of a supersonic jet engine
US5644918A (en) 1994-11-14 1997-07-08 General Electric Company Dynamics free low emissions gas turbine combustor
GB2309296B (en) * 1995-10-11 2000-02-09 Europ Gas Turbines Ltd Gas turbine engine combuster
DE59709276D1 (en) * 1997-07-15 2003-03-13 Alstom Switzerland Ltd Vibration damping combustion chamber wall structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752846B2 (en) 2004-05-05 2010-07-13 Alstom Technology Ltd Combustion chamber for a gas turbine

Also Published As

Publication number Publication date
DE59809097D1 (en) 2003-08-28
EP0990851A1 (en) 2000-04-05

Similar Documents

Publication Publication Date Title
EP0990851B1 (en) Gas turbine combustor
EP2334558B1 (en) Sound absorber for an auxiliary engine of an aircraft
DE2404001C2 (en) Sound suppression fairing for gas turbine engine flow ducts
DE2822971C2 (en) Exhaust device for internal combustion engines
DE2920278C2 (en) Soundproofing device
EP1423645B1 (en) Damping arrangement for reducing combustion chamber pulsations in a gas turbine system
DE102004058418B4 (en) Exhaust muffler device
EP0971172B1 (en) Gas turbine combustion chamber with silencing wall structure
DE10325691A1 (en) Reheat combustion system for a gas turbine
EP1715189B1 (en) Noise attenuator designed and meant for a compressor
EP2559942A1 (en) Gas turbine combustion chamber head with cooling and damping
DE4316475C2 (en) A gas turbine combustor
CH680523A5 (en)
DE102010028089B4 (en) Pipe muffler for a turbomachine and method for installing a pipe muffler
EP1483536B1 (en) Gas turbine
EP2394033B1 (en) Muffler with helical inserts
EP1832812A2 (en) Gas turbine combustion chamber wall with absorption of combustion chamber vibrations
DE102004010620B4 (en) Combustion chamber for the effective use of cooling air for the acoustic damping of combustion chamber pulsation
DE19948674B4 (en) Combustion device, in particular for the drive of gas turbines
EP3117148B1 (en) Burner arrangement with resonator
DE2908506C2 (en) Silencers for internal combustion engines
DE69917917T2 (en) REACTIVE MUFFLER FOR VENTILATION CHANNELS AND USE THEREOF
DE202021101036U1 (en) Soundproofing device for a room air and air conditioning system
DE202007003923U1 (en) Sound baffle system for ducts has a widened duct section with inner sleeve and with resonance depressing chambers
DE1200007B (en) Sound absorber with a backdrop for attenuating noise emitted from a wall opening or the like

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000927

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB (SCHWEIZ) AG

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20020724

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59809097

Country of ref document: DE

Date of ref document: 20030828

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809097

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809097

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809097

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59809097

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809097

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170921

Year of fee payment: 20

Ref country code: DE

Payment date: 20170928

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59809097

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180929