EP0576717A1 - Gas turbine combustor - Google Patents

Gas turbine combustor Download PDF

Info

Publication number
EP0576717A1
EP0576717A1 EP92111346A EP92111346A EP0576717A1 EP 0576717 A1 EP0576717 A1 EP 0576717A1 EP 92111346 A EP92111346 A EP 92111346A EP 92111346 A EP92111346 A EP 92111346A EP 0576717 A1 EP0576717 A1 EP 0576717A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
wall parts
flame tube
gas turbine
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92111346A
Other languages
German (de)
French (fr)
Inventor
Jakob Prof.Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP92111346A priority Critical patent/EP0576717A1/en
Priority to DE19934316475 priority patent/DE4316475C2/en
Publication of EP0576717A1 publication Critical patent/EP0576717A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • F23R3/08Arrangement of apertures along the flame tube between annular flame tube sections, e.g. flame tubes with telescopic sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the invention relates to a gas turbine combustion chamber with a flame tube, which delimits a combustion chamber and is exposed on its side facing away from the combustion chamber to an air stream supplied by the compressor of the gas turbine, the flame tube essentially being composed of wall parts, and the outer wall parts facing away from the combustion chamber each having a plurality , Have circumferentially distributed inlet openings through which the cooling air is introduced into an intermediate space arranged in the flame tube, from which the cooling air is introduced into the combustion chamber via outlet openings in the inner wall parts facing the combustion chamber.
  • the invention has for its object in a gas turbine combustion chamber of the type mentioned at the minimum Cooling air consumption and a high pressure loss coefficient significantly increase the soundproofing of a combustion chamber wall.
  • this object is achieved according to the invention in that the space between the wall parts is coupled to a large, closed additional volume to form a Helmholtz resonator that the inlet openings in the outer wall parts are designed as feed pipes and the outlet openings in the inner wall parts are designed as damping pipes.
  • the damping system can thus be effectively integrated into the cooling system.
  • adequate damping of the combustion chamber vibrations can also be achieved. Since the resonance and thus the damping become weaker with larger amounts of cooling air, only enough cooling air is allowed to flow through that a significant heating of the resonator is avoided.
  • the turbine 1, of which the first axially flowed stages in the form of three guide rows 2 'and run rows 2' 'is shown in FIG. 1, essentially consists of the bladed turbine rotor 3 and the blade carrier 4 equipped with guide blades.
  • the blade carrier is in the Turbine housing 5 suspended.
  • the turbine housing 5 also includes the collecting space 6 for the compressed combustion air. From this plenum, the combustion air enters the annular combustion chamber 7, which in turn enters the turbine inlet, i.e. opens upstream of the first guide row 2 '.
  • the compressed air arrives in the collecting space from the diffuser 8 of the compressor 9. Of the latter, only the last three stages are shown in the form of three guide rows 10 'and rows 10' '.
  • the rotor blades of the compressor and the turbine sit on a common shaft 11, the central axis of which represents the longitudinal axis 12 of the gas turbine unit.
  • the compressed combustion air enters the collecting chamber 6 in the direction of the arrow in the burner 13, which is only shown as an example, of which 36 pieces are evenly distributed around the circumference.
  • the fuel is injected into the combustion chamber 15 via a fuel nozzle 14.
  • the fuel nozzle In the plane of the primary air inlet, the fuel nozzle is surrounded by a swirl body 16 in the form of vortex blades.
  • the air reaches the primary zone of the combustion chamber 15 through the vortex blades, in which the combustion process takes place.
  • the vortex blades cause one Swirl flow with an air core directed against the burner, which anchors the flame to the burner so that it does not tear off despite the high air speed.
  • the turbulent flow ensures rapid combustion.
  • the annular combustion chamber 15 extends downstream of the burner orifices up to the turbine inlet. It is delimited both inside and outside by the flame tube 17.
  • This flame tube can be designed as a self-supporting structure, it preferably consisting of a number of longitudinally arranged wall parts 18, 19 both on its inner ring and on its outer ring. These wall parts, which can be cast parts, are bent in the axial direction of the turbine in accordance with the course of the combustion chamber through which flow and extend over the entire axial length of the flame tube.
  • the flame tube on its side facing away from the combustion chamber is exposed to the air flow in the collecting chamber 6 supplied by the compressor 9.
  • the outer wall parts 18 have a plurality of inlet openings 20 distributed over the circumference, through which the cooling air is introduced into an intermediate space 21 formed in the flame tube.
  • these inlet openings 20 are impingement cooling bores through which the inflowing air reaches the inside of the inner wall part 19 impacts and performs its cooling function there. This is the first cooling stage.
  • the second cooling stage is designed as film cooling.
  • the requirement also applies to the outlet openings in the inner wall part 19 that the cooling air is introduced into the combustion chamber 15 in order to maintain cooling film in such a way that it not only coincides in the same direction, but also in its direction as closely as possible in the direction of flow of the combustion gases near the wall of the flame tube.
  • these outlet openings 22 are shown as oblique bores for the sake of simplicity. It could also be overlapping bricks, as they are known from the combustion chamber construction.
  • a rinsed Helmholtz resonator is now to be used for sound attenuation. It can easily be seen that the space 21 between the two wall parts 18 and 19 alone has too little volume for this to achieve the correct frequency. The intermediate space 21 is therefore coupled to a large, closed additional volume 23 at a suitable location.
  • the inlet openings 20 in the outer wall parts 19 are designed as feed pipes and the outlet bores 22 in the inner wall parts 18 as damping pipes of the Helmholtz resonator.
  • the feed pipes 20 are dimensioned such that they cause a relatively high pressure drop for the cooling air flow.
  • the damping tubes 22, on the other hand, allow the cooling air to enter the interior of the combustion chamber with a low residual pressure drop.
  • the limitation of the pressure drop in the damping tubes results from the requirement that even with uneven pressure distribution on the inside of the combustion chamber wall, an adequate cooling air flow into the combustion chamber is always guaranteed. Of course, no one is allowed to Place hot gas in reverse direction to enter the cooling system.
  • the choice of the size of the additional volume 23 results from the requirement that the phase angle between the fluctuations in the cooling air mass flows through the openings of the outer and inner wall parts should be greater than or equal to ⁇ / 2.
  • this requirement means that the compensation volume should be at least so large that the Helmholtz frequency of the Helmholtz resonator, which is formed by the additional volume, the volume of the space and the cooling air openings, is at least that Frequency of the combustion chamber vibration to be damped reached.
  • the compensation volume of the Helmholtz resonator used is preferably designed for the lowest natural frequency of the combustion chamber. It is also possible to choose an even larger volume.
  • the basic features of a flow through a Helmholtz resonator as can be used in a combustion chamber, but also everywhere else, are shown in FIG. 3.
  • the resonator essentially consists of the feed tube 20a, the resonance volume 23a and the damping tube 22a.
  • the feed pipe 20a determines the pressure drop.
  • the speed at the end of the feed pipe, the dynamic pressure of the jet together with the losses corresponds to the pressure drop across the combustion chamber. Only enough air is supplied that the interior of the damper does not heat up. Heating by radiation from the area of the combustion chamber would result in the frequency not remaining stable. The flushing should therefore only dissipate the radiated heat. So far, Helmholtz resonators are known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

In a gas turbine combustion chamber, the flame tube is exposed on its side averted from the combustion chamber (15) to an air flow supplied from the compressor of the gas turbine. The flame tube is assembled essentially from wall parts (18, 19), and the other wall parts (18) facing the combustion chamber respectively have a plurality of inlet openings (20) which are distributed over the circumference and via which the cooling air is introduced into an interspace (21) arranged in the flame tube. The cooling air is introduced into the combustion chamber from the interspace via exit bores (22) in the inner wall parts (19) facing the combustion chamber. The interspace (21) between the wall parts (18, 19) is coupled to a large, sealed additional volume (23) in order to form a Helmholtz resonator. The inlet openings (20) are constructed in the outer wall parts (19) as feed tubes, and the outlet bores (22) are constructed in the inner wall parts (18) as damping (attenuator) tubes of the Helmholtz resonator. <IMAGE>

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine Gasturbinenbrennkammer mit einem Flammrohr, welches einen Verbrennungsraum begrenzt und auf seiner vom Verbrennungsraum abgewandten Seite einem vom Verdichter der Gasturbine gelieferten Luftstrom ausgesetzt ist, wobei das Flammrohr sich im wesentlichen aus Wandteilen zusammensetzt, und wobei die dem Verbrennungsraum abgewandten äusseren Wandteile jeweils mehrere, über dem Umfang verteilte Einlassöffnungen aufweisen, über die die Kühlluft in einen im Flammrohr angeordneten Zwischenraum eingeleitet wird, aus welchem die Kühlluft über Austrittsöffnungen in den dem Verbrennungsraum Zugewandten inneren Wandteilen in den Verbrennungsraum eingeleitet wird.The invention relates to a gas turbine combustion chamber with a flame tube, which delimits a combustion chamber and is exposed on its side facing away from the combustion chamber to an air stream supplied by the compressor of the gas turbine, the flame tube essentially being composed of wall parts, and the outer wall parts facing away from the combustion chamber each having a plurality , Have circumferentially distributed inlet openings through which the cooling air is introduced into an intermediate space arranged in the flame tube, from which the cooling air is introduced into the combustion chamber via outlet openings in the inner wall parts facing the combustion chamber.

Stand der TechnikState of the art

Gasturbinen mit derartigen, luftgekühlten Flammrohren sind bekannt, bspw. aus der US 4,077,205 oder der US 3,978,662. Dort sind Kühlsysteme für Flammrohre gezeigt und beschrieben, die aus sich in Turbinenachsrichtung überlappenden Wandteilen aufgebaut sind. Das jeweilige Flammrohr weist eine Lippe auf, die sich über den Schlitz erstreckt, durch den der Kühlluftfilm austritt. Dieser Kühlluftfilm soll an der Wand des Flammrohres haften, um für dieses eine kühlende Sperrschicht zu bilden.Gas turbines with such air-cooled flame tubes are known, for example from US 4,077,205 or US 3,978,662. There, cooling systems for flame tubes are shown and described, which are constructed from wall parts that overlap in the turbine axial direction. The respective flame tube has a lip which extends over the slot through which the cooling air film emerges. This cooling air film should adhere to the wall of the flame tube in order to form a cooling barrier layer for it.

Moderne hochbelastete Gasturbinen erfordern zunehmend komplexere und wirkungsvollere Kühlmethoden. Um niedrige NOx-Emissionen zu erzielen, wird versucht, einen zunehmenden Anteil der Luft durch die Brenner selbst zu leiten. Dieser Zwang zur Reduktion der Kühlluftströme ergibt sich aber auch aus Gründen, die mit der zunehmenden Heissgastemperatur beim Eintritt einer modernen Gasturbine in Zusammenhang stehen. Weil auch die Kühlung der übrigen Anlagenteile wie Beschaufelung, Maschinenwelle etc. immer schärferen Anforderungen genügen muss, und weil die Heissgastemperaturen, die im Interesse eines hohen thermischen Wirkungsgrades immer weiter gesteigert werden, auch direkt zu einer stark erhöhten thermischen Belastung der Brennkammerwände führen, muss mit der Brennkammerkühllluft sehr sparsam umgegangen werden. Diese Anforderungen führen in aller Regel zu mehrstufigen Kühltechniken, wobei der Druckverlustbeiwert, d.h. der durch die Kühlung verursachte Gesamtdruckabfall dividiert durch einen Staudruck beim Kühllufteintritt in die Brennkammer, recht hoch sein kann.Modern, highly loaded gas turbines require increasingly complex and effective cooling methods. In order to achieve low NO x emissions, an attempt is made to pass an increasing proportion of the air through the burners themselves. This compulsion to reduce the cooling air flows also arises for reasons related to the increasing hot gas temperature when a modern gas turbine enters. Because the cooling of the other parts of the system, such as blading, machine shaft etc., must also meet increasingly stringent requirements, and because the hot gas temperatures, which are constantly increasing in the interest of high thermal efficiency, also directly lead to a greatly increased thermal load on the combustion chamber walls, must also be included the combustion chamber cooling air can be used very sparingly. These requirements generally lead to multi-stage cooling techniques, whereby the pressure loss coefficient, ie the total pressure drop caused by the cooling divided by a dynamic pressure when the cooling air enters the combustion chamber, can be quite high.

Bei konventionellen Brennkammern spielt die Kühlung in der Regel eine äusserst wichtige Rolle für die Schalldämpfung der Brennkammer. Die oben erwähnte Reduktion des Kühlluftmassenstroms gepaart mit einem stark erhöhten Druckverlustbeiwert der gesamten Brennkammerwandkühlung führt nun zu einer fast völligen Unterdrückung der Schalldämpfung. Die Folge dieser Entwicklung ist ein zunehmender Vibrationspegel in modernen LOW-NOx-Brennkammern.In conventional combustion chambers, cooling generally plays an extremely important role in the soundproofing of the combustion chamber. The above-mentioned reduction of the cooling air mass flow paired with a greatly increased pressure loss coefficient of the entire combustion chamber wall cooling now leads to an almost complete suppression of the sound insulation. The consequence of this development is an increasing vibration level in modern LOW-NO x combustion chambers.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer der eingangs genannten Art bei minimalstem Kühlluftverbrauch und hohem Druckverlustbeiwert die Schalldämpfung einer Brennkammerwand wesentlich zu verstärken.The invention has for its object in a gas turbine combustion chamber of the type mentioned at the minimum Cooling air consumption and a high pressure loss coefficient significantly increase the soundproofing of a combustion chamber wall.

Ausgehend von einem System von aufeinanderfolgenden Kühltechniken, hier Prallkühlung mit anschliessender Filmkühlung, welches System aufgrund der "Sandwichbauweise" mit Zwischenräumen arbeitet, wird diese Aufgabe erfindungsgemäss dadurch gelöst, dass der Zwischenraum zwischen den Wandteilen zwecks Bildung eines Helmholtzresonators an ein grosses, abgeschlossenes Zusatzvolumen angekoppelt ist, dass die Einlassöffnungen in den äusseren Wandteilen als Zuführrohre und die Austrittsöffnungen in den inneren Wandteilen als Dämpfungsrohre ausgebildet sind.Starting from a system of successive cooling techniques, here impingement cooling with subsequent film cooling, which system works with spaces due to the "sandwich construction", this object is achieved according to the invention in that the space between the wall parts is coupled to a large, closed additional volume to form a Helmholtz resonator that the inlet openings in the outer wall parts are designed as feed pipes and the outlet openings in the inner wall parts are designed as damping pipes.

Das Dämpfungssystem kann damit wirkungsvoll in das Kühlsystem integriert werden. Mit der neuen, sehr einfachen Massnahme ist ausser einer effizienten Prall/Filmkühlung mit einer möglichst kleinen Kühlluftmenge auch eine hinreichende Dämpfung der Brennkammerschwingungen erreichbar. Da mit grösseren Kühlluftmengen die Resonanz und somit die Dämpfung schwächer werden, wird nur gerade soviel Kühlluft durchströmen lassen, dass ein nennenswertes Aufheizen des Resonators vermieden wird.The damping system can thus be effectively integrated into the cooling system. With the new, very simple measure, in addition to efficient impact / film cooling with the smallest possible amount of cooling air, adequate damping of the combustion chamber vibrations can also be achieved. Since the resonance and thus the damping become weaker with larger amounts of cooling air, only enough cooling air is allowed to flow through that a significant heating of the resonator is avoided.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer einwelligen axialdurchströmten Gasturbine mit einer ringförmigen Brennkammer dargestellt.
Es zeigen:

Fig.1
einen Teillängsschnitt der Gasturbine;
Fig.2
einen Teillängschnitt durch das Flammrohr;
Fig.3
das Prinzip des Helmholtzresonators.
In the drawing, an embodiment of the invention is shown using a single-shaft, axially flow-through gas turbine with an annular combustion chamber.
Show it:
Fig. 1
a partial longitudinal section of the gas turbine;
Fig. 2
a partial longitudinal section through the flame tube;
Fig. 3
the principle of the Helmholtz resonator.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise das Abgasgehäuse der Gasturbine mit Abgasrohr und Kamin sowie die Eintrittspartien des Verdichterteils. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. The system does not show, for example, the exhaust gas casing of the gas turbine with the exhaust pipe and chimney, and the inlet parts of the compressor part. The direction of flow of the work equipment is indicated by arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Die Turbine 1, von der in Fig.1 die ersten axialdurchströmten Stufen in Form von je drei Leitreihen 2' und Laufreihen 2'' dargestellt ist, besteht im wesentlichen aus dem beschaufelten Turbinenrotor 3 und dem mit Leitschaufeln bestückten Schaufelträger 4. Der Schaufelträger ist im Turbinengehäuse 5 eingehängt. Im dargestellten Fall umfasst das Turbinengehäuse 5 ebenfalls den Sammelraum 6 für die verdichtete Brennluft. Aus diesem Sammelraum gelangt die Brennluft in die Ringbrennkammer 7, welche ihrerseits in den Turbineneinlass, d.h. stromaufwärts der ersten Leitreihe 2' mündet. In den Sammelraum gelangt die verdichtete Luft aus dem Diffusor 8 des Verdichters 9. Von letzterem sind lediglich die drei letzten Stufen in Form von je drei Leitreihen 10' und Laufreihen 10'' dargestellt. Die Laufbeschaufelungen des Verdichters und der Turbine sitzen auf einer gemeinsamen Welle 11, deren Mittelachse die Längsachse 12 der Gasturbineneinheit darstellt.The turbine 1, of which the first axially flowed stages in the form of three guide rows 2 'and run rows 2' 'is shown in FIG. 1, essentially consists of the bladed turbine rotor 3 and the blade carrier 4 equipped with guide blades. The blade carrier is in the Turbine housing 5 suspended. In the illustrated case, the turbine housing 5 also includes the collecting space 6 for the compressed combustion air. From this plenum, the combustion air enters the annular combustion chamber 7, which in turn enters the turbine inlet, i.e. opens upstream of the first guide row 2 '. The compressed air arrives in the collecting space from the diffuser 8 of the compressor 9. Of the latter, only the last three stages are shown in the form of three guide rows 10 'and rows 10' '. The rotor blades of the compressor and the turbine sit on a common shaft 11, the central axis of which represents the longitudinal axis 12 of the gas turbine unit.

In den lediglich beispielsweise dargestellten Brenner 13, von denen 36 Stück am Umfang gleichmässig verteilt angeordnet sind, tritt die verdichtete Brennluft in Pfeilrichtung aus dem Sammelraum 6 ein. Der Brennstoff wird über eine Brennstoffdüse 14 in den Verbrennungsraum 15 eingespritzt. Die Brennstoffdüse ist in der Ebene der Primärlufteinführung von einem Drallkörper 16 in Form von Wirbelschaufeln umgeben. Durch die Wirbelschaufeln gelangt die Luft in die Primärzone des Verbrennungsraumes 15, in welcher sich der Verbrennungsvorgang abspielt. Die Wirbelschaufeln bewirken eine Drallströmung mit einem gegen den Brenner gerichteten Luftkern, welcher die Flamme am Brenner verankert, damit sie trotz der hohen Luftgeschwindigkeit nicht abreisst. Gleichsam wird durch die turbulente Strömung eine schnelle Verbrennung gesichert. Anlässlich dieser Verbrennung erreichen die Verbrennungsgase sehr hohe Temperaturen, was besondere Anforderungen an die zu kühlenden Wandungen des Flammrohres 17 darstellt. Dies gilt insbesondere dann, wenn statt des gezeigten Diffusionsbrenners sogenannte Low NOx-Brenner, beispielsweise Vormischbrenner zur Anwendung gelangen, welche grosse Flammrohroberflächen und relativ bescheidene Kühlluftmengen erfordern.The compressed combustion air enters the collecting chamber 6 in the direction of the arrow in the burner 13, which is only shown as an example, of which 36 pieces are evenly distributed around the circumference. The fuel is injected into the combustion chamber 15 via a fuel nozzle 14. In the plane of the primary air inlet, the fuel nozzle is surrounded by a swirl body 16 in the form of vortex blades. The air reaches the primary zone of the combustion chamber 15 through the vortex blades, in which the combustion process takes place. The vortex blades cause one Swirl flow with an air core directed against the burner, which anchors the flame to the burner so that it does not tear off despite the high air speed. At the same time, the turbulent flow ensures rapid combustion. On the occasion of this combustion, the combustion gases reach very high temperatures, which places special demands on the walls of the flame tube 17 to be cooled. This applies in particular if, instead of the diffusion burner shown, so-called low NO x burners, for example premix burners, are used, which require large flame tube surfaces and relatively modest amounts of cooling air.

Stromabwärts der Brennermündungen erstreckt sich der ringförmige Verbrennungsraum 15 bis zum Turbineneintritt. Er ist sowohl innen als auch aussen begrenzt durch das Flammrohr 17. Dieses Flammrohr kann als selbsttragende Struktur konzipiert sein, wobei es vorzugsweise sowohl an seinem Innenring als auch an seinem Aussenring aus einer Anzahl von längs angeordneten Wandteilen 18, 19 besteht. Diese Wandteile, welche Gussteile sein können, sind in Turbinenachsrichtung entsprechend dem Verlauf des durchströmten Verbrennungsraums gebogen und erstrecken sich über die ganze axiale Länge des Flammrohres.The annular combustion chamber 15 extends downstream of the burner orifices up to the turbine inlet. It is delimited both inside and outside by the flame tube 17. This flame tube can be designed as a self-supporting structure, it preferably consisting of a number of longitudinally arranged wall parts 18, 19 both on its inner ring and on its outer ring. These wall parts, which can be cast parts, are bent in the axial direction of the turbine in accordance with the course of the combustion chamber through which flow and extend over the entire axial length of the flame tube.

Wie in Fig.1 anhand der das Flammrohr umgebenden Pfeile ersichtlich, ist das Flammrohr an seiner vom Verbrennungsraum abgewandten Seite dem vom Verdichter 9 gelieferten Luftstrom im Sammelraum 6 ausgesetzt. Die äusseren Wandteile 18 weisen mehrere, über dem Umfang verteilte Einlassöffnungen 20 auf, über die die Kühlluft in einen im Flammrohr gebildeten Zwischenraum 21 eingeleitet wird.As can be seen in FIG. 1 on the basis of the arrows surrounding the flame tube, the flame tube on its side facing away from the combustion chamber is exposed to the air flow in the collecting chamber 6 supplied by the compressor 9. The outer wall parts 18 have a plurality of inlet openings 20 distributed over the circumference, through which the cooling air is introduced into an intermediate space 21 formed in the flame tube.

Wie aus der Prinzipskizze in Fig. 2 ersichtlich, handelt es sich bei diesen Einlassöffnungen 20 um Prallkühlungsbohrungen, durch welche die einströmende Luft auf die Innenseite des inneren Wandteils 19 aufprallt und dort ihre Kühlfunktion ausübt. Dies gilt als erste Kühlungsstufe.As can be seen from the schematic diagram in FIG. 2, these inlet openings 20 are impingement cooling bores through which the inflowing air reaches the inside of the inner wall part 19 impacts and performs its cooling function there. This is the first cooling stage.

Die zweite Kühlungsstufe ist als Filmkühlung ausgelegt. Somit gilt für die Austrittsöffnungen im inneren Wandteil 19 ferner die Forderung, dass die Kühlluft zwecks Kühlfilmerhaltung so in den Verbrennungsraum 15 eingeführt wird, dass sie nicht nur gleichsinnig, sondern in ihrer Richtung möglichst mit der Strömungsrichtung der Verbrennungsgase in Wandnähe des Flammrohres übereinstimmt.
Im vorliegenden Fall sind diese Austrittsöffnungen 22 der Einfachheit halber als schräge Bohrungen dargestellt. Es könnte sich dabei auch um sich überlappende Ziegel handeln, wie diese aus dem Brennkammerbau bekannt sind.
The second cooling stage is designed as film cooling. Thus, the requirement also applies to the outlet openings in the inner wall part 19 that the cooling air is introduced into the combustion chamber 15 in order to maintain cooling film in such a way that it not only coincides in the same direction, but also in its direction as closely as possible in the direction of flow of the combustion gases near the wall of the flame tube.
In the present case, these outlet openings 22 are shown as oblique bores for the sake of simplicity. It could also be overlapping bricks, as they are known from the combustion chamber construction.

Soweit sind Flammrohre bekannt. Gemäss der Erfindung soll nunmehr zur Schalldämpfung ein gespülter Helmholtzresonator zur Anwendung gelangen. Es ist ohne weiteres erkennbar, dass der Zwischenraum 21 zwischen den beiden Wandteilen 18 und 19 hierfür allein zu wenig Volumen aufweist, um die richtige Frequenz zu erreichen. Der Zwischenraum 21 wird deshalb an einer hierfür geeigneten Stelle an ein grosses, abgeschlossenes Zusatzvolumen 23 angekoppelt. Die Einlassöffnungen 20 in den äusseren Wandteilen 19 werden als Zuführrohre und die Austrittsbohrungen 22 in den inneren Wandteilen 18 als Dämpfungsrohre des Helmholtzresonators ausgebildet.So far, flame tubes are known. According to the invention, a rinsed Helmholtz resonator is now to be used for sound attenuation. It can easily be seen that the space 21 between the two wall parts 18 and 19 alone has too little volume for this to achieve the correct frequency. The intermediate space 21 is therefore coupled to a large, closed additional volume 23 at a suitable location. The inlet openings 20 in the outer wall parts 19 are designed as feed pipes and the outlet bores 22 in the inner wall parts 18 as damping pipes of the Helmholtz resonator.

Zur Funktionsfähigkeit des Helmholtzresonator sind die Zuführrohre 20 so dimensioniert, dass sie für die Kühlluftströmung einen relativ hohen Druckabfall verursachen. Durch die Dämpfungsrohre 22 hingegen gelangt die Kühlluft bei niedrigem Restdruckabfall in das Brennkammerinnere. Die Begrenzung des Druckabfalls in den Dämpfungsrohren ergibt sich aus der Forderung, dass auch bei ungleichmässiger Druckverteilung auf der Innenseite der Brennkammerwand stets eine ausreichende Kühlluftströmung in die Brennkammer hinein gewährleistet bleibt. Selbstverständlich darf an keiner Stelle Heissgas in umgekehrter Richtung in das Kühlsystem eindringen.For the functionality of the Helmholtz resonator, the feed pipes 20 are dimensioned such that they cause a relatively high pressure drop for the cooling air flow. The damping tubes 22, on the other hand, allow the cooling air to enter the interior of the combustion chamber with a low residual pressure drop. The limitation of the pressure drop in the damping tubes results from the requirement that even with uneven pressure distribution on the inside of the combustion chamber wall, an adequate cooling air flow into the combustion chamber is always guaranteed. Of course, no one is allowed to Place hot gas in reverse direction to enter the cooling system.

Die Wahl der Grösse des Zusatzvolumens 23 ergibt sich aus der Forderung, dass der Phasenwinkel zwischen den Schwankungen der Kühlluftmassenströme durch die Öffnungen der äusseren und inneren Wandteile grösser oder gleich π/2 sein soll. Für eine harmonische Schwingung mit vorgegebener Frequenz auf der Innenseite der Brennkammerwand bedeutet diese Forderung, dass das Ausgleichvolumen mindestens so gross sein soll, dass die Helmholtz-Frequenz des Helmholtzresonators, der durch das Zusatzvolumen, das Volumen des Zwischenraumes und die Kühlluftöffnungen gebildet wird, mindestens die Frequenz der zu dämpfenden Brennkammerschwingung erreicht. Daraus folgt ausserdem, dass das Ausgleichvolumen des verwendeten Helmholtzresonators vorzugsweise auf die tiefste Eigenfrequenz der Brennkammer ausgelegt wird. Möglich ist auch die Wahl eines noch grösseren Volumens. Dadurch wird erreicht, dass eine Druckschwankung auf der Innenseite der Brennkammer zu einer stark gegenphasigen Schwankung des Kühlluftmassenstromes führt, weil ja jetzt die Schwankungen der Kühlluftmassenströme durch die äusseren und inneren Wandteile nicht mehr phasengleich sind. Ausserdem erlaubt der geringe Druckabfall über die Austrittsöffnungen, d.h. die Dämpfungsrohre des Resonators, die Anwendung von grossen offenen Querschnittsflächen für die Kühlluftströmung. Dies gilt auch für den Fall, dass der mittlere Kühlluftmassenstrom sehr klein ist. Beide Faktoren tragen zu einer massiven Verstärkung der schalldämpenden Wirkung der gekühlten Brennkammer bei.The choice of the size of the additional volume 23 results from the requirement that the phase angle between the fluctuations in the cooling air mass flows through the openings of the outer and inner wall parts should be greater than or equal to π / 2. For a harmonic vibration with a predetermined frequency on the inside of the combustion chamber wall, this requirement means that the compensation volume should be at least so large that the Helmholtz frequency of the Helmholtz resonator, which is formed by the additional volume, the volume of the space and the cooling air openings, is at least that Frequency of the combustion chamber vibration to be damped reached. It also follows that the compensation volume of the Helmholtz resonator used is preferably designed for the lowest natural frequency of the combustion chamber. It is also possible to choose an even larger volume. It is thereby achieved that a pressure fluctuation on the inside of the combustion chamber leads to a strongly opposite-phase fluctuation of the cooling air mass flow, because the fluctuations of the cooling air mass flows through the outer and inner wall parts are no longer in phase. In addition, the low pressure drop across the outlet openings, i.e. the damping tubes of the resonator, the use of large open cross-sectional areas for the cooling air flow. This also applies in the event that the average cooling air mass flow is very small. Both factors contribute to a massive amplification of the sound-absorbing effect of the cooled combustion chamber.

Die grundsätzlichen Merkmale eines durchströmten Helmholtzresonators, wie er in einer Brennkammer, aber auch überall sonst, Anwendung finden kann, sind in Fig 3. dargestellt. Der Resonator besteht im wesentlichen aus dem Zuführrohr 20a, dem Resonazvolumen 23a und dem Dämpfungsrohr 22a. Das Zuführrohr 20a bestimmt den Druckabfall. Die Geschwindigkeit am Ende des Zuführrohres stellt sich so ein, dass der dynamische Druck des Strahles zusammen mit den Verlusten dem Druckabfall über der Brennkammer entspricht. Es wird nur so viel Luft zugeführt, dass das Dämpferinnere sich nicht aufheizt. Eine Aufheizung durch Strahlung aus dem Bereich der Brennkammer hätte zur Folge, dass die Frequenz nicht stabil bleibt. Die Durchspülung soll deshalb lediglich die eingestrahlte Wärmemenge abführen. Soweit sind Helmholtzresonatoren bekannt.The basic features of a flow through a Helmholtz resonator, as can be used in a combustion chamber, but also everywhere else, are shown in FIG. 3. The resonator essentially consists of the feed tube 20a, the resonance volume 23a and the damping tube 22a. The feed pipe 20a determines the pressure drop. The speed at the end of the feed pipe, the dynamic pressure of the jet together with the losses corresponds to the pressure drop across the combustion chamber. Only enough air is supplied that the interior of the damper does not heat up. Heating by radiation from the area of the combustion chamber would result in the frequency not remaining stable. The flushing should therefore only dissipate the radiated heat. So far, Helmholtz resonators are known.

Um die Leistung des Helmholtzresonators wesentlich zu steigern, hat es sich als zweckmässig erwiesen, die beiden Enden des Dämpfungsrohres 22a nicht scharfkantig auszuführen. Gewählt wird eine Abrundung, deren Krümmungsradius folgende Bedingung erfüllt:

Figure imgb0001

Darin bedeuten:

Str
die Strouhalzahl
R
der Krümmungradius der Abrundung
f
die Frequenz
u
die Strömungsgeschwindigkeit
Mit dieser Massnahme wird unter anderm erreicht, dass die Strömung am Eintritt und am Austritt des Dämpfungsrohres nicht völlig ablöst, wie das bei scharfkantigem Ein -und Austritt der Fall ist. Die Eintritts- und Austrittsverluste werden niedriger, wodurch die pulsierende Strömung wesentlich verlustärmer wird. Diese verlustarme Gestaltung führt zu sehr hohen Schwingungsamplituden, was wiederum zur Folge hat, dass der angestrebte hohe Strahlverlust an den Enden des Dämpfungsrohres weiter gesteigert wird. Anders ausgedrückt, das Anwachsen der Amplitude überkompensiert die Absenkung des Verlustbeiwertes. Im Ergebnis erzielt man einen Helmholtzresonator, der das zweifache bis dreifache an Dämpfungsleistung aufweist verglichen mit den an sich bekannten durchströmten Resonatoren.In order to significantly increase the performance of the Helmholtz resonator, it has proven expedient not to make the two ends of the damping tube 22a sharp-edged. A rounding is selected whose radius of curvature meets the following condition:
Figure imgb0001

Where:
Str
the Strouhal number
R
the radius of curvature of the fillet
f
the frequency
u
the flow rate
This measure ensures, among other things, that the flow at the inlet and outlet of the damping tube does not completely separate, as is the case with sharp-edged entry and exit. The entry and exit losses are lower, which means that the pulsating flow is much less lossy. This low-loss design leads to very high vibration amplitudes, which in turn means that the desired high beam loss at the ends of the damping tube is further increased. In other words, the increase in amplitude more than compensates for the reduction in the loss coefficient. The result is a Helmholtz resonator that has two to three times the damping power compared to the known resonators with flow.

BezugszeichenlisteReference list

11
Turbineturbine
2'2 '
TurbinenleitreiheTurbine guide series
2''2 ''
TurbinenlaufreiheTurbine run row
33rd
TurbinenrotorTurbine rotor
44th
SchaufelträgerShovel carrier
55
TurbinengehäuseTurbine casing
66
SammelraumGathering room
77
BrennkammerCombustion chamber
88th
DiffusorDiffuser
99
Verdichtercompressor
10'10 '
VerdichterleitreiheCompressor guide series
10''10 ''
VerdichterlaufreiheCompressor run series
1111
Wellewave
1212th
LängsachseLongitudinal axis
1313
Brennerburner
1414
BrennstoffdüseFuel nozzle
1515
VerbrennungsraumCombustion chamber
1616
DrallkörperSwirl body
1717th
FlammrohrFlame tube
1818th
äusseres Wandteilouter wall part
1919th
inneres Wandteilinner wall part
20, 20a20, 20a
Einlassöffnung, ZuführrohrInlet opening, feed pipe
2121
ZwischenraumSpace
22, 22a22, 22a
Austrittsbohrung, DämpfungsrohrExit bore, damping tube
23, 23a23, 23a
ZusatzvolumenAdditional volume

Claims (2)

Gasturbinenbrennkammer mit einem Flammrohr (17), welches einen Verbrennungsraum begrenzt und auf seiner vom Verbrennungsraum (15) abgewandten Seite einem vom Verdichter (11) der Gasturbine gelieferten Luftstrom ausgesetzt ist, wobei das Flammrohr sich im wesentlichen aus Wandteilen (18, 19) zusammensetzt, und wobei die dem Verbrennungsraum abgewandten äusseren Wandteile (18) jeweils mehrere, über dem Umfang verteilte Einlassöffnungen (20) aufweisen, über die die Kühlluft in einen im Flammrohr angeordneten Zwischenraum (21) eingeleitet wird, aus welchem die Kühlluft über Austrittsbohrungen (22) in den dem Verbrennungsraum zugewandten inneren Wandteilen (19) in den Verbrennungsraum eingeleitet wird,
dadurch gekennzeichnet,
dass der Zwischenraum (21) zwischen den Wandteilen (18, 19) zwecks Bildung eines Helmholtzresonators an ein grosses, abgeschlossenes Zusatzvolumen (23) angekoppelt ist, dass die Einlassöffnungen (20) in den äusseren Wandteilen (19) als Zuführrohre und die Austrittsbohrungen (22) in den inneren Wandteilen (18) als Dämpfungsrohre des Helmholtzresonators ausgebildet sind.
Gas turbine combustion chamber with a flame tube (17) which delimits a combustion chamber and is exposed on its side facing away from the combustion chamber (15) to an air flow supplied by the compressor (11) of the gas turbine, the flame tube essentially being composed of wall parts (18, 19), and the outer wall parts (18) facing away from the combustion chamber each have a plurality of inlet openings (20) distributed over the circumference, via which the cooling air is introduced into an intermediate space (21) arranged in the flame tube, from which the cooling air via outlet bores (22) the inner wall parts (19) facing the combustion chamber are introduced into the combustion chamber,
characterized,
that the space (21) between the wall parts (18, 19) is coupled to a large, closed additional volume (23) in order to form a Helmholtz resonator, that the inlet openings (20) in the outer wall parts (19) as feed pipes and the outlet bores (22 ) are formed in the inner wall parts (18) as damping tubes of the Helmholtz resonator.
Durchströmter Helmholtzresonator für eine Gasturbinenbrennkammer, im wesentlichen bestehend aus einem Zuführrohr (20a), einem Resonanzvolumen (23a) und einem Dämpfungsrohr (22a),
dadurch gekennzeichnet, dass das Dämpfungsrohr (22a) eintrittsseitig und austrittsseitig abgerundet ist.
Flow-through Helmholtz resonator for a gas turbine combustion chamber, consisting essentially of a feed pipe (20a), a resonance volume (23a) and a damping pipe (22a),
characterized in that the damping tube (22a) is rounded on the inlet side and outlet side.
EP92111346A 1992-07-03 1992-07-03 Gas turbine combustor Withdrawn EP0576717A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP92111346A EP0576717A1 (en) 1992-07-03 1992-07-03 Gas turbine combustor
DE19934316475 DE4316475C2 (en) 1992-07-03 1993-05-17 A gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP92111346A EP0576717A1 (en) 1992-07-03 1992-07-03 Gas turbine combustor

Publications (1)

Publication Number Publication Date
EP0576717A1 true EP0576717A1 (en) 1994-01-05

Family

ID=8209778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92111346A Withdrawn EP0576717A1 (en) 1992-07-03 1992-07-03 Gas turbine combustor

Country Status (2)

Country Link
EP (1) EP0576717A1 (en)
DE (1) DE4316475C2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597138A1 (en) * 1992-11-09 1994-05-18 Asea Brown Boveri Ag Combustion chamber for gas turbine
EP0716268A2 (en) * 1994-12-09 1996-06-12 ABB Management AG Cooled wall part
EP0971172A1 (en) * 1998-07-10 2000-01-12 Asea Brown Boveri AG Gas turbine combustion chamber with silencing wall structure
EP0985882A1 (en) * 1998-09-10 2000-03-15 Asea Brown Boveri AG Vibration damping in combustors
EP0990851A1 (en) * 1998-09-30 2000-04-05 Asea Brown Boveri AG Gas turbine combustor
US6170265B1 (en) 1997-07-15 2001-01-09 Abb Search Ltd. Method and device for minimizing thermoacoustic vibrations in gas-turbine combustion chambers
US6351947B1 (en) 2000-04-04 2002-03-05 Abb Alstom Power (Schweiz) Combustion chamber for a gas turbine
WO2002025174A1 (en) * 2000-09-21 2002-03-28 Siemens Westinghouse Power Corporation Modular resonators for suppressing combustion instabilities in gas turbine power plants
WO2003023281A1 (en) * 2001-09-07 2003-03-20 Alstom Technology Ltd Damping arrangement for reducing combustion chamber pulsations in a gas turbine system
WO2004003434A1 (en) * 2002-06-28 2004-01-08 Alexandre Kozyrev Thermal engine combustion chamber
US6705428B2 (en) 2000-12-08 2004-03-16 Abb Turbo Systems Ag Exhaust gas system with helmholtz resonator
US6907736B2 (en) * 2001-01-09 2005-06-21 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor having an acoustic energy absorbing wall
EP1568869A1 (en) * 2002-12-02 2005-08-31 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor, and gas turbine with the combustor
US6973790B2 (en) 2000-12-06 2005-12-13 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor, gas turbine, and jet engine
EP1666795A1 (en) * 2004-11-24 2006-06-07 Rolls-Royce Plc Acoustic damper
EP1832812A2 (en) * 2006-03-10 2007-09-12 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber wall with absorption of combustion chamber vibrations
US7857094B2 (en) * 2006-06-01 2010-12-28 Rolls-Royce Plc Combustion chamber for a gas turbine engine
EP2273196A2 (en) 2009-07-08 2011-01-12 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber head
EP2559942A1 (en) 2011-08-19 2013-02-20 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber head with cooling and damping
WO2013029984A3 (en) * 2011-09-01 2013-12-27 Siemens Aktiengesellschaft Combustion chamber for a gas turbine plant
CN103620307A (en) * 2011-07-07 2014-03-05 三菱重工业株式会社 Gas turbine combustor
EP2865947A1 (en) * 2013-10-28 2015-04-29 Alstom Technology Ltd Damper for gas turbine
RU2568030C2 (en) * 2012-10-24 2015-11-10 Альстом Текнолоджи Лтд Damping device to reduce pulsation of combustion chamber
US10197275B2 (en) 2016-05-03 2019-02-05 General Electric Company High frequency acoustic damper for combustor liners
US10513984B2 (en) 2015-08-25 2019-12-24 General Electric Company System for suppressing acoustic noise within a gas turbine combustor
WO2022191878A1 (en) * 2021-03-08 2022-09-15 Raytheon Company Attenuators for combustion noise in dual mode ramjets and scramjets

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4414232A1 (en) * 1994-04-23 1995-10-26 Abb Management Ag Device for damping thermoacoustic vibrations in a combustion chamber
DE19640980B4 (en) * 1996-10-04 2008-06-19 Alstom Device for damping thermoacoustic oscillations in a combustion chamber
DE10026121A1 (en) * 2000-05-26 2001-11-29 Alstom Power Nv Device for damping acoustic vibrations in a combustion chamber
DE102006011247A1 (en) * 2006-03-10 2007-09-13 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustion chamber wall has damping recesses for inner wall, with respective center axis arranged perpendicularly to inner wall, and cooling recesses, with respective center axis inclined at angle to inner wall
DE102006011248A1 (en) * 2006-03-10 2007-09-13 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustion chamber wall has damping recesses for inner wall, with respective center axis arranged perpendicularly to inner wall, and cooling recesses, with respective center axis inclined at angle to inner wall
DE102006026969A1 (en) 2006-06-09 2007-12-13 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustor wall for a lean-burn gas turbine combustor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077205A (en) * 1975-12-05 1978-03-07 United Technologies Corporation Louver construction for liner of gas turbine engine combustor
GB2225381A (en) * 1988-11-25 1990-05-30 Gen Electric Noise suppressor for gas flows

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978662A (en) * 1975-04-28 1976-09-07 General Electric Company Cooling ring construction for combustion chambers
FR2490786A1 (en) * 1980-09-25 1982-03-26 Centre Nat Rech Scient METHOD FOR CONTROLLING A COMBUSTION FLAME AND MICROPHONE PROBE FOR ITS IMPLEMENTATION

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077205A (en) * 1975-12-05 1978-03-07 United Technologies Corporation Louver construction for liner of gas turbine engine combustor
GB2225381A (en) * 1988-11-25 1990-05-30 Gen Electric Noise suppressor for gas flows

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597138B1 (en) * 1992-11-09 1997-07-16 Asea Brown Boveri AG Combustion chamber for gas turbine
EP0597138A1 (en) * 1992-11-09 1994-05-18 Asea Brown Boveri Ag Combustion chamber for gas turbine
EP0716268A2 (en) * 1994-12-09 1996-06-12 ABB Management AG Cooled wall part
EP0716268A3 (en) * 1994-12-09 1998-12-23 Asea Brown Boveri Ag Cooled wall part
US6170265B1 (en) 1997-07-15 2001-01-09 Abb Search Ltd. Method and device for minimizing thermoacoustic vibrations in gas-turbine combustion chambers
EP0971172A1 (en) * 1998-07-10 2000-01-12 Asea Brown Boveri AG Gas turbine combustion chamber with silencing wall structure
US6430933B1 (en) 1998-09-10 2002-08-13 Alstom Oscillation attenuation in combustors
EP0985882A1 (en) * 1998-09-10 2000-03-15 Asea Brown Boveri AG Vibration damping in combustors
EP0990851A1 (en) * 1998-09-30 2000-04-05 Asea Brown Boveri AG Gas turbine combustor
US6351947B1 (en) 2000-04-04 2002-03-05 Abb Alstom Power (Schweiz) Combustion chamber for a gas turbine
WO2002025174A1 (en) * 2000-09-21 2002-03-28 Siemens Westinghouse Power Corporation Modular resonators for suppressing combustion instabilities in gas turbine power plants
US7549506B2 (en) 2000-09-21 2009-06-23 Siemens Energy, Inc. Method of suppressing combustion instabilities using a resonator adopting counter-bored holes
US7194862B2 (en) 2000-09-21 2007-03-27 Siemens Power Generation, Inc. Resonator adopting counter-bored holes and method of suppressing combustion instabilities
US6973790B2 (en) 2000-12-06 2005-12-13 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor, gas turbine, and jet engine
US6705428B2 (en) 2000-12-08 2004-03-16 Abb Turbo Systems Ag Exhaust gas system with helmholtz resonator
US6907736B2 (en) * 2001-01-09 2005-06-21 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor having an acoustic energy absorbing wall
WO2003023281A1 (en) * 2001-09-07 2003-03-20 Alstom Technology Ltd Damping arrangement for reducing combustion chamber pulsations in a gas turbine system
US7104065B2 (en) 2001-09-07 2006-09-12 Alstom Technology Ltd. Damping arrangement for reducing combustion-chamber pulsation in a gas turbine system
WO2004003434A1 (en) * 2002-06-28 2004-01-08 Alexandre Kozyrev Thermal engine combustion chamber
EP1568869A1 (en) * 2002-12-02 2005-08-31 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor, and gas turbine with the combustor
EP1568869A4 (en) * 2002-12-02 2014-02-26 Mitsubishi Heavy Ind Ltd Gas turbine combustor, and gas turbine with the combustor
US7549290B2 (en) 2004-11-24 2009-06-23 Rolls-Royce Plc Acoustic damper
EP1666795A1 (en) * 2004-11-24 2006-06-07 Rolls-Royce Plc Acoustic damper
EP1832812A3 (en) * 2006-03-10 2012-01-04 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber wall with absorption of combustion chamber vibrations
EP1832812A2 (en) * 2006-03-10 2007-09-12 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber wall with absorption of combustion chamber vibrations
US7857094B2 (en) * 2006-06-01 2010-12-28 Rolls-Royce Plc Combustion chamber for a gas turbine engine
US8677757B2 (en) 2009-07-08 2014-03-25 Rolls-Royce Deutschland Ltd & Co Kg Combustion chamber head of a gas turbine
DE102009032277A1 (en) 2009-07-08 2011-01-20 Rolls-Royce Deutschland Ltd & Co Kg Combustion chamber head of a gas turbine
EP2273196A2 (en) 2009-07-08 2011-01-12 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber head
US10197284B2 (en) 2011-07-07 2019-02-05 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor
CN103620307A (en) * 2011-07-07 2014-03-05 三菱重工业株式会社 Gas turbine combustor
US9003800B2 (en) 2011-07-07 2015-04-14 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
CN103620307B (en) * 2011-07-07 2015-08-12 三菱日立电力系统株式会社 Gas turbine burner
EP2559942A1 (en) 2011-08-19 2013-02-20 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber head with cooling and damping
WO2013029984A3 (en) * 2011-09-01 2013-12-27 Siemens Aktiengesellschaft Combustion chamber for a gas turbine plant
CN103765107A (en) * 2011-09-01 2014-04-30 西门子公司 Combustion chamber for a gas turbine plant
CN103765107B (en) * 2011-09-01 2016-05-04 西门子公司 For the combustion chamber of gas-turbine plant
US10718520B2 (en) 2012-10-24 2020-07-21 Ansaldo Energia Switzerland AG Damper arrangement for reducing combustion-chamber pulsation
RU2568030C2 (en) * 2012-10-24 2015-11-10 Альстом Текнолоджи Лтд Damping device to reduce pulsation of combustion chamber
CN104566457A (en) * 2013-10-28 2015-04-29 阿尔斯通技术有限公司 Damper for gas turbine
US10036327B2 (en) 2013-10-28 2018-07-31 Ansaldo Energia Switzerland AG Damper with bent neck for gas turbine
EP2865947A1 (en) * 2013-10-28 2015-04-29 Alstom Technology Ltd Damper for gas turbine
US10513984B2 (en) 2015-08-25 2019-12-24 General Electric Company System for suppressing acoustic noise within a gas turbine combustor
US10197275B2 (en) 2016-05-03 2019-02-05 General Electric Company High frequency acoustic damper for combustor liners
WO2022191878A1 (en) * 2021-03-08 2022-09-15 Raytheon Company Attenuators for combustion noise in dual mode ramjets and scramjets

Also Published As

Publication number Publication date
DE4316475A1 (en) 1994-01-05
DE4316475C2 (en) 2002-11-28

Similar Documents

Publication Publication Date Title
DE4316475C2 (en) A gas turbine combustor
EP0597138B1 (en) Combustion chamber for gas turbine
EP0985882B1 (en) Vibration damping in combustors
DE19640980B4 (en) Device for damping thermoacoustic oscillations in a combustion chamber
DE60105531T2 (en) Gas turbine combustor, gas turbine and jet engine
EP1481195B1 (en) Burner, method for operating a burner and gas turbine
EP1141628B1 (en) Burner for heat generator
EP0781967B1 (en) Annular combustion chamber for gas turbine
DE19615910B4 (en) burner arrangement
EP1422403B1 (en) Fogging device for gas turbines
EP1483536B1 (en) Gas turbine
EP0687860A2 (en) Self igniting combustion chamber
CH702172A2 (en) Combustion chamber for a gas turbine, with improved cooling.
EP0489193B1 (en) Combustion chamber for gas turbine
EP1429001A2 (en) Intake silencer for gas turbines
DE4415315A1 (en) Power plant
EP0718561A2 (en) Combustor
EP0971172B1 (en) Gas turbine combustion chamber with silencing wall structure
DE112019000871T5 (en) COMBUSTION CHAMBER AND GAS TURBINE EQUIPPED WITH IT
DE60225411T2 (en) Flame pipe or clothing for the combustion chamber of a gas turbine with low pollutant emissions
DE4446543A1 (en) Power plant
EP0751351B1 (en) Combustion chamber
DE19939235B4 (en) Method for producing hot gases in a combustion device and combustion device for carrying out the method
DE4232383A1 (en) Gas turbine group
DE102004010620A1 (en) Method for the effective use of cooling for the acoustic damping of combustion chamber pulsations and combustion chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940706