EP2394033B1 - Muffler with helical inserts - Google Patents

Muffler with helical inserts Download PDF

Info

Publication number
EP2394033B1
EP2394033B1 EP10704784.7A EP10704784A EP2394033B1 EP 2394033 B1 EP2394033 B1 EP 2394033B1 EP 10704784 A EP10704784 A EP 10704784A EP 2394033 B1 EP2394033 B1 EP 2394033B1
Authority
EP
European Patent Office
Prior art keywords
gas
helical
sound
gas channel
sound absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10704784.7A
Other languages
German (de)
French (fr)
Other versions
EP2394033A1 (en
Inventor
Jörg MELCHER
Daniel Fingerhut
Christian Melcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP2394033A1 publication Critical patent/EP2394033A1/en
Application granted granted Critical
Publication of EP2394033B1 publication Critical patent/EP2394033B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/081Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling by passing the gases through a mass of particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/089Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using two or more expansion chambers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/12Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using spirally or helically shaped channels

Definitions

  • the invention relates to a silencer with at least one gas channel through which a gas flows and the features of the preamble of the independent patent claim 1.
  • the flowing gas should be able to pass through as unhindered as possible.
  • the flowing gas propagating sound waves which are to be understood here as any fast pressure fluctuations of the flowing gas, but should be as damped as possible.
  • mufflers In addition to silencers, in which sound waves energy is removed by gas friction in porous material and converted into heat, are also known mufflers that absorb sound dynamically. In engineering they are referred to as acoustic absorbers, in physics as dynamic absorbers. These are resonance systems that absorb sound occurring at their natural frequency very well and can dissipate in the sequence. Examples include so-called hole or Helmholtz resonators. It is also part of the measures known in the field of dynamic sound absorbers to build up acoustic resonators with the aid of one or more cross-sectional jumps, ie changes in the diameter of the pipe delimiting a gas duct. As a result, however, the flow resistance for the gas flowing through the muffler gas is drastically increased.
  • a muffler for internal combustion engines having the features of the preamble of independent claim 1 is known.
  • a helical installation is provided in a gas channel through which a gas flows, which gives a helical course to an interior region of the gas channel.
  • the sound is to be reduced at the helical surfaces of the helical installation by reflection and scattering and subsequent absorption in the channel wall of the gas channel and also prevented due to the so-called cut-off effect on its propagation.
  • the gas channel is surrounded by an annular channel which communicates via perforations with the gas channel and is arranged in the sound absorption material, such as ceramic wool.
  • a vote on one or more main sound frequencies, ie a particularly high efficiency at these main sound frequencies is not possible in the known muffler.
  • a device for reducing pressure pulsations in fluid-carrying piping systems is known.
  • a throttle body is arranged in a line of the conduit system, which has a helical coil whose screw axis is aligned in the propagation direction of the pressure pulsations in the conduit.
  • the pressure pulsations interact with the helical coil.
  • This may be a passive interaction under elastic shaping of the helical coil.
  • the helical coil can be activated actively.
  • It can also be arranged a plurality of throttle body in the form of helical coils in a fixed distance between the throttle bodies in a row in the respective line.
  • the doctrine of DE 10 2004 006 031 A1 expressly different from that of the DE 199 32 714 A1 not on gas-carrying, but only on liquids leading piping systems.
  • An absorber for absorbing airborne sound in which an acoustic series circuit and an acoustic parallel circuit are coupled together, wherein the acoustic series circuit is a Helmholtz resonator.
  • This Helmholtz resonator consists of a hollow body with an air volume and a cross-sectional constriction as an opening.
  • the parallel circuit is also a resonator, which is realized by a parallel connection of an acoustic suspension - realized by an air volume - with an acoustic mass, which is given by the oscillating air in a neck.
  • the acoustic series circuit and the acoustic parallel circuit are tuned to the same resonant frequency.
  • the known absorber as such is not traversed by a gas, but is provided to form a generally gas-tight wall in a sound-absorbing manner.
  • the temporary entry of gas into the hollow body or air volumes of the known absorber unlike a gas-flowed muffler, does not lead to any net gas flow that runs through it.
  • the GB 460,148 A discloses another muffler for internal combustion engines having the features of the preamble of independent claim 1.
  • embodiments of the known muffler which have a plurality of gas channels, which is divided by the flowing gas.
  • Helical internals may be provided inside the gas channels.
  • the helical internals may have at their ends inlet and outlet areas in which their diameter in the direction of flow of the gas steadily approaches from the inside to the wall of the gas channel and from this.
  • the slope of the helical internals of the known muffler can be variable.
  • the gas channels may also have tapers and extensions of their free cross section along their main extension direction.
  • the multiple gas channels are z. B. are used for the extinguishing superposition of sound waves, which propagate in the flowing gas.
  • a silencer having the features of the preamble of independent claim 1 is also known from US Pat. No. 3,746,126 known. Here it is proposed to provide a helical installation in front of or behind a bend in an exhaust pipe of an internal combustion engine.
  • a silencer having the features of the preamble of independent claim 1, which has a plurality of helical internals, inter alia both in closely spaced Innnenrohrabroughen as well as in annular spaces between the inner tube sections and an outer tube, is from the FR 804 593 A known.
  • the invention has for its object to provide a muffler with the features of the preamble of independent claim 1, which has a high noise attenuation compared with the flow resistance of the gas through the muffler with passive means.
  • this object is achieved by a silencer having the features of independent claim 1.
  • Preferred embodiments of the new silencer are described in the dependent claims 2 to 12.
  • the dependent claim 13 relates to preferred uses of the new silencer.
  • a Helmholtz resonator is formed in the gas channel, which is excited in the gas channel by means of at least one helical installation in a gas channel through which a gas flows, the installation an inner region of the gas channel spread the gas channel flowing gas.
  • a cavity in the flow direction of the gas is limited by opposing impedance jumps for the propagating in the gas sound waves.
  • energy is trapped by a continuous sound wave whose wavelength matches the length of the cavity, i. H. to which the Helmholtz resonator is tuned.
  • the gas channel can be free, ie have no helical installation.
  • the muffler may also have another helical installation adjacent thereto or other characteristics of the helical installation adjacent thereto.
  • the opposing impedance jumps for limiting the cavity of the Helmholtz resonator can be set not only by the termination and resumption of helical installation on both sides of the cavity, but also by opposing changes in the pitch and / or diameter of the at least one helical installation.
  • the at least one helical installation can have at least two local constrictions or at least one local expansion.
  • a constriction has - acoustically speaking - the effect of an inertial mass whose impedance becomes very high for high frequencies. In particular, the high frequencies are not allowed to pass through such a constriction.
  • a Helmholtz resonator is formed according to the invention.
  • the helical installation causes a reduced power dissipation of the gas flowing through the constrictions, by passing the gas through the constriction, thus preventing, in particular, turbulent turbulence of the gas behind the constriction.
  • An expansion acts like a spring, so it is very high-impedance at low frequencies.
  • the helical installation prevents turbulence associated with loss of the gas flowing into the expansion.
  • a Helmholtz resonator can already be formed within such an expansion between its flanks.
  • the gas channel of the new muffler may have a circular cross-sectional area which is spanned by the at least one helical installation with a two-flighted helix.
  • a circular cross-sectional area of the gas channel a single helix for the formation of the helical installation is generally inadequate, since it leaves a passage region for sound waves near its axis, which is virtually uninfluenced by it.
  • the gas channel has an annular cross-sectional area, it is sufficient if it is spanned by the helical installation with at least one helical coil.
  • the new muffler also several gas channels may be provided, to which the flowing gas is divided.
  • one of these gas passages may have a circular cross-sectional area and another of these gas passages may have an annular cross-sectional area lying around it.
  • Helmholtz resonators are typically formed by means of helical internals in all of these gas channels of the new silencer.
  • this is designed as a two-circuit resonant absorber, in which in two gas ducts, on which the flowing
  • Gas is distributed, on the same frequencies of stimulating sound waves tuned Helmholtz resonators are provided, of which the one or more Helmholtz resonators are designed in the one gas channel as an acoustic parallel circuit and the Helmholtz or the resonators in the other gas channel as an acoustic series circuit.
  • a two-circuit resonant absorber as he basically already from the DE 195 33 623 B4 is known, for the first time in a gas-flow system application in which the gas flows through the Helmholtz resonators themselves.
  • a plurality of Helmholtz resonators can also be formed one behind the other in a gas channel. This is preferred, for example, to attenuate sound waves with a particularly disturbing main sound frequency as completely as possible. In this case, all or at least several of the Helmholtz resonators arranged one behind the other are then to be matched to precisely this main sound frequency.
  • Helmholtz resonators connected in series can also be tuned to different frequencies, whereby in turn for each frequency a plurality of Helmholtz resonators can be provided.
  • the at least one helical installation of the new silencer is actively deformable.
  • this active deformability can be used to detune a Helmholtz resonator formed by means of the helical installation.
  • in the quasistatic range it is possible to vary the impedance jumps occurring at the helical installation.
  • active generation of antisound by active dynamic deformation of the helical assembly is also possible to provide an actively sound-attenuating effect in addition to the passive-absorbing function of the Helmholtz resonators.
  • the sound waves at the ends, especially at the entrance of the new muffler should not reflect unnecessary become.
  • a reflection-poor, soft impedance transition is achieved in the muffler according to the invention in that the helical installation has at least one end of the muffler an inlet or outlet region by its diameter in the flow direction of the gas steadily approaches from the inside to the wall of the gas channel or removed from this. The sound waves thus reach almost completely into the new silencer and are then selectively absorbed there.
  • the new silencer is available for all gas-flow pipes, where the gas leads unsteady pressure fluctuations and in particular sound waves.
  • Such tubes exist in internal combustion engines, heaters, such as for the exhaust air of a burner, ventilation systems and the like.
  • the new muffler can be used advantageously when the sound waves or unsteady pressure fluctuations have a fixed frequency to which the Helmholtz resonator is tunable.
  • FIG. 1 sketched muffler 1 has in a tube 2 with a wall 3 three helical internals 4, 5 and 6.
  • the helical installation 5 lies between the end-side helical internals 4 and 6 and has a same free distance 7 in the direction of the tube axis 8 of the tube 2 for each of these.
  • Each of the helical internals 4-6 consists of a twinned helix 9 twisted around the tube axis 8.
  • the diameter of the double-flighted helix 9 of the end helical internals 4 and 6 steadily increases from zero to the diameter of the tube 2.
  • the two-start helix 9 has the diameter of the tube 2, it is firmly mounted on the wall 3.
  • the double-flighted helices 9 impart a helical course to an inner region 10 of a gas channel 11 leading through the tube 2 and bounded by the wall 3 thereof.
  • each of the double-flighted helices 9 delimits two helically extending part inner regions 12 of the gas channel 8 from one another.
  • the helical internals 4-6 For a gas flow along the tube axis 8 through the gas channel 11 mean the helical internals 4-6, although an increase in the flow resistance. However, this increase in the flow resistance is relatively small.
  • Sound waves mean that the helical internals 4-6, however, a strong variation of the impedance.
  • This variation is continuous at the ends of the muffler 1 due to the continuously changing diameters of the double-flighted helices.
  • impedance jumps occur.
  • two Helmholtz resonators 13 are formed in the muffler 1, the cavities or cavities 14 correspond to the free pipe cross section along the distances 7.
  • Both Helmholtz resonators 13 are tuned by the same distances 7 to the same frequencies, which is a main sound frequency, which occurs in the gas flowing through the gas channel 11 gas. Sound waves with this main sound frequency is deprived of energy by the Helmholtz resonators 13, which is ultimately converted into heat. This is done in comparison to the efficiency of the sound attenuation only minimal impairment of the gas flow, ie with minimal flow resistance for the flowing gas.
  • the embodiment of the muffler 1 according to Fig. 2 differs from the one according to Fig. 1 in that only one Helmholtz resonator 13 is formed, in which no additional helical installation between the helical internals 4 and 6 is provided.
  • the geometric relationships in the helical internals 4 and 6 are different than in Fig. 1 in that their numbers of turns are greater and the end-side inlet or outlet areas in which the diameter of the double-flighted helices 9 continuously widens from zero to the diameter of the tube 2 are stretched longer.
  • the frequency to which the respective muffler 1 is tuned depends essentially on the length of the cavity 14 of its Helmholtz resonators 13, ie on the distance 7. This length must be adjusted so that waves standing here with the wavelength of the can train interesting main sound frequency. That is, it depends not only on the geometric distance 7 but also on the speed of sound propagation within the gas channel 10 and thus on the gas guided therefrom and its state.
  • the muffler 1 according to Fig. 3 is again essentially the same Fig. 1 , ie there is again an additional helical installation 5 available. However, the geometric data of the muffler 1 are opposite Fig. 1 varied.
  • the muffler 1 according to Fig. 4 differs from those according to the Fig. 1 and 3 again by its geometric dimensions. While so far all two-stringed Helices 9 in the helical internals 4 to 6 had the same slope, here in the helical installation 5 a strongly deviating upward slope is provided. In this way, a further Helmholtz resonator 15 may be formed, the cavity of which extends along the helical partial inner regions 12 in the region of the helical installation 5. In principle, the formation of such a further Helmholtz resonator 15 is conceivable in all helical installations 4-6.
  • the attenuation within the helical internals 4-6 at a smaller pitch of the double-flighted helices 9 for the formation of an effective resonator is quickly too large.
  • the function as a Helmholtz resonator is also hindered by the outgoing diameter of the double-flighted helices 9, because this means a flowing impedance transition and no impedance jump.
  • a flowing impedance transition does not reflect sound waves in the gas within the gas channel 11 and is therefore unsuitable for limiting the cavity of a Helmholtz resonator.
  • this flowing transition serves specifically to allow the sound waves initially to enter the silencer 1 unhindered, in order then to absorb them there.
  • the muffler 1 according to Fig. 5 shows again in all helical internals 4-6 equal slopes of the double-flighted helices 9.
  • two helical internals 5 are now provided between the end-side helical internals 4 and 6.
  • Also between these helical internals 5 is the same distance 7 as before to the helical internals 4 and 6. Accordingly, three Helmholtz resonators 13 are formed here.
  • additional Helmholtz resonators 15 may in principle also be formed in their regions.
  • the muffler 1 according to Fig. 6 has yet another central helical installation 5, so that a total of four Helmholtz resonators 13 are formed between the helical internals 4-6.
  • the pitch of the double-flighted helices 9 of the helical internals 5 is significantly smaller than in the case of the double-flighted helices 9 of the end-side helical internals 4 and 6.
  • Fig. 7 shows a muffler 1, in which on the one hand by means of a total of five central helical internals 5 between the end-side helical internals 4 and 6 six Helmholtz resonators over the free distances 7 are formed, and in the other end of the helical internals 4 and 6 abrupt, ie with full diameter of its double-flighted Helices 9 end. In this way, an impedance jump is formed at the ends of the muffler 1. Accordingly, an additional Helmholtz resonator 15 can also be formed here within each helical installation 4-6.
  • Fig. 8 outlined a muffler 1, in the tube 2 only a single helical installation 4 is provided.
  • This helical installation 4 runs at both ends of the muffler 1 with the tube axis 8 steadily decreasing diameter of its double-flighted helix 9 in order to form reflection-free transitions there.
  • the helical installation 4 and the tube 2 have three common constrictions 17.
  • the constrictions act acoustically like sluggish masses whose impedance becomes very high for high frequencies, so that the high-frequency sound waves are reflected between them.
  • muffler 1 In the embodiment of the muffler 1 according to Fig. 10 are constrictions 17 according to Fig. 8 and the expansion 19 according to Fig. 9 combined to form various Helmholtz resonators 16 and 18.
  • the gas is divided into two gas channels 21 and 22, wherein the gas channel 21 is an annular channel which extends between the tube 2 and an inner tube 23, while the gas channel 22 extends through the inner tube 23.
  • the inner regions 24 and 25 of the gas channels 21 and 22 are here each formed by helical internals 26 and 27 to screw flights. In this case, only the helical internals 27 in the inner tube 23 are necessarily double-flighted helices9.
  • the helical internals 6 in the annular gas channel 21 may also be single helices, as shown here. With the helical internals 26 and 27, Helmholtz resonators 28 and 29 are formed in both gas channels 21 and 22, but here the order of helical internals 26 and 27 and their free distances between the gas channels 21 and 22 is reversed. D. h., At the ends of the gas channel 21 are helical internals and at the ends of the gas channel 22 are free spaces. The acoustic parallel circuit forms the gas channel 22, which has the end-side free spaces. These form acoustic springs, while the helical internals 26 and 27 correspond to acoustic masses.

Description

TECHNISCHES GEBIET DER ERFINDUNGTECHNICAL FIELD OF THE INVENTION

Die Erfindung bezieht sich auf einen Schalldämpfer mit mindestens einem von einem Gas durchgeströmten Gaskanal und den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1.The invention relates to a silencer with at least one gas channel through which a gas flows and the features of the preamble of the independent patent claim 1.

Durch einen erfindungsgemäßen Schalldämpfer soll das strömende Gas möglichst ungehindert hindurch treten können. Sich in dem strömenden Gas ausbreitende Schallwellen, unter denen hier auch jedwede schnelle Druckschwankungen des strömenden Gases zu verstehen sind, sollen jedoch möglichst gedämpft werden.By means of a silencer according to the invention, the flowing gas should be able to pass through as unhindered as possible. However, in the flowing gas propagating sound waves, which are to be understood here as any fast pressure fluctuations of the flowing gas, but should be as damped as possible.

STAND DER TECHNIKSTATE OF THE ART

Neben Schalldämpfern, in denen Schallwellen Energie durch Gasreibung in porösem Material entzogen und in Wärme umgesetzt wird, sind auch Schalldämpfer bekannt, die Schall dynamisch absorbieren. Im Ingenieurwesen werden sie als akustische Tilger, in der Physik als dynamische Absorber bezeichnet. Es handelt sich um Resonanzsysteme, die bei ihrer Eigenfrequenz auftretenden Schall sehr gut absorbieren und in der Folge dissipieren können. Beispiele hierfür sind sogenannte Loch- oder Helmholtz-Resonatoren. Zu den auf dem Gebiet der dynamischen Schallabsorber bekannten Maßnahmen gehört es auch, mit Hilfe eines oder mehrerer Querschnittssprünge, d. h. Durchmesserveränderung des einen Gaskanal begrenzenden Rohrs, akustische Resonatoren aufzubauen. Hierdurch wird jedoch der Strömungswiderstand für das durch den Schalldämpfer strömende Gas drastisch erhöht.In addition to silencers, in which sound waves energy is removed by gas friction in porous material and converted into heat, are also known mufflers that absorb sound dynamically. In engineering they are referred to as acoustic absorbers, in physics as dynamic absorbers. These are resonance systems that absorb sound occurring at their natural frequency very well and can dissipate in the sequence. Examples include so-called hole or Helmholtz resonators. It is also part of the measures known in the field of dynamic sound absorbers to build up acoustic resonators with the aid of one or more cross-sectional jumps, ie changes in the diameter of the pipe delimiting a gas duct. As a result, however, the flow resistance for the gas flowing through the muffler gas is drastically increased.

Aus der DE 196 44 089 A1 ist ein Schalldämpfer für Verbrennungsmotoren mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1 bekannt. Hier ist in einem von einem Gas durchströmten Gaskanal ein helikaler Einbau vorgesehen, der einem Innenbereich des Gaskanals einen schraubenförmigen Verlauf verleiht. Der Schall soll an den helikälen Flächen des helikalen Einbaus durch Reflexion und Streuung sowie anschließende Absorption in der Kanalwand des Gaskanals reduziert und außerdem aufgrund des sogenannten Cut-Off-Effekts an seiner Ausbreitung gehindert werden. Zur Absorption in der Kanalwand des Gaskanals ist der Gaskanal von einem Ringkanal umgeben, der über Perforationen mit dem Gaskanal kommuniziert und in dem Schallabsorptionsmaterial, wie beispielsweise Keramikwolle, angeordnet ist. Eine Abstimmung auf eine oder mehrere Hauptschallfrequenzen, d. h. ein besonders hoher Wirkungsgrad bei diesen Hauptschallfrequenzen ist bei dem bekannten Schalldämpfer nicht möglich.From the DE 196 44 089 A1 a muffler for internal combustion engines having the features of the preamble of independent claim 1 is known. Here, a helical installation is provided in a gas channel through which a gas flows, which gives a helical course to an interior region of the gas channel. The sound is to be reduced at the helical surfaces of the helical installation by reflection and scattering and subsequent absorption in the channel wall of the gas channel and also prevented due to the so-called cut-off effect on its propagation. For absorption in the channel wall of the gas channel, the gas channel is surrounded by an annular channel which communicates via perforations with the gas channel and is arranged in the sound absorption material, such as ceramic wool. A vote on one or more main sound frequencies, ie a particularly high efficiency at these main sound frequencies is not possible in the known muffler.

Aus der DE 199 32 714 A1 ist es bekannt, eine helikale Membran, die mit Antischall erzeugenden Elementen ausgerüstet ist, in einer rohrförmigen und luftdurchströmten Vorrichtung anzuordnen, um Schall in der rohrförmigen Vorrichtung aktiv zu dämpfen. Aktive Schalldämpfung mit Antischall erzeugenden Elementen verlangt nach einer aktiven Ansteuerung dieser Elemente und ist entsprechend aufwändig.From the DE 199 32 714 A1 It is known to arrange a helical membrane equipped with anti-sound generating elements in a tubular and air-flow device to actively dampen sound in the tubular device. Active sound attenuation with anti-sound generating elements requires active control of these elements and is correspondingly expensive.

Aus der DE 10 2004 006 031 A1 ist eine Vorrichtung zur Reduzierung von Druckpulsationen in Flüssigkeiten führenden Leitungssystemen bekannt. Dabei wird ein Drosselkörper in einer Leitung des Leitungssystems angeordnet, der eine Schraubenwendel aufweist, deren Schraubenachse in der Ausbreitungsrichtung der Druckpulsationen in der Leitung ausgerichtet ist. Die Druckpulsationen wechselwirken mit der Schraubenwendel. Dabei kann es sich um eine passive Wechselwirkung unter elastischer Formung der Schraubenwendel handeln. Alternativ kann die Schraubenwendel aktiv angesteuert werden. Es können auch mehrere Drosselkörper in Form von Schraubenwendeln in einem festen Abstand zwischen den Drosselkörpern hintereinander in der jeweiligen Leitung angeordnet werden. Die Lehre der DE 10 2004 006 031 A1 bezieht sich ausdrücklich anders als diejenige der DE 199 32 714 A1 nicht auf gasdurchströmte, sondern nur auf Flüssigkeiten führende Leitungssysteme.From the DE 10 2004 006 031 A1 a device for reducing pressure pulsations in fluid-carrying piping systems is known. In this case, a throttle body is arranged in a line of the conduit system, which has a helical coil whose screw axis is aligned in the propagation direction of the pressure pulsations in the conduit. The pressure pulsations interact with the helical coil. This may be a passive interaction under elastic shaping of the helical coil. Alternatively, the helical coil can be activated actively. It can also be arranged a plurality of throttle body in the form of helical coils in a fixed distance between the throttle bodies in a row in the respective line. The doctrine of DE 10 2004 006 031 A1 expressly different from that of the DE 199 32 714 A1 not on gas-carrying, but only on liquids leading piping systems.

Aus der DE 195 33 623 B4 ist ein Absorber zur Absorption von Luftschall bekannt, bei dem ein akustischer Serienkreis und ein akustischer Parallelkreis miteinander gekoppelt sind, wobei der akustische Serienkreis ein Helmholtz-Resonator ist. Dieser Helmholtz-Resonator besteht aus einem Hohlkörper mit einem Luftvolumen und einer Querschnittsverengung als Öffnung. Der Parallelkreis ist ebenfalls eine Resonator, der aus einer Parallelschaltung einer akustischen Federung - realisiert durch ein Luftvolumen - mit einer akustischen Masse, die durch die in einem Hals schwingende Luft gegeben wird, realisiert ist. Der akustische Serienkreis und der akustische Parallelkreis sind auf die gleiche Resonanzfrequenz abgestimmt. Der bekannte Absorber wird als solcher nicht von einem Gas durchströmt, sondern ist zur Ausbildung einer grundsätzlich gasdichten Wandung in schallabsorbierender Weise vorgesehen. Das vorübergehende Eintreten von Gas in die Hohlkörper bzw. Luftvolumina des bekannten Absorbers führt anders als bei einem gasdurchströmten Schalldämpfer zu keinem hierdurch verlaufenden Nettogasstrom.From the DE 195 33 623 B4 An absorber for absorbing airborne sound is known, in which an acoustic series circuit and an acoustic parallel circuit are coupled together, wherein the acoustic series circuit is a Helmholtz resonator. This Helmholtz resonator consists of a hollow body with an air volume and a cross-sectional constriction as an opening. The parallel circuit is also a resonator, which is realized by a parallel connection of an acoustic suspension - realized by an air volume - with an acoustic mass, which is given by the oscillating air in a neck. The acoustic series circuit and the acoustic parallel circuit are tuned to the same resonant frequency. The known absorber as such is not traversed by a gas, but is provided to form a generally gas-tight wall in a sound-absorbing manner. The temporary entry of gas into the hollow body or air volumes of the known absorber, unlike a gas-flowed muffler, does not lead to any net gas flow that runs through it.

Die GB 460,148 A offenbart einen weiteren Schalldämpfer für Verbrennungsmotoren mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1. Dabei werden Ausführungsformen des bekannten Schalldämpfers beschrieben, die mehrere Gaskanäle aufweisen, auf die sich das strömende Gas aufteilt. Im Inneren der Gaskanäle können helikale Einbauten vorgesehen sein. Die helikalen Einbauten können an ihren Enden Einlauf- und Auslaufbereiche aufweisen, in denen sich ihr Durchmesser in der Strömungsrichtung des Gases stetig von innen an die Wandung des Gaskanals annähert bzw. von dieser entfernt. Die Steigung der helikalen Einbauten des bekannten Schalldämpfers kann variabel sein. Die Gaskanäle können auch Verjüngungen und Erweiterungen ihres freien Querschnitts längs ihrer Haupterstreckungsrichtung aufweisen. Die mehreren Gaskanäle werden z. B. zur auslöschenden Überlagerung von Schallwellen genutzt werden, welche sich in dem strömenden Gas ausbreiten.The GB 460,148 A discloses another muffler for internal combustion engines having the features of the preamble of independent claim 1. In this case, embodiments of the known muffler are described, which have a plurality of gas channels, which is divided by the flowing gas. Helical internals may be provided inside the gas channels. The helical internals may have at their ends inlet and outlet areas in which their diameter in the direction of flow of the gas steadily approaches from the inside to the wall of the gas channel and from this. The slope of the helical internals of the known muffler can be variable. The gas channels may also have tapers and extensions of their free cross section along their main extension direction. The multiple gas channels are z. B. are used for the extinguishing superposition of sound waves, which propagate in the flowing gas.

Ein Schalldämpfer mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1 ist auch aus der US 3 746 126 A bekannt. Hier wird vorgeschlagen, einen helikalen Einbau vor oder hinter einem Knick in einem Abgasrohr eines Verbrennungsmotors vorzusehen.A silencer having the features of the preamble of independent claim 1 is also known from US Pat. No. 3,746,126 known. Here it is proposed to provide a helical installation in front of or behind a bend in an exhaust pipe of an internal combustion engine.

Ein Schalldämpfer mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1, der mehrere helikale Einbauten, unter anderem sowohl in untereinander dicht beabstandeten Innnenrohrabschnitten als auch in Ringräumen zwischen den Innenrohrabschnitten und einem Außenrohr aufweist, ist aus der FR 804 593 A bekannt.A silencer having the features of the preamble of independent claim 1, which has a plurality of helical internals, inter alia both in closely spaced Innnenrohrabschnitten as well as in annular spaces between the inner tube sections and an outer tube, is from the FR 804 593 A known.

AUFGABE DERTASK OF THE ERFINDUNGINVENTION

Der Erfindung liegt die Aufgabe zugrunde, einen Schalldämpfer mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1 aufzuzeigen, der mit passiven Mitteln eine hohe Schalldämpfung verglichen mit dem Strömungswiderstand des Gases durch den Schalldämpfer aufweist.The invention has for its object to provide a muffler with the features of the preamble of independent claim 1, which has a high noise attenuation compared with the flow resistance of the gas through the muffler with passive means.

LÖSUNGSOLUTION

Erfindungsgemäß wird diese Aufgabe durch einen Schalldämpfer mit den Merkmalen des unabhängigen Patentanspruchs 1 gelöst. Bevorzugte Ausführungsbeispiele des neuen Schalldämpfers sind in den abhängigen Patentansprüchen 2 bis 12 beschrieben. Der abhängige Patentanspruch 13 betrifft bevorzugte Verwendungen des neuen Schalldämpfers.According to the invention this object is achieved by a silencer having the features of independent claim 1. Preferred embodiments of the new silencer are described in the dependent claims 2 to 12. The dependent claim 13 relates to preferred uses of the new silencer.

BESCHREIBUNG DER ERFINDUNGDESCRIPTION OF THE INVENTION

Bei einem erfindungsgemäßen Schalldämpfer wird mittels mindestens eines helikalen Einbaus in einem von einem Gas durchströmten Gaskanal, wobei der Einbau einem Innenbereich des Gaskanals einen schraubenförmigen Verlauf verleiht, ein Helmholtz-Resonator in dem Gaskanal ausgebildet, der von Schallwellen angeregt wird, welche sich in dem durch den Gaskanal strömenden Gas ausbreiten. Mit Hilfe eines oder mehrerer helikaler Einbauten in den Gaskanal ist es möglich, darin einen Helmholtz-Resonator auszubilden, der zwar von Gas mit relativ niedrigem Strömungswiderstand durchströmbar ist, der aber dennoch in der Lage ist, in erheblichem Umfang Energie aus sich in dem strömenden Gas ausbreitenden Schallwellen zu entziehen. Hierdurch werden diese Schallwellen stark gedämpft, ohne die Gasströmung stark zu drosseln. Dies beruht darauf, dass es mittels des einen oder mehrerer helikaler Einbauten möglich ist, Impedanzsprünge für die Schallwellen auszubilden, ohne die Gasströmung in dem Maße zu beeinträchtigen wie durch einen Impedanzsprung, der (allein) durch eine Durchmesserveränderung des Gaskanals erreicht wird.In a silencer according to the invention, a Helmholtz resonator is formed in the gas channel, which is excited in the gas channel by means of at least one helical installation in a gas channel through which a gas flows, the installation an inner region of the gas channel spread the gas channel flowing gas. With the help of one or more helical internals in the gas channel, it is possible to form therein a Helmholtz resonator, which is indeed permeable by gas with relatively low flow resistance, but which is able to a considerable extent of energy in the flowing gas Extract propagating sound waves. As a result, these sound waves are strongly attenuated, without greatly throttling the gas flow. This is because it is possible by means of the one or more helical internals to form impedance jumps for the sound waves, without affecting the gas flow to the extent as by an impedance jump, which is achieved (alone) by a change in diameter of the gas channel.

Konkret wird bei dem neuen Schalldämpfer zur Ausbildung eines Helmholtz-Resonators eine Kavität in der Strömungsrichtung des Gases durch gegenläufige Impedanzsprünge für die sich in dem Gas ausbreitenden Schallwellen begrenzt. In jeder solchen Kavität wird Energie von einer durchlaufenden Schallwelle gefangen, deren Wellenlänge zu der Länge der Kavität passt, d. h. auf die der Helmholtz-Resonator abgestimmt ist.Specifically, in the new muffler for forming a Helmholtz resonator, a cavity in the flow direction of the gas is limited by opposing impedance jumps for the propagating in the gas sound waves. In each such cavity energy is trapped by a continuous sound wave whose wavelength matches the length of the cavity, i. H. to which the Helmholtz resonator is tuned.

In der Kavität des Helmholtz-Resonators kann der Gaskanal frei sein, d. h. keinen helikalen Einbau aufweisen. In der Kavität kann der Schalldämpfer aber auch einen anderen helikalen Einbau als daran angrenzend oder andere Kennwerte des helikalen Einbaus als daran angrenzend aufweisen. So können die gegenläufigen Impedanzsprünge zur Begrenzung der Kavität des Helmholtz-Resonators nicht nur durch das Enden und Wiederbeginnen eines helikalen Einbaus auf beiden Seiten der Kavität gesetzt werden, sondern auch durch gegenläufige Änderungen der Steigung und/oder des Durchmessers des mindestens einen helikalen Einbaus.In the cavity of the Helmholtz resonator, the gas channel can be free, ie have no helical installation. In the cavity, however, the muffler may also have another helical installation adjacent thereto or other characteristics of the helical installation adjacent thereto. Thus, the opposing impedance jumps for limiting the cavity of the Helmholtz resonator can be set not only by the termination and resumption of helical installation on both sides of the cavity, but also by opposing changes in the pitch and / or diameter of the at least one helical installation.

Konkret kann der mindestens eine helikale Einbau einschließlich einer ihn umschließenden Wandung des Gaskanals mindestens zwei lokale Einschnürungen oder mindestens eine lokale Aufweitung aufweisen. Eine Einschnürung besitzt - akustisch betrachtet - die Wirkung einer trägen Masse, deren Impedanz für hohe Frequenzen sehr groß wird. Es werden also insbesondere die hohen Frequenzen von einer solchen Einschnürung nicht durchgelassen. Zwischen zwei solcher Einschnürungen wird erfindungsgemäß ein Helmholtz-Resonator ausgebildet. Gegenüber einem herkömmlichen Helmholtz-Resonator bewirkt der helikale Einbau eine verringerte Verlustleistung des durch die Einschnürungen strömenden Gases, indem er das Gas durch die Einschnürung führt und damit insbesondere turbulente Verwirbelungen des Gases hinter der Einschnürung verhindert. Eine Aufweitung wirkt hingegen wie eine Feder, ist also bei tiefen Frequenzen sehr hochohmig. Hier verhindert der helikale Einbau eine verlustleistungsbehaftete Verwirbelung des in die Aufweitung einströmenden Gases. Ein Helmholtz-Resonator kann bereits innerhalb einer solchen Aufweitung zwischen deren Flanken ausgebildet werden.Specifically, the at least one helical installation, including a wall of the gas channel surrounding it, can have at least two local constrictions or at least one local expansion. A constriction has - acoustically speaking - the effect of an inertial mass whose impedance becomes very high for high frequencies. In particular, the high frequencies are not allowed to pass through such a constriction. Between two such constrictions, a Helmholtz resonator is formed according to the invention. In comparison to a conventional Helmholtz resonator, the helical installation causes a reduced power dissipation of the gas flowing through the constrictions, by passing the gas through the constriction, thus preventing, in particular, turbulent turbulence of the gas behind the constriction. An expansion, on the other hand, acts like a spring, so it is very high-impedance at low frequencies. Here, the helical installation prevents turbulence associated with loss of the gas flowing into the expansion. A Helmholtz resonator can already be formed within such an expansion between its flanks.

Der Gaskanal des neuen Schalldämpfers kann eine kreisförmige Querschnittsfläche aufweisen, die von dem mindestens einen helikalen Einbau mit einer zweigängigen Helix überspannt wird. Bei einer kreisförmigen Querschnittsfläche des Gaskanals ist eine Einfachhelix zur Ausbildung des helikalen Einbaus in aller Regel unzureichend, da diese nahe Ihrer Achse einen von ihr nahezu unbeeinflussten Durchtrittsbereich für Schallwellen belässt.The gas channel of the new muffler may have a circular cross-sectional area which is spanned by the at least one helical installation with a two-flighted helix. In the case of a circular cross-sectional area of the gas channel, a single helix for the formation of the helical installation is generally inadequate, since it leaves a passage region for sound waves near its axis, which is virtually uninfluenced by it.

Wenn jedoch der Gaskanal eine ringförmige Querschnittsfläche aufweist, reicht es aus, wenn diese von dem helikalen Einbau mit mindestens einer Schraubenwendel überspannt wird.However, if the gas channel has an annular cross-sectional area, it is sufficient if it is spanned by the helical installation with at least one helical coil.

Bei dem neuen Schalldämpfer können auch mehrere Gaskanäle vorgesehen sein, auf die sich das strömende Gas aufteilt. Dabei kann einer dieser Gaskanäle eine kreisförmige Querschnittsfläche und ein anderer dieser Gaskanäle eine darum liegende ringförmige Querschnittsfläche aufweisen.In the new muffler also several gas channels may be provided, to which the flowing gas is divided. In this case, one of these gas passages may have a circular cross-sectional area and another of these gas passages may have an annular cross-sectional area lying around it.

In allen dieser Gaskanäle des neuen Schalldämpfers sind dabei typischerweise Helmholtz-Resonatoren mittels helikaler Einbauten ausgebildet.Helmholtz resonators are typically formed by means of helical internals in all of these gas channels of the new silencer.

In einer besonders bevorzugten Ausführungsform des neuen Schalldämpfers ist dieser als Zweikreisresonanzabsorber ausgelegt, in dem in zwei Gaskanälen, auf die sich das strömendeIn a particularly preferred embodiment of the new silencer this is designed as a two-circuit resonant absorber, in which in two gas ducts, on which the flowing

Gas aufteilt, auf gleiche Frequenzen der anregenden Schallwellen abgestimmte Helmholtz-Resonatoren vorgesehen sind, von denen der oder die Helmholtz-Resonatoren in dem einen Gaskanal als akustischer Parallelkreis und der oder die Helmholtz-Resonatoren in dem anderen Gaskanal als akustischer Serienkreis ausgelegt sind. Damit findet ein Zweikreisresonanzabsorber, wie er grundsätzlich bereits aus der DE 195 33 623 B4 bekannt ist, erstmals bei einem gasdurchströmten System Anwendung, bei dem das Gas durch die Helmholtz-Resonatoren selbst strömt.Gas is distributed, on the same frequencies of stimulating sound waves tuned Helmholtz resonators are provided, of which the one or more Helmholtz resonators are designed in the one gas channel as an acoustic parallel circuit and the Helmholtz or the resonators in the other gas channel as an acoustic series circuit. Thus, a two-circuit resonant absorber, as he basically already from the DE 195 33 623 B4 is known, for the first time in a gas-flow system application in which the gas flows through the Helmholtz resonators themselves.

Grundsätzlich können auch in einem Gaskanal mehrere Helmholtz-Resonatoren hintereinander ausgebildet sein. Dies ist zum Beispiel bevorzugt, um Schallwellen mit einer besonders störenden Hauptschallfrequenz möglichst vollständig zu dämpfen. In diesem Fall sind dann alle oder zumindest mehrere der hintereinander angeordneten Helmholtz-Resonatoren auf eben diese Hauptschallfrequenz abzustimmen. Grundsätzlich können hintereinander geschaltete Helmholtz- Resonatoren auch auf unterschiedliche Frequenzen abgestimmt sein, wobei für jede Frequenz dann wiederum mehrere Helmholtz-Resonatoren vorgesehen sein können.In principle, a plurality of Helmholtz resonators can also be formed one behind the other in a gas channel. This is preferred, for example, to attenuate sound waves with a particularly disturbing main sound frequency as completely as possible. In this case, all or at least several of the Helmholtz resonators arranged one behind the other are then to be matched to precisely this main sound frequency. In principle, Helmholtz resonators connected in series can also be tuned to different frequencies, whereby in turn for each frequency a plurality of Helmholtz resonators can be provided.

Darüber hinaus ist es grundsätzlich möglich, dass der mindestens eine helikale Einbau des neuen Schalldämpfers aktiv verformbar ist. Diese aktive Verformbarkeit kann einerseits genutzt werden, um einen mit Hilfe des helikalen Einbaus ausgebildeten Helmholtz-Resonators zu verstimmen. Daneben besteht im quasistatischen Bereich die Möglichkeit, die an dem helikalen Einbau auftretenden Impedanzsprünge zu variieren. Es ist aber auch eine aktive Erzeugung von Antischall durch aktive dynamische Verformung des helikalen Einbaus möglich, um zusätzlich zu der passiv absorbierenden Funktion der Helmholtz-Resonatoren einen aktiv schalldämpfenden Effekt bereitzustellen.In addition, it is in principle possible that the at least one helical installation of the new silencer is actively deformable. On the one hand, this active deformability can be used to detune a Helmholtz resonator formed by means of the helical installation. In addition, in the quasistatic range it is possible to vary the impedance jumps occurring at the helical installation. However, active generation of antisound by active dynamic deformation of the helical assembly is also possible to provide an actively sound-attenuating effect in addition to the passive-absorbing function of the Helmholtz resonators.

Während es zur Begrenzung der Kavität eines Helmholtz-Resonators in dem neuen Schalldämpfer sinnvoll ist, die Impedanz für die sich in dem durchströmenden Gas ausbreitenden Schallwellen möglichst sprungartig zu ändern, sollten die Schallwellen an den Enden, vor allem am Eingang des neuen Schalldämpfers nicht unnötig reflektiert werden. Ein reflexionsarmer, weicher Impedanzübergang wird bei dem erfindungsgemäßen Schalldämpfer dadurch erreicht, dass der helikale Einbau an mindestens einem Ende des Schalldämpfers einen Einlauf- oder Auslaufbereich aufweist, indem sich sein Durchmesser in der Strömungsrichtung des Gases stetig von innen an die Wandung des Gaskanals annähert bzw. von dieser entfernt. Die Schallwellen gelangen so nahezu vollständig in den neuen Schalldämpfer und werden dann dort gezielt absorbiert.While it makes sense to limit the cavity of a Helmholtz resonator in the new muffler as sudden as possible to change the impedance for the propagating in the gas flowing sound waves, the sound waves at the ends, especially at the entrance of the new muffler should not reflect unnecessary become. A reflection-poor, soft impedance transition is achieved in the muffler according to the invention in that the helical installation has at least one end of the muffler an inlet or outlet region by its diameter in the flow direction of the gas steadily approaches from the inside to the wall of the gas channel or removed from this. The sound waves thus reach almost completely into the new silencer and are then selectively absorbed there.

Anwendungsmöglichkeiten für den neuen Schalldämpfer gibt es bei allen gasdurchströmten Rohren, bei denen das Gas instationäre Druckschwankungen und insbesondere Schallwellen führt. Solche Rohre gibt es bei Brennkraftmaschinen, Heizungen, wie beispielsweise für die Abluft eines Brenners, Belüftungsanlagen und dergleichen. Insbesondere ist der neue Schalldämpfer dann vorteilhaft einsetzbar, wenn die Schallwellen bzw. instationären Druckschwankungen eine feste Frequenz aufweisen, auf die der Helmholtz-Resonator abstimmbar ist.Applications for the new silencer are available for all gas-flow pipes, where the gas leads unsteady pressure fluctuations and in particular sound waves. Such tubes exist in internal combustion engines, heaters, such as for the exhaust air of a burner, ventilation systems and the like. In particular, the new muffler can be used advantageously when the sound waves or unsteady pressure fluctuations have a fixed frequency to which the Helmholtz resonator is tunable.

Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Patentansprüchen, der Beschreibung und den Zeichnungen.Advantageous developments of the invention will become apparent from the claims, the description and the drawings.

KURZBESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Die Erfindung wird im Folgenden anhand von bevorzugten Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren näher erläutert und beschrieben. In allen Figuren ist dabei jeweils ein Schalldämpfer in einer perspektivischen Seitenansicht mit aufgeschnittener Wandung eines Gaskanals wiedergegeben.

Fig. 1
zeigt einen ersten erfindungsgemäßen Schalldämpfer, bei dem zwei Helmholtz-Resonatoren, die auf gleiche Frequenzen abgestimmt sind, in einem durchströmten Gaskanal ausgebildet sind und dessen Enden für Schallwellen reflexionsarm gestaltet sind.
Fig. 2
zeigt einen erfindungsgemäßen Schalldämpfer, bei dem nur ein Helmholtz-Resonator in einem durchströmten Gaskanal ausgebildet ist. Auch hier sind die Enden des Schalldämpfers für Schallwellen reflexionsarm gestaltet.
Fig. 3
zeigt eine Abwandlung des erfindungsgemäßen Schalldämpfers gemäß Fig. 1, bei der die beiden endseitigen helikalen Einbauten größere Windungszahlen aufweisen als bei der Ausführungsform gemäß Fig. 1.
Fig.4
zeigt eine Abwandlung des erfindungsgemäßen Schalldämpfers gemäß den Fig. 1 und 3, bei der die endseitigen helikalen Einbauten und der zentrale helikale Einbau in den Gaskanal stark unterschiedliche Steigungen aufweisen.
Fig. 5
zeigt eine Abwandlung des erfindungsgemäßen Schalldämpfers gemäß den Fig. 1 und 3, bei der drei Helmholtz-Resonatoren, die auf gleiche Frequenzen abgestimmt sind, hintereinander in dem Gaskanal ausgebildet sind.
Fig. 6
zeigt eine Abwandlung des erfindungsgemäßen Schalldämpfers gemäß den Fig. 1 und 3, bei dem vier Helmholtz- Resonatoren, die auf gleiche Frequenzen abgestimmt sind, hintereinander in dem Gaskanal ausgebildet sind.
Fig. 7
zeigt eineen Schalldämpfer, bei dem insgesamt sechs Helmholtz- Resonatoren hintereinander in dem Gaskanal ausgebildet sind. Anders als bei den erfindungsgemäßen Schalldämpfern weisen die endseitigen helikalen Einbauten bei dieser Ausführungsform keine Einlauf- bzw. Auslaufbereiche mit geringer Schallreflexion auf.
Fig. 8
zeigt einen erfindungsgemäßen Schalldämpfer, bei dem zwei Helmholtz-Resonatoren durch drei Einschnürungen eines helikalen Einbaus in den Gaskanal samt der Wandung des Gaskanals ausgebildet ist.
Fig. 9
zeigt eine Ausführungsform des erfindungsgemäßen Schalldämpfers, bei dem ein Helmholtz-Resonator durch eine Ausweitung des Querschnitts des Gaskanals samt des darin vorgesehenen helikalen Einbaus ausgebildet ist.
Fig. 10
zeigt einen erfindungsgemäßen Schalldämpfer mit einer Reihenschaltung eines Helmholtz-Resonators gemäß Fig. 8, eines Helmholtz-Resonators gemäß Fig. 9 und eines weiteren Helmholtz-Resonators gemäß Fig. 8, wobei die Einschnürungen und die Aufweitung weniger stark ausgeprägt sind als in den vorangehenden Fig. 8 und 9.
Fig. 11
zeigt einen Schalldämpfer, bei dem das strömende Gas auf zwei Gaskanäle aufgeteilt wird, in denen jeweils ein Helmholtz-Resonator ausgebildet ist, die auf gleiche Resonanzfrequenz abgestimmt sind, von denen aber der eine als akustischer Parallelkreis und der andere als akustischer Serienkreis ausgebildet ist.
Fig. 12
zeigt einen Schalldämpfer, bei der in Abwandlung gegenüber Fig. 11 in dem einen Gaskanal mehrere, aber ebenfalls auf dieselbe Resonanzfrequenz abgestimmte Helmholtz-Resonatoren hintereinander vorgesehen sind.
The invention will be explained in more detail below with reference to preferred embodiments with reference to the accompanying figures and described. In all figures, a silencer is shown in a perspective side view with cut-wall of a gas channel in each case.
Fig. 1
shows a first muffler according to the invention, in which two Helmholtz resonators, which are tuned to the same frequencies, are formed in a flow-through gas channel and the ends are designed for reflection of sound waves.
Fig. 2
shows a silencer according to the invention, in which only a Helmholtz resonator is formed in a gas channel through which flows. Again, the ends of the muffler for sound waves are designed to be low reflection.
Fig. 3
shows a modification of the silencer according to the invention according to Fig. 1 in which the two end-side helical internals have larger numbers of turns than in the embodiment according to FIG Fig. 1 ,
Figure 4
shows a modification of the silencer according to the invention according to the Fig. 1 and 3 , in which the end-side helical internals and the central helical incorporation into the gas channel have very different slopes.
Fig. 5
shows a modification of the silencer according to the invention according to the Fig. 1 and 3 in which three Helmholtz resonators, which are tuned to equal frequencies, are formed one behind the other in the gas channel.
Fig. 6
shows a modification of the silencer according to the invention according to the Fig. 1 and 3 in which four Helmholtz resonators, which are tuned to the same frequencies, are formed one behind the other in the gas channel.
Fig. 7
shows a muffler, in which a total of six Helmholtz resonators are formed one behind the other in the gas channel. Unlike the silencers according to the invention, the end-side helical internals in this embodiment have no inlet or outlet areas with low sound reflection.
Fig. 8
shows a silencer according to the invention, in which two Helmholtz resonators is formed by three constrictions of a helical installation in the gas duct, including the wall of the gas channel.
Fig. 9
shows an embodiment of the muffler according to the invention, in which a Helmholtz resonator is formed by an expansion of the cross section of the gas channel, including the provided therein helical installation.
Fig. 10
shows a silencer according to the invention with a series circuit of a Helmholtz resonator according to Fig. 8 , a Helmholtz resonator according to Fig. 9 and another Helmholtz resonator according to Fig. 8 , wherein the constrictions and the expansion are less pronounced than in the preceding Fig. 8 and 9 ,
Fig. 11
shows a muffler, in which the flowing gas is divided into two gas channels, in each of which a Helmholtz resonator is formed, which are tuned to the same resonant frequency, but one of which is designed as an acoustic parallel circuit and the other as an acoustic series circuit.
Fig. 12
shows a muffler, when compared to Fig. 11 in which one gas channel several, but also tuned to the same resonant frequency Helmholtz resonators are provided one behind the other.

FIGURENBESCHREIBUNGDESCRIPTION OF THE FIGURES

Ein in Fig. 1 skizzierter Schalldämpfer 1 weist in einem Rohr 2 mit einer Wandung 3 drei helikale Einbauten 4, 5 und 6 auf. Dabei liegt der helikale Einbau 5 zwischen den endseitigen helikalen Einbauten 4 und 6 und weist zu jedem von diesen einen gleichen freien Abstand 7 in Richtung der Rohrachse 8 des Rohrs 2 auf. Jeder der helikalen Einbauten 4-6 besteht aus einer um die Rohrachse 8 verdrillten zweigängigen Helix 9. An den Enden des Schalldämpfers wächst der Durchmesser der zweigängigen Helix 9 der endseitigen helikalen Einbauten 4 und 6 stetig von null auf den Durchmesser des Rohrs 2 an. Überall dort, wo die zweigängige Helix 9 den Durchmesser des Rohrs 2 aufweist, ist sie fest an der Wandung 3 gelagert. Hierdurch sind auch die Abstände 7 fest. Die zweigängigen Helices 9 verleihen einem Innenbereich 10 eines durch das Rohr 2 führenden und durch dessen Wandung 3 begrenzten Gaskanals 11 einen schraubenförmigen Verlauf. Dabei grenzt jede der zweigängigen Helices 9 zwei schraubenförmig verlaufende Teilinnenbereichen 12 des Gaskanals 8 gegeneinander ab. Für eine Gasströmung längs der Rohrachse 8 durch den Gaskanal 11 bedeuten die helikalen Einbauten 4-6 zwar eine Erhöhung des Strömungswiderstands. Diese Erhöhung des Strömungswiderstands fällt jedoch vergleichsweise klein aus. Für sich in dem strömenden Gas ausbreitende Schallwellen bedeuten die helikalen Einbauten 4-6 hingegen eine starke Variation der Impedanz. Diese Variation ist an den Enden des Schalldämpfers 1 durch die sich dort stetig ändernden Durchmesser der zweigängigen Helices stetig. Dort, wo die helikalen Einbauten 4-6 jedoch abrupt enden, d. h. auf beiden Seiten beider Abstände 7, treten Impedanzsprünge auf. Auf diese Weise werden bei dem Schalldämpfer 1 zwei Helmholtz-Resonatoren 13 ausgebildet, deren Hohlräume oder Kavitäten 14 dem freien Rohrquerschnitt längs der Abstände 7 entsprechen. Beide Helmholtz-Resonatoren 13 sind durch die gleichen Abstände 7 auf gleiche Frequenzen abgestimmt, wobei es sich um eine Hauptschallfrequenz handelt, die in dem durch den Gaskanal 11 strömenden Gas auftritt. Schallwellen mit dieser Hauptschallfrequenz wird von den Helmholtz-Resonatoren 13 Energie entzogen, die letztlich in Wärme umgesetzt wird. Dies geschieht unter im Vergleich zu dem Wirkungsgrad der Schalldämpfung nur minimaler Beeinträchtigung der Gasströmung, d. h. mit minimalem Strömungswiderstand für das strömende Gas.An in Fig. 1 sketched muffler 1 has in a tube 2 with a wall 3 three helical internals 4, 5 and 6. In this case, the helical installation 5 lies between the end-side helical internals 4 and 6 and has a same free distance 7 in the direction of the tube axis 8 of the tube 2 for each of these. Each of the helical internals 4-6 consists of a twinned helix 9 twisted around the tube axis 8. At the ends of the muffler, the diameter of the double-flighted helix 9 of the end helical internals 4 and 6 steadily increases from zero to the diameter of the tube 2. Wherever the two-start helix 9 has the diameter of the tube 2, it is firmly mounted on the wall 3. As a result, the distances 7 are fixed. The double-flighted helices 9 impart a helical course to an inner region 10 of a gas channel 11 leading through the tube 2 and bounded by the wall 3 thereof. In this case, each of the double-flighted helices 9 delimits two helically extending part inner regions 12 of the gas channel 8 from one another. For a gas flow along the tube axis 8 through the gas channel 11 mean the helical internals 4-6, although an increase in the flow resistance. However, this increase in the flow resistance is relatively small. For spreading in the flowing gas Sound waves mean that the helical internals 4-6, however, a strong variation of the impedance. This variation is continuous at the ends of the muffler 1 due to the continuously changing diameters of the double-flighted helices. However, where the helical internals 4-6 abruptly terminate, ie on both sides of both distances 7, impedance jumps occur. In this way, two Helmholtz resonators 13 are formed in the muffler 1, the cavities or cavities 14 correspond to the free pipe cross section along the distances 7. Both Helmholtz resonators 13 are tuned by the same distances 7 to the same frequencies, which is a main sound frequency, which occurs in the gas flowing through the gas channel 11 gas. Sound waves with this main sound frequency is deprived of energy by the Helmholtz resonators 13, which is ultimately converted into heat. This is done in comparison to the efficiency of the sound attenuation only minimal impairment of the gas flow, ie with minimal flow resistance for the flowing gas.

Die Ausführungsform des Schalldämpfers 1 gemäß Fig. 2 unterscheidet sich von derjenigen gemäß Fig. 1 dadurch, dass nur ein Helmholtz-Resonator 13 ausgebildet ist, in dem kein zusätzlicher helikaler Einbau zwischen den helikalen Einbauten 4 und 6 vorgesehen ist. Zudem sind die geometrischen Verhältnisse bei den helikalen Einbauten 4 und 6 anders als in Fig. 1, indem deren Windungszahlen größer und die endseitigen Einlauf- bzw. Auslaufbereiche, in denen sich der Durchmesser der zweigängigen Helices 9 stetig von null bis auf den Durchmesser des Rohrs 2 erweitert, länger gestreckt sind. Die Frequenz, auf die der jeweilige Schalldämpfer 1 abgestimmt ist, hängt im Wesentlichen von der Länge der Kavität 14 seiner Helmholtz-Resonatoren 13 ab, d. h. von dem Abstand 7. Diese Länge muss so abgestimmt sein, dass sich hier stehende Wellen mit der Wellenlänge der interessierenden Hauptschalffrequenz ausbilden können. D. h., es kommt nicht allein auf den geometrischen Abstand 7 sondern auch auf die Schallausbreitungsgeschwindigkeit innerhalb des Gaskanals 10 und damit auf das davon geführte Gas sowie dessen Zustand an.The embodiment of the muffler 1 according to Fig. 2 differs from the one according to Fig. 1 in that only one Helmholtz resonator 13 is formed, in which no additional helical installation between the helical internals 4 and 6 is provided. In addition, the geometric relationships in the helical internals 4 and 6 are different than in Fig. 1 in that their numbers of turns are greater and the end-side inlet or outlet areas in which the diameter of the double-flighted helices 9 continuously widens from zero to the diameter of the tube 2 are stretched longer. The frequency to which the respective muffler 1 is tuned depends essentially on the length of the cavity 14 of its Helmholtz resonators 13, ie on the distance 7. This length must be adjusted so that waves standing here with the wavelength of the can train interesting main sound frequency. That is, it depends not only on the geometric distance 7 but also on the speed of sound propagation within the gas channel 10 and thus on the gas guided therefrom and its state.

Der Schalldämpfer 1 gemäß Fig. 3 entspricht wieder im Wesentlichen Fig. 1, d. h. es ist wieder ein zusätzlicher helikaler Einbau 5 vorhanden. Die geometrischen Daten des Schalldämpfers 1 sind jedoch gegenüber Fig. 1 variiert.The muffler 1 according to Fig. 3 is again essentially the same Fig. 1 , ie there is again an additional helical installation 5 available. However, the geometric data of the muffler 1 are opposite Fig. 1 varied.

Der Schalldämpfer 1 gemäß Fig. 4 unterscheidet sich von denjenigen gemäß den Fig. 1 und 3 wieder durch seine geometrischen Abmessungen. Während jedoch bislang alle zweigängigen Helices 9 bei den helikalen Einbauten 4 bis 6 die gleiche Steigung aufwiesen, ist hier bei dem helikalen Einbau 5 eine stark nach oben abweichende Steigung vorgesehen. Auf diese Weise kann ein weiterer Helmholtz-Resonator 15 ausgebildet werden, dessen Kavität sich längs der schraubenförmigen Teilinnenbereiche 12 im Bereich des helikalen Einbaus 5 erstreckt. Grundsätzlich ist die Ausbildung eines solchen weiteren Helmholtz-Resonators 15 bei allen helikalen Einbauten 4-6 denkbar. Allerdings ist die Dämpfung innerhalb der helikalen Einbauten 4-6 bei kleinerer Steigung der zweigängigen Helices 9 für die Ausbildung eines wirksamen Resonators schnell zu groß. Bei den bisher gezeigten endseitigen helikalen Einbauten 4 und 6 wird die Funktion als Helmholtz-Resonator zudem durch den auslaufenden Durchmesser der zweigängigen Helices 9 behindert, weil dieser einen fließenden Impedanzübergang und keinen Impedanzsprung bedeutet. Ein fließender Impedanz-Übergang reflektiert Schallwellen in dem Gas innerhalb des Gaskanals 11 nicht und ist daher zur Begrenzung der Kavität eines Helmholtz-Resonators ungeeignet. Bei dem Schalldämpfer 1 dient dieser fließende Übergang gezielt dazu, die Schallwellen zunächst ungehindert in den Schalldämpfer 1 eintreten zu lassen, um sie dann dort zu absorbieren.The muffler 1 according to Fig. 4 differs from those according to the Fig. 1 and 3 again by its geometric dimensions. While so far all two-stringed Helices 9 in the helical internals 4 to 6 had the same slope, here in the helical installation 5 a strongly deviating upward slope is provided. In this way, a further Helmholtz resonator 15 may be formed, the cavity of which extends along the helical partial inner regions 12 in the region of the helical installation 5. In principle, the formation of such a further Helmholtz resonator 15 is conceivable in all helical installations 4-6. However, the attenuation within the helical internals 4-6 at a smaller pitch of the double-flighted helices 9 for the formation of an effective resonator is quickly too large. In the case of the end-side helical internals 4 and 6 shown so far, the function as a Helmholtz resonator is also hindered by the outgoing diameter of the double-flighted helices 9, because this means a flowing impedance transition and no impedance jump. A flowing impedance transition does not reflect sound waves in the gas within the gas channel 11 and is therefore unsuitable for limiting the cavity of a Helmholtz resonator. In the case of the silencer 1, this flowing transition serves specifically to allow the sound waves initially to enter the silencer 1 unhindered, in order then to absorb them there.

Der Schalldämpfer 1 gemäß Fig. 5 weist wieder bei allen helikalen Einbauten 4-6 gleiche Steigungen der zweigängigen Helices 9 auf. Jetzt sind jedoch zwei helikale Einbauten 5 zwischen den endseitigen helikalen Einbauten 4 und 6 vorgesehen. Auch zwischen diesen helikalen Einbauten 5 liegt derselbe Abstand 7 wie zu den helikalen Einbauten 4 und 6 vor. Entsprechend sind hier drei Helmholtz-Resonatoren 13 ausgebildet. Je nach Ausgestaltung der helikalen Einbauten 5 können auch in deren Bereichen grundsätzlich zusätzliche Helmholtz-Resonatoren 15 (hier nicht eingezeichnet) ausgebildet sein.The muffler 1 according to Fig. 5 shows again in all helical internals 4-6 equal slopes of the double-flighted helices 9. However, two helical internals 5 are now provided between the end-side helical internals 4 and 6. Also between these helical internals 5 is the same distance 7 as before to the helical internals 4 and 6. Accordingly, three Helmholtz resonators 13 are formed here. Depending on the configuration of the helical internals 5, additional Helmholtz resonators 15 (not shown here) may in principle also be formed in their regions.

Der Schalldämpfer 1 gemäß Fig. 6 weist noch einen weiteren mittleren helikalen Einbau 5 auf, so dass hier insgesamt vier Helmholtz-Resonatoren 13 zwischen den helikalen Einbauten 4-6 ausgebildet sind. Zudem ist hier die Steigung der zweigängigen Helices 9 der helikalen Einbauten 5 deutlich kleiner als bei den zweigängigen Helices 9 der endseitigen helikalen Einbauten 4 und 6.The muffler 1 according to Fig. 6 has yet another central helical installation 5, so that a total of four Helmholtz resonators 13 are formed between the helical internals 4-6. In addition, here the pitch of the double-flighted helices 9 of the helical internals 5 is significantly smaller than in the case of the double-flighted helices 9 of the end-side helical internals 4 and 6.

Fig. 7 zeigt einen Schalldämpfer 1, bei dem zum einen mit Hilfe von insgesamt fünf mittleren helikalen Einbauten 5 zwischen den endseitigen helikalen Einbauten 4 und 6 sechs Helmholtz-Resonatoren über die freien Abstände 7 ausgebildet sind, und bei dem zum anderen die endseitigen helikalen Einbauten 4 und 6 abrupt, d. h. mit vollem Durchmesser ihrer zweigängigen Helices 9 enden. Auf diese Weise wird auch an den Enden des Schalldämpfers 1 ein Impedanzsprung ausgebildet. Entsprechend kann auch hier innerhalb jedes helikalen Einbaus 4-6 ein zusätzlicher Helmholtz-Resonator 15 ausgebildet sein. Fig. 7 shows a muffler 1, in which on the one hand by means of a total of five central helical internals 5 between the end-side helical internals 4 and 6 six Helmholtz resonators over the free distances 7 are formed, and in the other end of the helical internals 4 and 6 abrupt, ie with full diameter of its double-flighted Helices 9 end. In this way, an impedance jump is formed at the ends of the muffler 1. Accordingly, an additional Helmholtz resonator 15 can also be formed here within each helical installation 4-6.

Fig. 8 skizziert einen Schalldämpfer 1, in dessen Rohr 2 nur ein einziger helikaler Einbau 4 vorgesehen ist. Dieser helikale Einbau 4 läuft an beiden Enden des Schalldämpfers 1 mit zu der Rohrachse 8 stetig abnehmenden Durchmesser seiner zweigängigen Helix 9 aus, um dort reflexionsarme Übergange auszubilden. Zur Ausbildung von zwei Helmholtz-Resonatoren 16 weisen der helikale Einbau 4 und das Rohr 2 drei gemeinsame Einschnürungen 17 auf. Die Einschnürungen wirken akustisch betrachtet wie träge Massen, deren Impedanz für hohe Frequenzen sehr groß wird, so das hochfrequente Schallwellen zwischen ihnen reflektiert werden. Fig. 8 outlined a muffler 1, in the tube 2 only a single helical installation 4 is provided. This helical installation 4 runs at both ends of the muffler 1 with the tube axis 8 steadily decreasing diameter of its double-flighted helix 9 in order to form reflection-free transitions there. To form two Helmholtz resonators 16, the helical installation 4 and the tube 2 have three common constrictions 17. The constrictions act acoustically like sluggish masses whose impedance becomes very high for high frequencies, so that the high-frequency sound waves are reflected between them.

Bei dem Schalldämpfer 1 gemäß Fig. 9 weisen das Rohr 2 und der helikale Einbau 4 statt der Einschnürungen 17 gemäß Fig. 8 eine Aufweitung 19 zur Ausbildung eines Helmholtz-Resonators 18 zwischen deren Flanken 20 auf. Die ganze Aufweitung 19 wirkt zudem wie eine Feder.In the silencer 1 according to Fig. 9 have the tube 2 and the helical installation 4 instead of the constrictions 17 according to Fig. 8 an expansion 19 for forming a Helmholtz resonator 18 between the flanks 20 on. The whole expansion 19 also acts like a spring.

Bei der Ausführungsform des Schalldämpfers 1 gemäß Fig. 10 sind Einschnürungen 17 gemäß Fig. 8 und die Aufweitung 19 gemäß Fig. 9 kombiniert, um verschiedene Helmholtz-Resonatoren 16 und 18 auszubilden.In the embodiment of the muffler 1 according to Fig. 10 are constrictions 17 according to Fig. 8 and the expansion 19 according to Fig. 9 combined to form various Helmholtz resonators 16 and 18.

Mit den Schalldämpfern 1 gemäß den Fig. 11 und 12 wird das grundsätzlich aus der DE 195 33 623 B4 bekannte Prinzip eines Zweikreisresonanzabsorbers mit einem akustischen Serienkreis und einem akustischen Parallelkreis auf einen Schalldämpfer für ein strömendes Gas angewandt. Hierzu wird das Gas auf zwei Gaskanäle 21 und 22 aufgeteilt, wobei der Gaskanal 21 ein Ringkanal ist, der zwischen dem Rohr 2 und einem Innenrohr 23 verläuft, während der Gaskanal 22 durch das Innenrohr 23 verläuft. Die Innenbereiche 24 und 25 der Gaskanäle 21 und 22 werden hier jeweils durch helikale Einbauten 26 und 27 zu Schraubengängen geformt. Hierbei sind nur die helikalen Einbauten 27 in dem Innenrohr 23 zwingend zweigängige Helices9. Die helikalen Einbauten 6 in dem ringförmigen Gaskanal 21 können auch Einfachhelices sein, wie dies hier dargestellt ist. Mit den helikalen Einbauten 26 und 27 werden in beiden Gaskanälen 21 und 22 Helmholtz-Resonatoren 28 und 29 ausgebildet, wobei hier jedoch die Reihenfolge von helikalen Einbauten 26 bzw. 27 und deren freien Abständen zwischen den Gaskanälen 21 und 22 vertauscht ist. D. h., an den Enden des Gaskanals 21 liegen helikale Einbauten und an den Enden des Gaskanals 22 liegen Freiräume. Den akustischen Parallelkreis bildet dabei der Gaskanal 22, der die endseitigen Freiräume aufweist. Diese bilden akustische Federn aus, während die helikalen Einbauten 26 und 27 akustischen Massen entsprechen. Bei den skizzierten Zweikreisresonanzabsorbern wird eine besonders hohe Absorptionsleistung bei der Hauptschallfrequenz erreicht, auf die die einzelnen Helmholtz-Resonatoren 28 und 29 abgestimmt sind. Die beiden Ausführungsformen des Schalldämpfers gemäß den Fig. 11 und 12 unterscheiden sich durch den geometrischen Aufbau der helikalen Einbauten 26 und 27.With the mufflers 1 according to the FIGS. 11 and 12 that will basically come from the DE 195 33 623 B4 known principle of a dual-circuit resonant absorber with an acoustic series circuit and an acoustic parallel circuit applied to a muffler for a flowing gas. For this purpose, the gas is divided into two gas channels 21 and 22, wherein the gas channel 21 is an annular channel which extends between the tube 2 and an inner tube 23, while the gas channel 22 extends through the inner tube 23. The inner regions 24 and 25 of the gas channels 21 and 22 are here each formed by helical internals 26 and 27 to screw flights. In this case, only the helical internals 27 in the inner tube 23 are necessarily double-flighted helices9. The helical internals 6 in the annular gas channel 21 may also be single helices, as shown here. With the helical internals 26 and 27, Helmholtz resonators 28 and 29 are formed in both gas channels 21 and 22, but here the order of helical internals 26 and 27 and their free distances between the gas channels 21 and 22 is reversed. D. h., At the ends of the gas channel 21 are helical internals and at the ends of the gas channel 22 are free spaces. The acoustic parallel circuit forms the gas channel 22, which has the end-side free spaces. These form acoustic springs, while the helical internals 26 and 27 correspond to acoustic masses. In the two-band resonator absorbers outlined, a particularly high absorption power is achieved at the main sound frequency, to which the individual Helmholtz resonators 28 and 29 are tuned. The two embodiments of the muffler according to the FIGS. 11 and 12 differ by the geometric structure of the helical internals 26 and 27th

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Schalldämpfersilencer
22
Rohrpipe
33
Wandungwall
44
helikaler Einbauhelical installation
55
helikaler Einbauhelical installation
66
helikaler Einbauhelical installation
77
Abstanddistance
88th
Rohrachsepipe axis
99
zweigängige Helixdouble-flighted helix
1010
Innenbereich des Gaskanals 11Interior of the gas channel 11
1111
Gaskanalgas channel
1212
Teilungendivisions
1313
Helmholtz-ResonatorHelmholtz resonator
1414
Kavitätcavity
1515
Helmholtz-ResonatorHelmholtz resonator
1616
Helmholtz-ResonatorHelmholtz resonator
1717
Einschnürungconstriction
1818
Helmholtz-ResonatorHelmholtz resonator
1919
Aufweitungwidening
2020
Flankeflank
2121
Gaskanalgas channel
2222
Gaskanalgas channel
2323
Innenrohrinner tube
2424
Innenbereich des Gaskanals 11 ohne den Innenbereich des Innenrohrs 23Interior of the gas channel 11 without the inner region of the inner tube 23rd
2525
Innenbereich des Innenrohrs 23Inner region of the inner tube 23
2626
helikaler Einbauhelical installation
2727
helikaler Einbauhelical installation
2828
Helmholtz-ResonatorHelmholtz resonator
2929
Helmholtz-ResonatorHelmholtz resonator

Claims (13)

  1. Sound absorber (1) for sound waves propagating in a flowing gas, comprising at least one gas channel (11, 21, 22) through which a gas flows and in which a helical fixture (4-6, 26, 27) is provided which gives an interior (10, 24, 25) of the gas channel (11) a helical course, characterized in that by means of at least one helical fixture (4-6, 26, 27) a Helmholtz resonator (13, 15, 16, 18, 28, 29) is formed in the gas channel (11) which comprises a cavity (14) delimited, in the flow direction of the gas, by opposite impedance steps for the sound waves propagating in the gas, and which is excited by the sound waves propagating in the flowing gas such that energy of a passing sound wave whose wave lengths fits to the length of the cavity is captured, and that the helical fixture (4), at at least one end of the sound absorber (1), comprises an intake or discharge area in which its diameter in the flow direction of the gas continuously approaches the wall (3) of the gas channel (11) from the interior or gets away from it.
  2. Sound absorber (1) according to claim 1, characterized in that the opposite impedance steps are provided by opposite changes of the pitch and/or of the diameter of the at least one helical fixture (4-6, 26, 27).
  3. Sound absorber (1) according to claim 2, characterized in that the at least one helical fixture (4) including a wall (3) of the gas channel (11) enclosing it comprises at least one local contraction (17) or expansion (19).
  4. Sound absorber (1) according to claim 1, characterized in that no helical fixture is arranged in the cavity (14).
  5. Sound absorber (1) according to at least one of the preceding claims, characterized in that the gas channel (11, 12) comprises a circular cross-sectional area which is spanned by the at least one helical fixture (4-6, 27) by means of a double helix (9).
  6. Sound absorber (1) according to at least one of the preceding claims 1 to 5, characterized in that the gas channel (21) comprises a ring-shaped cross-sectional area which is spanned by the helical fixture (27) by means of at least one helix.
  7. Sound absorber (1) according to at least one of the preceding claims, characterized in that several gas channels (21, 22) are provided, over which the flowing gas is distributed.
  8. Sound absorber (1) according to claim 7, characterized in that in all gas channel (21, 22) Helmholtz resonators (28, 29) are formed by means of helical fixtures (26, 27).
  9. Sound absorber (1) according to claim 8, characterized in that in all gas channels (21, 22) Helmholtz resonators (28, 29) tuned to a same frequency of the exciting sound waves are provided at least one of which being designed as an acoustic parallel circuit and one as an acoustic series circuit.
  10. Sound absorber (1) according to at least one of the preceding claims, characterized in that in the gas channel (11, 21, 22) several Helmholtz resonators (13, 15, 16, 18, 28, 29) are provided one behind the other.
  11. Sound absorber (1) according to claim 10, characterized in that the several Helmholtz resonators (13, 15, 16, 18, 28, 29) are all tuned to a single main sound frequency or a few discrete main sound frequencies.
  12. Sound absorber (1) according to at least one of the preceding claims, characterized in that the at least one helical fixture (4-6, 26, 27) is actively deformable, particularly due to the integration of functional materials.
  13. Tube (2) with gas flowing there through, particularly in a combustion engine, a heating or a ventilation system, comprising a sound absorber (1) according to any of the claims 1 to 12.
EP10704784.7A 2009-02-05 2010-02-02 Muffler with helical inserts Not-in-force EP2394033B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009000645A DE102009000645B3 (en) 2009-02-05 2009-02-05 Silencer with at least one Helmholtz resonator constructed by means of helical internals
PCT/EP2010/051217 WO2010089283A1 (en) 2009-02-05 2010-02-02 Sound absorber having helical fixtures

Publications (2)

Publication Number Publication Date
EP2394033A1 EP2394033A1 (en) 2011-12-14
EP2394033B1 true EP2394033B1 (en) 2015-03-25

Family

ID=42101956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10704784.7A Not-in-force EP2394033B1 (en) 2009-02-05 2010-02-02 Muffler with helical inserts

Country Status (5)

Country Link
US (1) US8312962B2 (en)
EP (1) EP2394033B1 (en)
DE (1) DE102009000645B3 (en)
DK (1) DK2394033T3 (en)
WO (1) WO2010089283A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR982302A0 (en) 2002-01-03 2002-01-31 Pax Fluid Systems Inc. A fluid flow controller
AU2003903386A0 (en) * 2003-07-02 2003-07-17 Pax Scientific, Inc Fluid flow control device
US8408358B1 (en) 2009-06-12 2013-04-02 Cornerstone Research Group, Inc. Morphing resonators for adaptive noise reduction
JP6200362B2 (en) * 2014-03-26 2017-09-20 川崎重工業株式会社 Exhaust system
US9500108B2 (en) * 2015-01-09 2016-11-22 Flexible Metal, Inc. Split path silencer
DE112016000888T5 (en) 2015-02-24 2017-11-16 Tenneco Automotive Operating Company Inc. Twin screw mixing system
US9618151B2 (en) * 2015-02-26 2017-04-11 Adriaan DeVilliers Compact modular low resistance broadband acoustic silencer
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
FI128355B (en) * 2019-01-29 2020-03-31 Teknologian Tutkimuskeskus Vtt Oy A sound attenuator as well as elements and a method of production thereof
CN112185326A (en) * 2020-08-25 2021-01-05 西安交通大学 Double-helix coupling underwater sound absorption super-surface structure
CN113539223B (en) * 2021-07-11 2022-05-06 哈尔滨工程大学 Helmholtz sound absorption device
WO2023080864A1 (en) * 2021-11-08 2023-05-11 Metapax Akustik Muhendislik Danismanlik Egiti̇m Sanayi Ve Ticaret Anonim Sirketi Broadband acoustic meta-material flow silencer

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2031451A (en) * 1933-03-17 1936-02-18 Chester L Austin Exhaust silencer for internal combustion engines
GB460148A (en) * 1934-07-19 1937-01-18 Zygmunt Wilman Improvements relating to exhaust gas mufflers
FR804593A (en) 1936-04-04 1936-10-27 Silent device for gas exhaust accelerator in internal combustion engines and prime movers
US2359365A (en) * 1943-05-20 1944-10-03 Katcher Morris Muffler
US3182748A (en) * 1961-08-15 1965-05-11 Garrett Corp Helical vane for sound absorbing device and method of making said vane
US3746126A (en) 1971-07-09 1973-07-17 Cardenas I De Sound-muffling device
US3888331A (en) * 1974-05-03 1975-06-10 Gen Motors Corp Power tuned wave interference silencer
JPS5412099Y2 (en) * 1974-11-12 1979-05-29
US4339918A (en) * 1980-09-11 1982-07-20 Hirokuni Michikawa Means for accelerating the discharge of exhaust gas from an internal combustion engine
EP0184060A1 (en) * 1984-11-22 1986-06-11 Tula Silencers (Proprietary) Limited Exhaust silencer
US4667770A (en) * 1986-10-02 1987-05-26 Devane Harry M Sound attenuator
US4792014A (en) * 1987-12-24 1988-12-20 Shin Seng Lin Tail pipe for drafting engine exhaust gas
DE19533623B4 (en) * 1995-09-12 2005-04-28 Continental Ag Absorber for the absorption of airborne sound
DE19644089A1 (en) 1996-10-31 1998-05-14 Deutsch Zentr Luft & Raumfahrt Silencer
DE19932714C2 (en) * 1999-07-16 2001-05-03 Deutsch Zentr Luft & Raumfahrt Tubular air-flow device with active noise reduction device
DE102004006031B4 (en) * 2004-02-06 2006-11-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for reducing pressure pulsations in fluid-carrying piping systems

Also Published As

Publication number Publication date
DE102009000645B3 (en) 2010-07-29
WO2010089283A1 (en) 2010-08-12
DK2394033T3 (en) 2015-05-04
US20110308884A1 (en) 2011-12-22
US8312962B2 (en) 2012-11-20
EP2394033A1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
EP2394033B1 (en) Muffler with helical inserts
EP1715189B1 (en) Noise attenuator designed and meant for a compressor
EP2334558B1 (en) Sound absorber for an auxiliary engine of an aircraft
DE2321649A1 (en) NOISE REDUCTION DEVICE AND METHOD
EP0791135B1 (en) Exhaust silencer
EP1959106B2 (en) Silencer for an exhaust system
DE69728891T2 (en) MUFFLER FOR FLOWING GASES
EP1715188A1 (en) Noise attenuator designed and meant for a compressor
DE2545364C3 (en)
DE1292667B (en) Silencer for flowing gases
DE2007046C3 (en) Pulsation damper for damping the fluid pressure pulsations occurring in a pipeline arrangement
EP3388678B1 (en) Pulsation sound damper for compressors
DE7307335U (en) EXHAUST SILENCER FOR TWO-STROKE ENGINES
EP2567076B1 (en) Device with broad-band damping for sound damping in industrial facilities, large plants or machines
DE102011114705A1 (en) Muffler for an auxiliary engine of an aircraft
EP1400662B1 (en) Silencer with resonator
DE19638304A1 (en) Gas-pipe silencer with baffles in chamber
DE19932714C2 (en) Tubular air-flow device with active noise reduction device
DE2257852C2 (en) Exhaust silencer for multi-cylinder internal combustion engines
AT226480B (en) silencer
DE10103739B4 (en) silencer
EP3244130B1 (en) Exhaust silencer for an exhaust gas conduit, in particular for an exhaust gas conduit exiting from an oil fired boiler
WO1998019054A1 (en) Exhaust muff
DE602004002857T2 (en) muffler device
DE102005054397B3 (en) Pipe sound absorber for use in ventilation duct, has segments with different intervals to each other for separating space between inner channel and outer wall into chambers in axial direction, where channel has radial intervals from wall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: F01N0001080000

Ipc: F01N0001120000

RIC1 Information provided on ipc code assigned before grant

Ipc: F01N 1/12 20060101AFI20140908BHEP

Ipc: F01N 1/08 20060101ALI20140908BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20150318

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150430

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 718018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150727

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150725

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160202

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 718018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20180125

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180118

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228