EP3388678B1 - Pulsation sound damper for compressors - Google Patents

Pulsation sound damper for compressors Download PDF

Info

Publication number
EP3388678B1
EP3388678B1 EP18164781.9A EP18164781A EP3388678B1 EP 3388678 B1 EP3388678 B1 EP 3388678B1 EP 18164781 A EP18164781 A EP 18164781A EP 3388678 B1 EP3388678 B1 EP 3388678B1
Authority
EP
European Patent Office
Prior art keywords
absorber
absorber element
media flow
compressor
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18164781.9A
Other languages
German (de)
French (fr)
Other versions
EP3388678A1 (en
Inventor
Ulrich Thomes
Marc Schiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gardner Denver Deutschland GmbH
Original Assignee
Gardner Denver Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gardner Denver Deutschland GmbH filed Critical Gardner Denver Deutschland GmbH
Publication of EP3388678A1 publication Critical patent/EP3388678A1/en
Application granted granted Critical
Publication of EP3388678B1 publication Critical patent/EP3388678B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/061Silencers using overlapping frequencies, e.g. Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/084Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling the gases flowing through the silencer two or more times longitudinally in opposite directions, e.g. using parallel or concentric tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/24Silencing apparatus characterised by method of silencing by using sound-absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/007Apparatus used as intake or exhaust silencer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1205Flow throttling or guiding
    • F02M35/1227Flow throttling or guiding by using multiple air intake flow paths, e.g. bypass, honeycomb or pipes opening into an expansion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/063Sound absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the invention relates to a pulsation silencer for a gaseous media flow which is supplied by a compressor, in particular by a compressor.
  • a silencer comprises a housing extending along a central axis with a media flow inlet and a media flow outlet as well as one or more absorber elements which are made of a sound-absorbing material and are used for sound absorption.
  • a wide variety of compressor designs are known for compressing gaseous media, in particular for generating compressed air.
  • the DE 601 17 821 T2 a multi-stage screw compressor with two or more compressor stages, each compressor stage comprising a pair of rotors for compressing a gas.
  • two or more variable speed drive means are provided, each drive means driving a respective compressor stage.
  • a control unit controls the speeds of the drive means, the torque and speed of each drive means being monitored so that the screw compressor provides gas at a required flow delivery rate and at a required pressure while minimizing the energy consumption of the screw compressor.
  • a pulsation damper for a pump which comprises a device body and a membrane, the membrane dividing an interior of the device body into a liquid chamber which can temporarily store a liquid to be transported by a piston pump, and a gas chamber which is filled with a gas for suppression is filled with pulsations and expands and contracts to change a capacity of the liquid chamber. This dampens pulsations due to an initial pressure of the transported liquid.
  • the DE 698 18 687 T2 describes a pulsation damper for damping low-frequency gas pulses with a container having an inlet, an outlet and sound-absorbing elements which are arranged in the container. At least one of the inlet and outlet is provided with a diffuser which comprises a tubular part which is provided with first openings.
  • the tubular part comprises an element which is provided with a number of second openings and is delimited by reinforcing bodies which extend around the circumference, at least one of the second openings being covered by a plate which is provided with the first openings, which are smaller than the second openings are.
  • Simple pulsation silencers are also known from practice, which are essentially formed in the manner of an elongated tube with absorber materials attached inside and which aim at damping both by absorption and reflection of the sound.
  • these known mufflers have several disadvantages.
  • a great length of the absorber part is decisive for achieving sufficient damping. Since the absorber materials used show constant attenuation over the length, the sound attenuation takes place gradually from the entry into the muffler to the exit, which means that a relatively large amount of sound is still radiated to the outside via the housing in the entry area of the muffler.
  • the sound penetrates, especially at high frequencies through the elongated damper tube, so that certain frequencies of the pulsations can pass the absorber almost undamped.
  • the DE 10 2016 100 140 A1 describes a noise damper for a compressed air system of a commercial vehicle.
  • the silencer has a housing with an air inlet, an air outlet and an insulating structure in the manner of a labyrinth.
  • An insulating material can be arranged in the housing, but the aim is to minimize this insulating material.
  • the FR 2 713 702 A1 shows a silencer for a gas flow of a compressor with a housing which has a gas flow inlet and a gas flow outlet.
  • An inner side wall of the housing has an acoustically absorbent coating, preferably made of fibrous material such as mineral wool, which is held by a grid.
  • An outer side wall has an acoustically absorbent coating which is held by a grille. The gas flow is guided through the flow space delimited by the grids.
  • a silencer which is designed as a detachably attachable component.
  • the silencer has baffles in its interior for a multiple deflection of a gas flow.
  • a gas flow inlet and a gas flow outlet are located in the area of an end face of the silencer.
  • One object of the present invention is to provide an improved pulsation silencer which is suitable for use in compressors, in particular in screw compressors, an inexpensive and simple one Structure and shows high attenuation values in a wide frequency spectrum.
  • the aim is to achieve the highest possible damping of the pulsations occurring in compressors over a short overall length, while at the same time only a small pressure loss may occur in the compressed medium.
  • any remaining sound radiation from the housing of the pulsation silencer should be minimized.
  • a pulsation silencer according to the appended claim 1.
  • the subclaims name some preferred embodiments.
  • the invention provides a compressor with such a pulsation silencer.
  • the pulsation silencer according to the invention is suitable for the damping of pulsations and the sound resulting therefrom in a gaseous media flow that is produced by a compressor is delivered.
  • the pulsation silencer initially has a housing extending along a central axis with a media flow inlet and a media flow outlet. Furthermore, several sleeve-shaped absorber elements are provided, which consist of sound-absorbing material and are arranged concentrically to one another in the housing.
  • the pulsation silencer differs significantly from known silencers, because in the prior art either only a single absorber element is used or several absorber elements are arranged axially one behind the other.
  • Each sleeve-shaped absorber element has an inlet area and an outlet area, which are positioned axially spaced apart from one another, and are preferably arranged on the opposite end faces of the absorber element.
  • the inlet area of the aerodynamically forwardmost absorber element is connected to the media flow inlet of the housing
  • the outlet area of the aerodynamically forwardmost absorber element is connected to the inlet area of the aerodynamically downstream absorber element and so on
  • the outlet area of the aerodynamically rearmost absorber element is connected to the media outlet of the housing.
  • the multiple absorber elements thus form multiple stages that are nested within one another.
  • Each of these stages works like a separate absorber.
  • the media flow changes direction several times in the silencer, preferably it meanders along the individual absorber elements.
  • a major advantage of the pulsation silencer is that the overall length is considerably reduced due to the nested arrangement of the absorber elements and the resulting meander-like guidance of the media flow.
  • the silencer according to the invention is more than half shorter than a conventional silencer with a straight line for the flow of media.
  • the absorber elements consist of the same sound-absorbing material, so that they all act on the same frequency range.
  • the individual absorber elements are matched to the damping of different frequency ranges, in particular by using different sound-absorbing materials.
  • the absorber elements preferably consist of mineral material, metal or plastic fabric, metal or ceramic foams, with chamber-like structures being advantageous. Multi-layer absorber material layers can also be used.
  • a preferred embodiment of the pulsation silencer uses rotationally symmetrical absorber elements which interlock telescopically and are arranged in an axially fixed manner in the housing.
  • the absorber elements can also have a rectangular or polygonal cross section.
  • at least three or more absorber elements are arranged in a ring to one another, with a difference remaining between the inner diameter of each outer absorber element and the outer diameter of an opposite inner absorber element in order to form the flow space there, for example with a width of 5 - 10 mm.
  • the absorber elements extend over almost the same axial length, so that at least 80%, preferably at least 90% of the longitudinal extent of the absorber elements axially overlap.
  • the inlet area and the outlet area are each arranged at the end faces of the absorber elements, the direction of flow of the media flow being reversed by 180 ° at the transition from one absorber element to the next absorber element. Since, due to the nested arrangement of the sleeve-shaped absorber elements, there is also an increase in cross-section for the media flow at the transition between the adjacent absorber elements (even with the same gap width in the flow space), the flow velocity is reduced, which results in additional damping. Depending on the design, it is easy to double the cross-sectional area through which the flow passes, and thus a significant reduction in speed from one stage to the next.
  • the reversal of direction when the media flow passes from one absorber element to the next can also be used positively to improve the damping properties, because the deflections mean that there is no direct "line of sight" between the media flow inlet and the media flow outlet, which means that pulsations of higher frequencies are directly transmitted downstream components prevented.
  • the housing preferably has an absorber element receiving area with a circular cross section; an end plate on which the media inlet is designed as a centrally located inlet opening which opens into a central inlet area of the foremost absorber element in terms of flow; and a flange, which lies opposite the end plate, forms the media outlet and into which an annular outlet region of the absorber element which is at the rear in terms of flow opens. Since the media entry into the silencer is in the inner area in this construction, the place with the greatest sound energy is there, i.e. H. far from the outer casing wall.
  • the next stage in the flow direction is also located inside the damper.
  • the sound energy has already been reduced in such a way that the sound energy still radiated by the housing is minimal.
  • the ratio of the axial length to the maximum cross-sectional extension (e.g. diameter) of each absorber element is less than 5, preferably less than 2.5. In the case of the radially outermost absorber element, this ratio is particularly preferably less than 1, preferably less than 0.75. It is also advantageous if the ratio of the overall axial length of the pulsation silencer to the length of the media flow through the absorber elements The distance covered is less than 1, preferably less than 0.5.
  • the compressor provided by the invention for compressing gaseous media comprises a compressor and a pulsation silencer which is arranged downstream of the compressor in terms of flow technology and is designed according to the embodiments described above or combinations of these embodiments.
  • the compressor is preferably designed as a screw compressor or a double screw compressor.
  • a significant advantage of using the pulsation silencer according to the invention is the drastic reduction in the required size, which has a positive effect on the design of the entire compressor.
  • a further developed embodiment of the pulsation silencer is characterized in that one or more of the absorber elements have additional cavities which act as resonator chambers.
  • the resonator chambers preferably extend at an angle to the flow spaces and serve for additional pulsation and sound dampening using reflection and resonance effects.
  • Fig. 1 shows a simplified longitudinal sectional view of a pulsation silencer 100 according to the invention, while Fig. 2 whose cross-section shows.
  • the muffler 100 has an essentially cylindrical housing 101 with an absorber element receiving area 102, an end plate 103 closing the housing at the end and a flange 104 axially opposite the end plate Compressor compressed gaseous media flow 107, in particular compressed air, is supplied.
  • a plurality of sleeve-like absorber elements 108 are arranged in the absorber element receiving area 102, in the example shown a front absorber element 108a in terms of flow, a middle absorber element 108b in terms of flow and a rear absorber element 108c in terms of flow.
  • the three absorber elements are telescopically inserted into one another and have essentially the same length in the axial direction. All absorber elements consist of sound-absorbing material, whereby the specific properties of the material can be selected to be differentiated between the individual absorber elements.
  • the media flow inlet 106 opens into the centrally located inlet area of the front absorber element 108a, so that the media flow initially flows inside the front absorber element 108a and is dampened by its material.
  • the interior of the front absorber element 108a can be hollow or filled with gas-permeable material, the flow resistance having to be kept low.
  • an outlet area is provided so that the media flow can exit from the front absorber element 108a.
  • the media flow flows in a first ring-shaped alternating region 110 into the inlet region of the central absorber element 108b, with a reversal of direction in the media flow 107.
  • the middle absorber element 108b surrounds the aerodynamically front absorber element 108a in a ring shape, a centering pin 111 provided on the middle absorber element 108b serving to hold the front absorber element 108a.
  • the media flow 107 now flows through a first cylindrical flow space 112, which extends in the axial direction between the front absorber element 108a and the middle absorber element 108b.
  • the media flow leaves the first cylindrical flow space 112 via an outlet area and flows into the inlet area of the rear absorber element 108c in a second annular changing area 113.
  • the media flow 107 now flows through a second cylindrical flow space 114, which extends in the axial direction between the middle absorber element 108b and the rear absorber element 108c.
  • the flow direction in the second flow space 114 is axially opposite to the flow direction in the first flow space 112.
  • the media flow 107 leaves the absorber element receiving area 102 via an outlet region of the aerodynamically rear absorber element 108c and then flows through a media flow outlet 116 in the flange 104 to the downstream units of the Compressor. It can be seen from the figures that the cross section available for the media flow increases significantly in the changing areas and is ultimately significantly larger at the media flow outlet 116 than at the media flow inlet 106.
  • all three absorber elements 108 each have a plurality of resonator chambers 117a, 117b and 117c in their wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

Die Erfindung betrifft einen Pulsations-Schalldämpfer für einen gasförmigen Medienstrom, der von einem Verdichter, insbesondere von einem Kompressor geliefert wird. Ein solcher Schalldämpfer umfasst ein sich entlang einer Zentralachse erstreckendes Gehäuse mit einem Medienstromeinlass und einem Medienstromauslass sowie ein oder mehrere Absorberelemente, die aus einem schallabsorbierenden Material bestehen und der Schallabsorption dienen.The invention relates to a pulsation silencer for a gaseous media flow which is supplied by a compressor, in particular by a compressor. Such a silencer comprises a housing extending along a central axis with a media flow inlet and a media flow outlet as well as one or more absorber elements which are made of a sound-absorbing material and are used for sound absorption.

Zur Kompression von gasförmigen Medien, insbesondere zur Erzeugung von Druckluft sind unterschiedlichste Bauformen von Kompressoren bekannt. Beispielsweise zeigt die DE 601 17 821 T2 einen Mehrstufen-Schraubenverdichter mit zwei oder mehr Verdichterstufen, wobei jede Verdichterstufe ein Paar von Rotoren zum Verdichten eines Gases umfasst. Weiterhin sind zwei oder mehr Antriebsmittel mit veränderbarer Geschwindigkeit vorgesehen, wobei jedes Antriebsmittel eine jeweilige Verdichterstufe antreibt. Eine Steuereinheit steuert die Geschwindigkeiten der Antriebsmittel, wobei das Drehmoment und die Geschwindigkeit jedes Antriebsmittels überwacht wird, sodass der Schraubenverdichter Gas bei einer geforderten Strömungslieferrate und bei einem geforderten Druck bereitstellt und gleichzeitig der Energieverbrauch des Schraubenverdichters minimiert werden soll.A wide variety of compressor designs are known for compressing gaseous media, in particular for generating compressed air. For example, the DE 601 17 821 T2 a multi-stage screw compressor with two or more compressor stages, each compressor stage comprising a pair of rotors for compressing a gas. Furthermore, two or more variable speed drive means are provided, each drive means driving a respective compressor stage. A control unit controls the speeds of the drive means, the torque and speed of each drive means being monitored so that the screw compressor provides gas at a required flow delivery rate and at a required pressure while minimizing the energy consumption of the screw compressor.

Generell ergibt sich bei Kompressoren, insbesondere bei nach dem Verdrängungsprinzip arbeitenden Maschinen, das Problem, dass aufgrund des diskontinuierlichen Ausschubvorgangs auf der Druck- bzw. Ausschubseite des Kompressors, in den nachgeschalteten Komponenten, wie zum Beispiel Rohrleitungen, Kühler, Druckbehälter etc., unerwünschte Pulsationen, d. h. Druckwechsel auftreten. Diese nachgeschalteten Komponenten werden aufgrund der Druckwechsel und/oder die hierdurch angeregten Schwingungen erheblich belastet, was beispielsweise zu Materialschädigungen durch Ermüdung führen kann. Die Druckwechsel rufen darüber hinaus erhebliche Geräuschemissionen hervor, basierend auf Körperschalleinleitung, Schallweiterleitung und Schallabstrahlung. Außerdem können aus den Pulsationen Rückwirkungen auf die Verdichterstufe resultieren, die den Kompressionsvorgang selbst beeinträchtigen können. Diese Probleme treten besonders drastisch bei trocken verdichtenden Schraubenkompressoren zu Tage, bei denen zum Teil erhebliche Pulsationen am Austritt der Verdichterstufen auftreten. Da die Ausschubvorgänge impulsartige Vorgänge sind, sind auch die Harmonischen der Pulsations-Grundfrequenz stark ausgeprägt, in einigen Fällen sogar stärker als die Grundfrequenz selbst.In general, the problem arises with compressors, especially with machines working according to the displacement principle, that due to the discontinuous extension process on the pressure or extension side of the compressor, in the downstream components, such as pipelines, Cooler, pressure vessel, etc., undesirable pulsations, ie pressure changes occur. These downstream components are subjected to considerable stress due to the pressure changes and / or the vibrations excited thereby, which can lead to material damage due to fatigue, for example. The pressure changes also cause considerable noise emissions, based on structure-borne noise introduction, sound transmission and sound radiation. In addition, the pulsations can have repercussions on the compressor stage, which can affect the compression process itself. These problems occur particularly drastically in the case of dry-compressing screw compressors, in which in some cases considerable pulsations occur at the outlet of the compressor stages. Since the extension processes are pulse-like processes, the harmonics of the basic pulsation frequency are also very pronounced, in some cases even stronger than the basic frequency itself.

Aufgrund der zuvor genannten Vorgänge und verstärkt durch den Umstand, dass viele Kompressoren mit einer Drehzahlregelung zur Liefermengenanpassung ausgerüstet sind, ist das Frequenzspektrum der Pulsationen entsprechend groß. Dies stellt an in den Kompressoren zum Einsatz kommende Pulsations-Schalldämpfer hohe Anforderungen, da ein entsprechend großes Frequenzspektrum gedämpft werden muss.Due to the above-mentioned processes and reinforced by the fact that many compressors are equipped with a speed control for adapting the delivery rate, the frequency spectrum of the pulsations is correspondingly large. This places high demands on the pulsation silencers used in the compressors, since a correspondingly large frequency spectrum has to be damped.

Aus der DE 699 20 997 T2 ist ein Pulsationsdämpfer für eine Pumpe bekannt, der einen Gerätekörper und eine Membran umfasst, wobei die Membran einen Innenraum des Gerätekörpers in eine Flüssigkeitskammer, die vorübergehend eine durch eine Kolbenpumpe zu transportierende Flüssigkeit speichern kann, und eine Gaskammer unterteilt, welche mit einem Gas zur Unterdrückung von Pulsationen gefüllt wird und sich erweitert und kontrahiert, um eine Kapazität der Flüssigkeitskammer zu ändern. Hierdurch werden Pulsationen aufgrund eines Ausgangsdrucks der transportierten Flüssigkeit gedämpft.From the DE 699 20 997 T2 A pulsation damper for a pump is known, which comprises a device body and a membrane, the membrane dividing an interior of the device body into a liquid chamber which can temporarily store a liquid to be transported by a piston pump, and a gas chamber which is filled with a gas for suppression is filled with pulsations and expands and contracts to change a capacity of the liquid chamber. This dampens pulsations due to an initial pressure of the transported liquid.

Die DE 698 18 687 T2 beschreibt einen Pulsationsdämpfer zum Dämpfen niederfrequenter Gaspulse mit einem Behälter, der einen Einlass, einen Auslass und Schalldämpfungselemente aufweist, die in dem Behälter angeordnet sind. Zumindest der Einlass oder Auslass sind mit einem Diffusor versehen, der ein rohrartiges Teil umfasst, das mit ersten Öffnungen versehen ist. Das rohrartige Teil umfasst ein Element, das mit einer Anzahl zweiter Öffnungen versehen ist und durch Verstärkungskörper abgegrenzt ist, die sich um den Umfang erstrecken, wobei zumindest eine der zweiten Öffnungen durch eine Platte abgedeckt ist, die mit den ersten Öffnungen versehen ist, welche kleiner als die zweiten Öffnungen sind.The DE 698 18 687 T2 describes a pulsation damper for damping low-frequency gas pulses with a container having an inlet, an outlet and sound-absorbing elements which are arranged in the container. At least one of the inlet and outlet is provided with a diffuser which comprises a tubular part which is provided with first openings. The tubular part comprises an element which is provided with a number of second openings and is delimited by reinforcing bodies which extend around the circumference, at least one of the second openings being covered by a plate which is provided with the first openings, which are smaller than the second openings are.

Die zuvor genannten Pulsations-Schalldämpfer besitzen einen komplexen Aufbau und sind daher teuer und wartungsintensiv. Aus der Praxis sind auch einfache Pulsations-Schalldämpfer bekannt, die im Wesentlichen in der Art eines lang gestreckten Rohrs mit im Inneren angebrachten Absorbermaterialien gebildet sind und die Dämpfung sowohl durch Absorption als auch Reflexion des Schalls anstreben. Diese bekannten Schalldämpfer zeigen aber mehrere Nachteile. Zunächst ist zum Erreichen einer ausreichenden Dämpfung eine große Länge des Absorberteils entscheidend. Da die eingesetzten Absorbermaterialien über die Länge eine konstante Dämpfung zeigen, erfolgt die Schalldämpfung graduell vom Eintritt in den Dämpfer zum Austritt, was zur Folge hat, das im Eintrittsbereich des Schalldämpfers noch verhältnismäßig viel Schall über das Gehäuse nach Außen abgestrahlt wird. Außerdem kommt es besonders bei hohen Frequenzen zum Durchstrahlen des Schalls durch das lang gestreckte Dämpferrohr, sodass bestimmte Frequenzen der Pulsationen nahezu ungedämpft den Absorber passieren können.The aforementioned pulsation silencers have a complex structure and are therefore expensive and maintenance-intensive. Simple pulsation silencers are also known from practice, which are essentially formed in the manner of an elongated tube with absorber materials attached inside and which aim at damping both by absorption and reflection of the sound. However, these known mufflers have several disadvantages. First of all, a great length of the absorber part is decisive for achieving sufficient damping. Since the absorber materials used show constant attenuation over the length, the sound attenuation takes place gradually from the entry into the muffler to the exit, which means that a relatively large amount of sound is still radiated to the outside via the housing in the entry area of the muffler. In addition, the sound penetrates, especially at high frequencies through the elongated damper tube, so that certain frequencies of the pulsations can pass the absorber almost undamped.

Die DE 10 2016 100 140 A1 beschreibt einen Geräuschdämpfer für eine Druckluftsystem eines Nutzfahrzeugs. Der Geräuschdämpfer besitzt ein Gehäuse mit einem Lufteinlas, einem Luftauslass und mit einer Dämmstruktur in der Art eines Labyrinths. Im Gehäuse kann ein Dämmmittel angeordnet werden, jedoch wird die Minimierung dieses Dämmmittels angestrebt.The DE 10 2016 100 140 A1 describes a noise damper for a compressed air system of a commercial vehicle. The silencer has a housing with an air inlet, an air outlet and an insulating structure in the manner of a labyrinth. An insulating material can be arranged in the housing, but the aim is to minimize this insulating material.

Die FR 2 713 702 A1 zeigt einen Schalldämpfer für einen Gasstrom eines Kompressors mit einem Gehäuse, welches einen Gasstromeinlass und einen Gasstromauslass aufweist. Eine innere Seitenwand des Gehäuses besitzt eine akustisch absorbierende Beschichtung, vorzugsweise aus faserigem Material, wie Mineralwolle, welche durch ein Gitter gehaltert ist. Eine äußere Seitenwand besitzt eine akustisch absorbierende Beschichtung, welche durch ein Gitter gehaltert ist. Der Gasstrom wird durch den durch die Gitter begrenzten Strömungsraum geführt.The FR 2 713 702 A1 shows a silencer for a gas flow of a compressor with a housing which has a gas flow inlet and a gas flow outlet. An inner side wall of the housing has an acoustically absorbent coating, preferably made of fibrous material such as mineral wool, which is held by a grid. An outer side wall has an acoustically absorbent coating which is held by a grille. The gas flow is guided through the flow space delimited by the grids.

Aus der DE 90 14 888 U1 ist ein Schalldämpfer bekannt, welcher als lösbar befestigbares Bauteil ausgebildet ist. Der Schalldämpfer weist in seinem Inneren Schikanen für eine Mehrfachumlenkung eines Gasstromes auf. Ein Gasstromeintritt und ein Gasstromaustritt befinden sich im Bereich einer Stirnseite des Schalldämpfers.From the DE 90 14 888 U1 a silencer is known which is designed as a detachably attachable component. The silencer has baffles in its interior for a multiple deflection of a gas flow. A gas flow inlet and a gas flow outlet are located in the area of an end face of the silencer.

Eine Aufgabe der vorliegenden Erfindung besteht darin, einen verbesserten Pulsations-Schalldämpfer bereit zu stellen, der sich für den Einsatz in Kompressoren, insbesondere in Schraubenkompressoren eignet, einen preiswerten und einfachen Aufbau besitzt und hohe Dämpfungswerte in einem breiten Frequenzspektrum zeigt. Insbesondere wird angestrebt, auf kurzer Baulänge eine möglichst hohe Dämpfung der in Kompressoren auftretenden Pulsationen zu erzielen, wobei gleichzeitig nur ein geringer Druckverlust im komprimierten Medium auftreten darf. Außerdem soll eine verbleibende Schallabstrahlung vom Gehäuse des Pulsations-Schalldämpfers minimiert werden.One object of the present invention is to provide an improved pulsation silencer which is suitable for use in compressors, in particular in screw compressors, an inexpensive and simple one Structure and shows high attenuation values in a wide frequency spectrum. In particular, the aim is to achieve the highest possible damping of the pulsations occurring in compressors over a short overall length, while at the same time only a small pressure loss may occur in the compressed medium. In addition, any remaining sound radiation from the housing of the pulsation silencer should be minimized.

Diese und weitere Aufgaben werden durch einen Pulsations-Schalldämpfer gemäß dem beigefügten Anspruch 1 gelöst. Die Unteransprüche nennen einige bevorzugte Ausführungsformen. Darüber hinaus stellt die Erfindung einen Kompressor mit einem solchen Pulsations-Schalldämpfer bereit.These and other objects are achieved by a pulsation silencer according to the appended claim 1. The subclaims name some preferred embodiments. In addition, the invention provides a compressor with such a pulsation silencer.

Der erfindungsgemäße Pulsations-Schalldämpfer eignet sich für die Dämpfung von Pulsationen und daraus resultierendem Schall in einem gasförmigen Medienstrom, der von einem Verdichter geliefert wird. Der Pulsations-Schalldämpfer besitzt zunächst ein sich entlang einer Zentralachse erstreckendes Gehäuse mit einem Medienstromeinlass und einem Medienstromauslass. Weiterhin sind mehrere hülsenförmige Absorberelemente vorgesehen, die aus schallabsorbierendem Material bestehen und konzentrisch zueinander im Gehäuse angeordnet sind. Insoweit weicht der Pulsations-Schalldämpfer von bekannten Schalldämpfern in markanter Weise ab, denn im Stand der Technik wird entweder nur ein einziges Absorberelement genutzt oder mehrere Absorberelemente sind axial hintereinander angeordnet. Jedes hülsenförmige Absorberelement besitzt einen Einlassbereich und einen Auslassbereich, die axial voneinander beabstandet positioniert sind, vorzugsweise an den gegenüberliegenden Stirnseiten des Absorberelements angeordnet sind. Der Einlassbereich des strömungstechnisch vordersten Absorberelements ist mit dem Medienstromeinlass des Gehäuses verbunden, der Auslassbereich des strömungstechnisch vordersten Absorberelements ist mit dem Einlassbereich des strömungstechnisch nachfolgenden Absorberelements verbunden und so fort, und der Auslassbereich des strömungstechnisch hintersten Absorberelements ist mit dem Medienauslass des Gehäuses verbunden. Zwischen jeweils radial benachbarten Wandabschnitten verschiedener Absorberelemente verbleibt jeweils ein Strömungsraum, durch welchen der Medienstrom geführt ist.The pulsation silencer according to the invention is suitable for the damping of pulsations and the sound resulting therefrom in a gaseous media flow that is produced by a compressor is delivered. The pulsation silencer initially has a housing extending along a central axis with a media flow inlet and a media flow outlet. Furthermore, several sleeve-shaped absorber elements are provided, which consist of sound-absorbing material and are arranged concentrically to one another in the housing. In this respect, the pulsation silencer differs significantly from known silencers, because in the prior art either only a single absorber element is used or several absorber elements are arranged axially one behind the other. Each sleeve-shaped absorber element has an inlet area and an outlet area, which are positioned axially spaced apart from one another, and are preferably arranged on the opposite end faces of the absorber element. The inlet area of the aerodynamically forwardmost absorber element is connected to the media flow inlet of the housing, the outlet area of the aerodynamically forwardmost absorber element is connected to the inlet area of the aerodynamically downstream absorber element and so on, and the outlet area of the aerodynamically rearmost absorber element is connected to the media outlet of the housing. Between each radially adjacent wall sections of different absorber elements there remains a flow space through which the media flow is guided.

Durch die erläuterte Bauweise bilden die mehreren Absorberelemente somit mehrere Stufen, die verschachtelt ineinander angeordnet sind. Jede dieser Stufen funktioniert quasi als separater Absorber. Der Medienstrom ändert im Schalldämpfer mehrfach seine Richtung, vorzugsweise mäandriert er entlang der einzelnen Absorberelemente.As a result of the construction explained, the multiple absorber elements thus form multiple stages that are nested within one another. Each of these stages works like a separate absorber. The media flow changes direction several times in the silencer, preferably it meanders along the individual absorber elements.

Ein wesentlicher Vorteil des Pulsations-Schalldämpfers besteht darin, dass durch die verschachtelte Anordnung der Absorberelemente und die sich daraus ergebende mäanderartige Führung des Medienstroms die Gesamtbaulänge erheblich reduziert wird. Bei vergleichbarer Dämpfung des Gesamtsystems ist der erfindungsgemäße Schalldämpfer um mehr als die Hälfte kürzer als ein herkömmlicher Schalldämpfer mit einer geradlinigen Führung des Medienstroms.A major advantage of the pulsation silencer is that the overall length is considerably reduced due to the nested arrangement of the absorber elements and the resulting meander-like guidance of the media flow. With comparable damping of the overall system, the silencer according to the invention is more than half shorter than a conventional silencer with a straight line for the flow of media.

Gemäß einer ersten Ausführungsform bestehen die Absorberelemente aus demselben schallabsorbierenden Material, sodass sie alle auf den gleichen Frequenzbereich wirken. Bei einer abgewandelten Ausführungsform sind die einzelnen Absorberelemente auf die Dämpfung unterschiedlicher Frequenzbereiche abgestimmt, insbesondere durch Verwendung unterschiedlicher schallabsorbierender Materialien. Vorzugsweise bestehen die Absorberelemente aus mineralischem Material, Metall- oder Kunststoffgewebe, Metall- oder Keramikschäumen, wobei kammerartige Strukturen vorteilhaft sind. Ebenso können mehrlagige Absorbermaterialschichten verwendet werden.According to a first embodiment, the absorber elements consist of the same sound-absorbing material, so that they all act on the same frequency range. In a modified embodiment, the individual absorber elements are matched to the damping of different frequency ranges, in particular by using different sound-absorbing materials. The absorber elements preferably consist of mineral material, metal or plastic fabric, metal or ceramic foams, with chamber-like structures being advantageous. Multi-layer absorber material layers can also be used.

Eine bevorzugte Ausführungsform des Pulsations-Schalldämpfers verwendet rotationssymmetrische Absorberelemente, die teleskopartig ineinander greifen und axial feststehend im Gehäuse angeordnet sind. In abgewandelten Ausführungen können die Absorberelemente aber auch einen rechteckigen oder polygonalen Querschnitt aufweisen. Erfindungsgemäß sind mindestens drei oder mehr Absorberelemente ringförmig zueinander angeordnet, wobei zwischen dem Innendurchmesser eines jeweils außenliegenden Absorberelements und dem Außendurchmesser eines demgegenüber innenliegenden Absorberelements jeweils eine Differenz verbleibt, um dort den Strömungsraum auszubilden, beispielsweise mit einer Breite von 5 - 10 mm. Die Absorberelemente erstrecken sich über nahezu dieselbe axiale Länge, sodass sich mindestens 80%, vorzugsweise mindestens 90% der Längserstreckung der Absorberelemente axial überlappen.A preferred embodiment of the pulsation silencer uses rotationally symmetrical absorber elements which interlock telescopically and are arranged in an axially fixed manner in the housing. In modified versions, however, the absorber elements can also have a rectangular or polygonal cross section. According to the invention, at least three or more absorber elements are arranged in a ring to one another, with a difference remaining between the inner diameter of each outer absorber element and the outer diameter of an opposite inner absorber element in order to form the flow space there, for example with a width of 5 - 10 mm. The absorber elements extend over almost the same axial length, so that at least 80%, preferably at least 90% of the longitudinal extent of the absorber elements axially overlap.

Gemäß einer bevorzugten Ausführungsform sind der Einlassbereich und der Auslassbereich jeweils an den Stirnseiten der Absorberelemente angeordnet, wobei die Strömungsrichtung des Medienstroms jeweils beim Übergang von einem Absorberelement zum nächsten Absorberelement eine Richtungsumkehr von 180° erfährt. Da aufgrund der ineinander geschachtelten Anordnung der hülsenförmigen Absorberelemente jeweils am Übergang zwischen den benachbarten Absorberelementen auch ein Querschnittszuwachs für den Medienstrom bereitsteht (auch bei gleichbleibender Spaltbreite im Strömungsraum), kommt es zu einer Reduktion der Strömungsgeschwindigkeit, wodurch eine zusätzliche Dämpfung erreicht wird. Je nach Ausführung kann leicht das Doppelte an durchströmter Querschnittsfläche und damit auch eine deutliche Geschwindigkeitsreduzierung von einer Stufe zur nächsten erreicht werden. Ebenfalls kann die Richtungsumkehr beim Übertritt des Medienstroms von einem Absorberelement zum nächsten positiv für die Verbesserung der Dämpfungseigenschaften ausgenutzt werden, denn durch die Umlenkungen besteht keine direkte "Sichtverbindung" zwischen dem Medienstromeinlass und dem Medienstromauslass, was ein direktes "Durchstrahlen" von Pulsationen höherer Frequenzen auf nachgeschaltete Bauteile verhindert.According to a preferred embodiment, the inlet area and the outlet area are each arranged at the end faces of the absorber elements, the direction of flow of the media flow being reversed by 180 ° at the transition from one absorber element to the next absorber element. Since, due to the nested arrangement of the sleeve-shaped absorber elements, there is also an increase in cross-section for the media flow at the transition between the adjacent absorber elements (even with the same gap width in the flow space), the flow velocity is reduced, which results in additional damping. Depending on the design, it is easy to double the cross-sectional area through which the flow passes, and thus a significant reduction in speed from one stage to the next. The reversal of direction when the media flow passes from one absorber element to the next can also be used positively to improve the damping properties, because the deflections mean that there is no direct "line of sight" between the media flow inlet and the media flow outlet, which means that pulsations of higher frequencies are directly transmitted downstream components prevented.

Durch die Verwendung hülsenartiger Absorberelemente mit dazwischen verbleibenden ringförmigen Strömungsräumen können großzügigen Querschnitten zur Strömungsführung des Medienstroms erreicht werden, was geringste Druckverluste zur Folge hat.By using sleeve-like absorber elements with annular flow spaces remaining in between, generous cross-sections for the flow guidance of the media flow can be achieved, which results in very low pressure losses.

Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass das strömungstechnisch vorderste Absorberelement radial innenliegend und das strömungstechnisch hinterste Absorberelement radial außen liegend angeordnet ist. Vorzugsweise besitzt das Gehäuse einen Absorberelementeaufnahmebereich mit einem kreisförmigen Querschnitt; eine Stirnplatte, an welcher der Medieneinlass als zentral liegende Einlassöffnung ausgebildet ist, die in einen zentralen Einlassbereich des strömungstechnisch vordersten Absorberelements mündet; und einen Flansch, welcher der Stirnplatte gegenüberliegt, den Medienauslass bildet und in den ein ringförmiger Auslassbereich des strömungstechnisch hintersten Absorberelements mündet. Da bei dieser Bauweise sich der Medieneintritt in den Schalldämpfer im inneren Bereich befindet, ist dort der Ort mit der größten Schallenergie, d. h. weit entfernt von der äußeren Gehäusewand. Bei einem mit drei Absorberelementen ausgerüsteten Schalldämpfer befindet sich auch die in Strömungsrichtung nächste Stufe noch im inneren des Dämpfers. In der letzten Stufe, welche durch das an das Gehäuse angrenzende Absorberelement gebildet wird, ist die Schallenergie dann schon derart abgebaut, dass die vom Gehäuse noch abgestrahlte Schallenergie minimal ist.An advantageous embodiment is characterized in that the aerodynamically frontmost absorber element is arranged radially on the inside and the aerodynamically rearmost absorber element is arranged radially on the outside. The housing preferably has an absorber element receiving area with a circular cross section; an end plate on which the media inlet is designed as a centrally located inlet opening which opens into a central inlet area of the foremost absorber element in terms of flow; and a flange, which lies opposite the end plate, forms the media outlet and into which an annular outlet region of the absorber element which is at the rear in terms of flow opens. Since the media entry into the silencer is in the inner area in this construction, the place with the greatest sound energy is there, i.e. H. far from the outer casing wall. In the case of a silencer equipped with three absorber elements, the next stage in the flow direction is also located inside the damper. In the last stage, which is formed by the absorber element adjoining the housing, the sound energy has already been reduced in such a way that the sound energy still radiated by the housing is minimal.

Gemäß einer bevorzugten Ausführungsform des Pulsations-Schalldämpfers ist das Verhältnis von axialer Länge zu maximaler Querschnittserstreckung (z. B. Durchmesser) jedes Absorberelements kleiner als 5, vorzugsweise kleiner als 2,5. Besonders bevorzugt ist dieses Verhältnis beim radial äußersten Absorberelement kleiner als 1, vorzugsweise kleiner als 0,75. Ebenso ist es vorteilhaft, wenn das Verhältnis von axialer äußerer Gesamtlänge des Pulsations-Schalldämpfers zur Länge des vom Medienstrom durch die Absorberelemente zurückgelegten Weges kleiner als 1, vorzugsweise kleiner als 0,5 ist.According to a preferred embodiment of the pulsation silencer, the ratio of the axial length to the maximum cross-sectional extension (e.g. diameter) of each absorber element is less than 5, preferably less than 2.5. In the case of the radially outermost absorber element, this ratio is particularly preferably less than 1, preferably less than 0.75. It is also advantageous if the ratio of the overall axial length of the pulsation silencer to the length of the media flow through the absorber elements The distance covered is less than 1, preferably less than 0.5.

Der von der Erfindung bereitgestellte Kompressor zur Verdichtung von gasförmigen Medien umfasst einen Verdichter und einen strömungstechnisch hinter dem Verdichter angeordneten Pulsations-Schalldämpfer, der gemäß den zuvor beschriebenen Ausführungsformen oder Kombinationen dieser Ausführungsformen ausgebildet ist. Bevorzugt ist der Verdichter als Schraubenverdichter oder Doppel-Schraubenverdichter ausgebildet. Ein wesentlicher Vorteil der Verwendung des erfindungsgemäßen Pulsations-Schalldämpfers besteht in der drastischen Reduzierung der nötigen Baugröße, was sich positiv auf die Bauform des gesamten Kompressors auswirkt.The compressor provided by the invention for compressing gaseous media comprises a compressor and a pulsation silencer which is arranged downstream of the compressor in terms of flow technology and is designed according to the embodiments described above or combinations of these embodiments. The compressor is preferably designed as a screw compressor or a double screw compressor. A significant advantage of using the pulsation silencer according to the invention is the drastic reduction in the required size, which has a positive effect on the design of the entire compressor.

Eine weitergebildete Ausführungsform des Pulsations-Schalldämpfers zeichnet sich dadurch aus, dass eines oder mehrere der Absorberelemente zusätzliche Hohlräume aufweisen, die als Resonatorkammern wirken. Die Resonatorkammern erstrecken sich bevorzugt winklig zu den Strömungsräumen und dienen einer zusätzlichen Pulsations- und Schalldämpfung unter Ausnutzung von Reflexions- und Resonanzeffekten.A further developed embodiment of the pulsation silencer is characterized in that one or more of the absorber elements have additional cavities which act as resonator chambers. The resonator chambers preferably extend at an angle to the flow spaces and serve for additional pulsation and sound dampening using reflection and resonance effects.

Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung einer bevorzugten Ausführungsform unter Bezugnahme auf die Zeichnung. Es zeigen:

Fig. 1
einen Längsschnitt eines erfindungsgemäßen Pulsations-Schalldämpfers mit drei hülsenartigen Absorberelementen;
Fig. 2
einen Querschnitt des Pulsations-Schalldämpfers gemäß Fig. 1.
Further advantages and details emerge from the following description of a preferred embodiment with reference to the drawing. Show it:
Fig. 1
a longitudinal section of a pulsation silencer according to the invention with three sleeve-like absorber elements;
Fig. 2
a cross section of the pulsation muffler according to Fig. 1 .

Fig. 1 zeigt eine vereinfachte Längsschnittansicht eines erfindungsgemäßen Pulsations-Schalldämpfers 100, während Fig. 2 dessen Querschnitt zeigt. Der Schalldämpfer 100 besitzt in diesem Beispiel ein im Wesentlichen zylindrisches Gehäuse 101 mit einem Absorberelementeaufnahmebereich 102, einer das Gehäuse stirnseitig verschließenden Stirnplatte 103 und einem der Stirnplatte axial gegenüberliegenden Flansch 104. Die Stirnplatte 103 weist einen zentral angeordneten Medienstromeinlass 106 auf, über welchen ein von einem Verdichter komprimierter gasförmiger Medienstrom 107, insbesondere Druckluft, zugeführt wird. Fig. 1 shows a simplified longitudinal sectional view of a pulsation silencer 100 according to the invention, while Fig. 2 whose cross-section shows. In this example, the muffler 100 has an essentially cylindrical housing 101 with an absorber element receiving area 102, an end plate 103 closing the housing at the end and a flange 104 axially opposite the end plate Compressor compressed gaseous media flow 107, in particular compressed air, is supplied.

Im Absorberelementeaufnahmebereich 102 sind mehrere hülsenartige Absorberelemente 108 angeordnet, im dargestellten Beispiel ein strömungstechnisch vorderes Absorberelement 108a, ein strömungstechnisch mittleres Absorberelement 108b und ein strömungstechnisch hinteres Absorberelement 108c. Die drei Absorberelemente sind teleskopartig ineinander gesteckt und besitzen in Achsrichtung im Wesentlichen dieselbe Länge. Alle Absorberelemente bestehen aus schallabsorbierendem Material, wobei die spezifischen Eigenschaften des Materials zwischen den einzelnen Absorberelementen differenziert gewählt sein können.A plurality of sleeve-like absorber elements 108 are arranged in the absorber element receiving area 102, in the example shown a front absorber element 108a in terms of flow, a middle absorber element 108b in terms of flow and a rear absorber element 108c in terms of flow. The three absorber elements are telescopically inserted into one another and have essentially the same length in the axial direction. All absorber elements consist of sound-absorbing material, whereby the specific properties of the material can be selected to be differentiated between the individual absorber elements.

Der Medienstromeinlass 106 mündet im zentral liegenden Einlassbereich des vorderen Absorberelements 108a, sodass der Medienstrom zunächst im Inneren des vorderen Absorberelements 108a strömt und durch dessen Material eine Dämpfung erfährt. Der Innenraum des vorderen Absorberelements 108a kann hohl oder mit gasdurchlässigem Material gefüllt sein, wobei der Strömungswiderstand gering zu halten ist. An dem der Stirnplatte 103 abgewandten Ende des vorderen Absorberelements 108a ist ein Auslassbereich vorgesehen, damit der Medienstrom aus dem vorderen Absorberelement 108a austreten kann. Dort strömt der Medienstrom in einem ersten ringförmigen Wechselbereich 110 in den Einlassbereich des mittleren Absorberelements 108b ein, wobei es zu einer Richtungsumkehr im Medienstrom 107 kommt. Das mittlere Absorberelement 108b umgreift das strömungstechnisch vordere Absorberelement 108a ringförmig, wobei ein am mittleren Absorberelement 108b vorgesehener Zentrierdorn 111 der Halterung des vorderen Absorberelements 108a dient. Der Medienstrom 107 strömt nun durch einen ersten zylindrischen Strömungsraum 112, der sich zwischen dem vorderen Absorberelement 108a und dem mittleren Absorberelement 108b in axialer Richtung erstreckt.The media flow inlet 106 opens into the centrally located inlet area of the front absorber element 108a, so that the media flow initially flows inside the front absorber element 108a and is dampened by its material. The interior of the front absorber element 108a can be hollow or filled with gas-permeable material, the flow resistance having to be kept low. On that of the faceplate 103 facing away from the end of the front absorber element 108a, an outlet area is provided so that the media flow can exit from the front absorber element 108a. There, the media flow flows in a first ring-shaped alternating region 110 into the inlet region of the central absorber element 108b, with a reversal of direction in the media flow 107. The middle absorber element 108b surrounds the aerodynamically front absorber element 108a in a ring shape, a centering pin 111 provided on the middle absorber element 108b serving to hold the front absorber element 108a. The media flow 107 now flows through a first cylindrical flow space 112, which extends in the axial direction between the front absorber element 108a and the middle absorber element 108b.

An dem zur Stirnplatte 103 gerichteten Ende des mittleren Absorberelements 108b verlässt der Medienstrom den ersten zylindrischen Strömungsraum 112 über einen Auslassbereich und strömt in einem zweiten ringförmigen Wechselbereich 113 in den Einlassbereich des hinteren Absorberelements 108c ein. Nun strömt der Medienstrom 107 durch einen zweiten zylindrischen Strömungsraum 114, der sich zwischen dem mittleren Absorberelement 108b und dem hinteren Absorberelement 108c in axialer Richtung erstreckt. Die Strömungsrichtung ist im zweiten Strömungsraum 114 axial entgegengesetzt zur Strömungsrichtung im ersten Strömungsraum 112.At the end of the middle absorber element 108b directed towards the end plate 103, the media flow leaves the first cylindrical flow space 112 via an outlet area and flows into the inlet area of the rear absorber element 108c in a second annular changing area 113. The media flow 107 now flows through a second cylindrical flow space 114, which extends in the axial direction between the middle absorber element 108b and the rear absorber element 108c. The flow direction in the second flow space 114 is axially opposite to the flow direction in the first flow space 112.

An dem von der Stirnplatte 103 abgewandten Ende des strömungstechnisch hinteren Absorberelements 108c verlässt der Medienstrom 107 über einen Auslassbereich des strömungstechnisch hinteren Absorberelements 108c den Absorberelementeaufnahmebereich 102 und strömt dann durch einen Medienstromauslass 116 im Flansch 104 zu den nachgeordneten Einheiten des Kompressors. Es ist aus den Figuren ersichtlich, dass der für den Medienstrom zur Verfügung stehende Querschnitt jeweils in den Wechselbereichen deutlich zunimmt und letztlich am Medienstromauslass 116 wesentlich größer als am Medienstromeinlass 106 ist.At the end of the aerodynamically rear absorber element 108c facing away from the end plate 103, the media flow 107 leaves the absorber element receiving area 102 via an outlet region of the aerodynamically rear absorber element 108c and then flows through a media flow outlet 116 in the flange 104 to the downstream units of the Compressor. It can be seen from the figures that the cross section available for the media flow increases significantly in the changing areas and is ultimately significantly larger at the media flow outlet 116 than at the media flow inlet 106.

Aus den Figuren ist auch ersichtlich, dass alle drei Absorberelemente 108 in ihrer Wandung jeweils mehrere Resonatorkammern 117a, 117b bzw. 117c besitzen.It can also be seen from the figures that all three absorber elements 108 each have a plurality of resonator chambers 117a, 117b and 117c in their wall.

BezugszeichenlisteList of reference symbols

100100
Pulsations-SchalldämpferPulsation silencer
101101
Gehäusecasing
102102
AbsorberelementeaufnahmebereichAbsorber element receiving area
103103
StirnplatteFaceplate
104104
Flanschflange
105105
--
106106
MedienstromeinlassMedia flow inlet
107107
MedienstromMedia flow
108108
AbsorberelementeAbsorber elements
109109
--
110110
erster Wechselbereichfirst change area
111111
ZentrierdornCentering pin
112112
erster Strömungsraumfirst flow space
113113
zweiter Wechselbereichsecond change area
114114
zweiter Strömungsraumsecond flow space
115115
--
116116
MedienstromauslassMedia flow outlet
117117
ResonatorkammerResonator chamber

Claims (9)

  1. Pulsation silencer (100) for a gaseous media flow (107), which is supplied by a compressor, comprising:
    - a housing (101), which extends along a central axis, having a media flow inlet (106) and a media flow outlet (116);
    - a plurality of sleeve-shaped absorber elements (108), which consist of sound-absorbing material and are arranged concentrically in relation to one another in the housing (101), wherein
    ∘ at least three absorber elements (108) are arranged in an annular manner in relation to one another, wherein at least 80% of the longitudinal extent of the absorber elements (108) overlap one another axially,
    ∘ each sleeve-shaped absorber element (108) possesses an inlet region and an outlet region, which are positioned axially spaced apart from one another,
    ∘ the inlet region of the fluidically foremost absorber element (108a) is connected to the media flow inlet (106) of the housing (101), the outlet region of the fluidically foremost absorber element (108a) is connected to the inlet region of the fluidically subsequent absorber element (108b) and so forth, and the outlet region of the fluidically rearmost absorber element (108c) is connected to the media flow outlet (116) of the housing (101),
    o in each case a flow space (112, 114) for the media flow (107) remains between in each case radially adjacent wall sections of various absorber elements (108).
  2. The pulsation silencer (100) according to Claim 1, characterised in that the absorber elements (108) are formed to be rotationally symmetrical and engage in one another in a telescopic but axially fixed manner.
  3. The pulsation silencer (100) according to any one of Claims 1 to 2, characterised in that the inlet region and the outlet region are each arranged on the end faces of the absorber elements (108), and in that the flow direction of the media flow (107) experiences a direction reversal of 180° in each case during transition from one absorber element to the next absorber element.
  4. The pulsation silencer (100) according to any one of Claims 1 to 3, characterised in that the fluidically foremost absorber element (108a) is arranged radially internally in the housing (101) and the fluidically rearmost absorber element (108c) is arranged radially externally in the housing (101).
  5. The pulsation silencer (100) according to Claim 4, characterised in that the housing (101) possesses an absorber element receiving region (102) having a circular cross-section, in that the media flow inlet (106) is formed as an inlet opening situated centrally in an end plate (103), which inlet opening opens into a central inlet region of the fluidically foremost absorber element (108a), and in that the media flow outlet (116) is formed as a flange (104) on the housing (101), which flange (104) lies opposite the end plate (103) and has an annular outlet region of the fluidically rearmost absorber element (108c) opening into it.
  6. The pulsation silencer (100) according to any one of Claims 1 to 5, characterised in that the ratio of the axial length to the maximum cross-sectional extent of each absorber element is smaller than 2.5, wherein this ratio is preferably smaller than 0.75 in the radially outermost absorber element (108c).
  7. The pulsation silencer (100) according to any one of Claims 1 to 6, characterised in that the ratio of the axial outer total length of the pulsation silencer to the length of the path travelled by the media flow (107) through the absorber elements (108) is smaller than 1.
  8. A compressor for compressing gaseous media, comprising a compressor and a pulsation silencer (100) arranged fluidically downstream of the compressor, which pulsation silencer (100) is formed according to any one of Claims 1 to 7.
  9. The compressor according to Claim 8, characterised in that the compressor is formed as a screw compressor or twin-screw compressor.
EP18164781.9A 2017-04-10 2018-03-28 Pulsation sound damper for compressors Active EP3388678B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017107599.2A DE102017107599A1 (en) 2017-04-10 2017-04-10 Pulsation silencer for compressors

Publications (2)

Publication Number Publication Date
EP3388678A1 EP3388678A1 (en) 2018-10-17
EP3388678B1 true EP3388678B1 (en) 2021-05-05

Family

ID=61837601

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18164781.9A Active EP3388678B1 (en) 2017-04-10 2018-03-28 Pulsation sound damper for compressors

Country Status (5)

Country Link
US (1) US11067084B2 (en)
EP (1) EP3388678B1 (en)
CN (1) CN108691773A (en)
CA (1) CA3000491A1 (en)
DE (1) DE102017107599A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436178B2 (en) * 2019-10-23 2024-02-21 株式会社ブリヂストン drain pipe structure
CN112412804B (en) * 2020-10-13 2022-11-04 珠海格力节能环保制冷技术研究中心有限公司 Compound air suction port and air exhaust port silencing assembly and compressor

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US806714A (en) * 1905-03-30 1905-12-05 John F Laird Exhaust-muffler.
US858455A (en) * 1907-01-19 1907-07-02 Carl O Hedstrom Muffler.
US1598578A (en) * 1921-11-21 1926-08-31 Maxim Silencer Co Silencer
US1953543A (en) * 1932-07-23 1934-04-03 George C Rensink Air cleaner and silencer for internal combustion engines
US2050581A (en) * 1932-10-05 1936-08-11 Orem Frederick Strattner Air cleaning and sound-silencing apparatus
US3073684A (en) * 1959-06-01 1963-01-15 John E Morris Gas purifying muffler
US3202240A (en) * 1963-12-09 1965-08-24 Kenneth L Treiber Muffler with aspirating means
DE1628835A1 (en) * 1966-04-02 1971-06-16 Altenburg Elektrowaerme Device for noise reduction on devices driven by electric motors
US3612216A (en) * 1969-12-01 1971-10-12 Gen Impact Extrusions Mfg Ltd Muffler can
DE2737677C2 (en) 1977-08-20 1984-05-10 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Device for regulating the flow rate of compressors
DE2909675C3 (en) 1979-03-12 1981-11-19 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Process for condensate-free intermediate cooling of compressed gases
FR2598176B1 (en) * 1986-04-30 1990-01-19 Boet Sa Andre SILENCER FOR GAS CURRENT
US4929161A (en) 1987-10-28 1990-05-29 Hitachi, Ltd. Air-cooled oil-free rotary-type compressor
JPH03108818U (en) * 1990-02-21 1991-11-08
DE9014888U1 (en) * 1990-10-27 1991-01-24 Leybold AG, 6450 Hanau silencer
US5196653A (en) * 1991-05-20 1993-03-23 The United States Of America As Represented By The Secretary Of The Navy Muffler for air powered turbine drive
FR2713702B1 (en) * 1993-12-14 1996-03-01 Boet Sa Andre Muffler for gas flow.
JP3296205B2 (en) 1996-09-20 2002-06-24 株式会社日立製作所 Oil-free scroll compressor and its cooling system
NL1006892C2 (en) 1997-08-29 1999-03-02 Q E International Bv Pulsation damper.
SE512070C2 (en) 1998-03-18 2000-01-24 Tetra Laval Holdings & Finance Apparatus for high-pressure pumping or homogenization of liquids
US6095194A (en) 1998-03-20 2000-08-01 Nippon Pillar Packaging Co., Ltd. Pulsation suppression device for a pump
US6068447A (en) 1998-06-30 2000-05-30 Standard Pneumatic Products, Inc. Semi-automatic compressor controller and method of controlling a compressor
BE1012944A3 (en) 1999-10-26 2001-06-05 Atlas Copco Airpower Nv MULTISTAGE COMPRESSOR UNIT AND METHOD FOR CONTROLLING ONE OF EQUAL MORE stage compressor unit.
DE10003869C5 (en) 2000-01-28 2007-11-08 Aerzener Maschinenfabrik Gmbh Method for compressing fluid fluids
GB2367332B (en) 2000-09-25 2003-12-03 Compair Uk Ltd Improvements in multi-stage screw compressor drive arrangements
JP3817420B2 (en) 2000-10-31 2006-09-06 株式会社日立産機システム Variable rotational speed oil-free screw compressor and operation control method thereof
US6595757B2 (en) 2001-11-27 2003-07-22 Kuei-Hsien Shen Air compressor control system
DE10249215A1 (en) * 2002-10-22 2004-05-13 BSH Bosch und Siemens Hausgeräte GmbH Linear compressor unit
US7118348B2 (en) 2003-03-06 2006-10-10 General Electric Company Compressed air system and method of control
EP1703618B1 (en) 2005-03-14 2013-05-15 Kaeser Kompressoren AG Air-cooled electric motor
JP4673136B2 (en) 2005-06-09 2011-04-20 株式会社日立産機システム Screw compressor
US7610993B2 (en) * 2005-08-26 2009-11-03 John Timothy Sullivan Flow-through mufflers with optional thermo-electric, sound cancellation, and tuning capabilities
FR2890418A1 (en) 2005-09-02 2007-03-09 Atlas Copco Crepelle S A S HIGH PRESSURE COMPRESSION INSTALLATION WITH MULTIPLE FLOORS
WO2007095537A1 (en) 2006-02-13 2007-08-23 Ingersoll-Rand Company Multi-stage compression system and method of operating the same
NL1031270C2 (en) 2006-03-02 2007-09-04 Ecoplay Int Bv Water pipe system with branch branch monitoring, system and method thereof.
US8303260B2 (en) 2006-03-08 2012-11-06 Itt Manufacturing Enterprises, Inc. Method and apparatus for pump protection without the use of traditional sensors
DE102006020334B4 (en) * 2006-04-28 2008-07-10 Man Diesel Se filter silencer
JP4741992B2 (en) 2006-07-19 2011-08-10 株式会社日立産機システム Oil-free screw compressor
JP2008133811A (en) 2006-11-29 2008-06-12 Hitachi Ltd Package type compressor
JP5248373B2 (en) 2009-03-11 2013-07-31 株式会社日立産機システム Water jet air compressor
JP2010275939A (en) 2009-05-29 2010-12-09 Hitachi Industrial Equipment Systems Co Ltd Water-cooled oil-free air compressor
DE102010008403A1 (en) * 2010-02-18 2011-08-18 J. Eberspächer GmbH & Co. KG, 73730 silencer
BE1019299A3 (en) 2010-04-20 2012-05-08 Atlas Copco Airpower Nv METHOD FOR DRIVING A COMPRESSOR.
JP5851148B2 (en) 2010-08-27 2016-02-03 株式会社日立産機システム Oil-cooled air compressor
DE102010049578A1 (en) * 2010-10-26 2012-04-26 Webasto Ag Silencer device for a fluid line and heater with a silencer device
CN102241391B (en) * 2011-05-18 2012-10-24 湖南新云医疗投资有限公司 Molecular sieve desorber for oxygen making system
JP5774455B2 (en) 2011-11-30 2015-09-09 株式会社日立産機システム Oil-free compressor
ES2834456T3 (en) 2013-12-17 2021-06-17 Kaeser Kompressoren Se Compressor
DE102014107126A1 (en) 2014-05-20 2015-11-26 Harald Wenzel Multi-stage compressor system for generating a compressed gas
JP6382672B2 (en) 2014-10-02 2018-08-29 株式会社日立産機システム Package type compressor
JP2016145557A (en) 2015-02-09 2016-08-12 アネスト岩田株式会社 Package type fluid machinery
CZ29658U1 (en) * 2015-06-26 2016-07-25 ula Martin Ĺ Exhaust resonator of two-stroke internal combustion engine for motor float
DE102016100140A1 (en) * 2016-01-05 2017-07-06 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Silencer for a compressed air system of a vehicle, in particular a commercial vehicle
US10359044B2 (en) 2016-05-06 2019-07-23 Powerex/Scott Fetzer Company Compressor system
CN105888777B (en) * 2016-06-16 2018-09-25 贺佳国 A kind of minitype gas propeller silencing means

Also Published As

Publication number Publication date
US11067084B2 (en) 2021-07-20
EP3388678A1 (en) 2018-10-17
DE102017107599A1 (en) 2018-10-11
CN108691773A (en) 2018-10-23
CA3000491A1 (en) 2018-10-10
US20180291905A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
EP1715189B1 (en) Noise attenuator designed and meant for a compressor
EP2394033B1 (en) Muffler with helical inserts
DE102010028089B4 (en) Pipe muffler for a turbomachine and method for installing a pipe muffler
EP1702163B1 (en) Worm compressor provided with a sound absorber
EP1959106B2 (en) Silencer for an exhaust system
EP3388678B1 (en) Pulsation sound damper for compressors
DE4410624C2 (en) Mufflers for weapons
EP2000637B1 (en) Exhaust silencer
EP1715188A1 (en) Noise attenuator designed and meant for a compressor
DE2706957A1 (en) IC engine exhaust silencer with resonator - has resonator and silencer chambers combined with resonator fed by coaxial flow reversing pipes
DE102007055401B4 (en) Exhaust air silencer for pneumatic equipment
EP2567076B1 (en) Device with broad-band damping for sound damping in industrial facilities, large plants or machines
EP2253877B1 (en) Fluid acoustic dampener
EP1857682B1 (en) Rotary piston machine with silencer
DE202007003923U1 (en) Sound baffle system for ducts has a widened duct section with inner sleeve and with resonance depressing chambers
DE102004006031B4 (en) Method and device for reducing pressure pulsations in fluid-carrying piping systems
DE2816159A1 (en) REFLECTIVE SOUND ABSORBER FOR COMBUSTION MACHINERY
EP0807212B1 (en) Device for actuating a hydrostatic drive
WO1992001867A1 (en) Pressure pulsation absorber
DE2231617A1 (en) SILENCER FOR AIR BREAKERS
DE102018112963A1 (en) Silencer for an exhaust system of an internal combustion engine
DE102009000494B4 (en) Silencer with helical gas channel
DE19930681A1 (en) Flexible hydraulic fluid pressure hose has an inner fluid-impermeable layer and an outer pressure-resistant layer and an intermediate gas-filled acoustic damper layer
AT241671B (en) Cyclone silencer with connected resonator stage
DD273470A1 (en) PRESSURE VIBRATION DAMPER FOR CENTRIFUGAL PIPING

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190408

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 29/00 20060101ALI20201026BHEP

Ipc: F01N 1/08 20060101ALI20201026BHEP

Ipc: F04C 29/06 20060101AFI20201026BHEP

INTG Intention to grant announced

Effective date: 20201120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1390142

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005081

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005081

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220328

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220328

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220328

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240326

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1390142

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240322

Year of fee payment: 7

Ref country code: FR

Payment date: 20240325

Year of fee payment: 7

Ref country code: BE

Payment date: 20240320

Year of fee payment: 7