EP1483536B1 - Gas turbine - Google Patents

Gas turbine Download PDF

Info

Publication number
EP1483536B1
EP1483536B1 EP03706564A EP03706564A EP1483536B1 EP 1483536 B1 EP1483536 B1 EP 1483536B1 EP 03706564 A EP03706564 A EP 03706564A EP 03706564 A EP03706564 A EP 03706564A EP 1483536 B1 EP1483536 B1 EP 1483536B1
Authority
EP
European Patent Office
Prior art keywords
resonator
combustion chamber
gas turbine
combustion
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03706564A
Other languages
German (de)
French (fr)
Other versions
EP1483536A1 (en
Inventor
Patrick Flohr
Werner Krebs
Bernd Prade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES03706564T priority Critical patent/ES2303892T3/en
Priority to EP03706564A priority patent/EP1483536B1/en
Publication of EP1483536A1 publication Critical patent/EP1483536A1/en
Application granted granted Critical
Publication of EP1483536B1 publication Critical patent/EP1483536B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a gas turbine with a burner, which opens into a combustion chamber.
  • the combustion chamber is designed as an annular combustion chamber.
  • thermoacoustically induced combustion oscillations can occur. These arise through an interaction of the combustion flame and the associated heat release with acoustic pressure fluctuations.
  • acoustic excitation By means of an acoustic excitation, the position of the flame, the flame front surface or the mixture composition can fluctuate, which in turn leads to fluctuations of the heat release. With a constructive phase position, positive feedback and amplification can occur. Such an increased combustion vibration can lead to considerable noise and vibration damage.
  • thermoacoustically induced instabilities are significantly influenced by the acoustic properties of the combustion chamber and the boundary conditions present at the combustion chamber inlet and the combustion chamber outlet as well as at the combustion chamber walls.
  • the acoustic properties can be changed by installing Helmholtz resonators.
  • the WO 93/10401 A1 shows a device for suppressing combustion oscillations in a combustion chamber of a gas turbine plant.
  • a Helmholtz resonator is fluidly connected to a fuel supply line.
  • the acoustic properties of the supply line or the overall acoustic system are thereby changed so that combustion oscillations are suppressed.
  • this measure is not sufficient in all operating conditions, as it is also at a suppression of vibrations In the fuel line to combustion vibrations can come.
  • the US-A-6 058 709 proposes to avoid combustion oscillations to introduce fuel at axially different positions in the combustion channel of a burner.
  • constructive phase positions in the mixture composition are superimposed by destructive, so that overall there are lower fluctuations and thus a reduced tendency to form combustion oscillations.
  • this measure is comparatively expensive in comparison to the purely passive measure of the use of Helmholtz resonators.
  • a gas turbine combustor which has air-purged Helmholtz resonators in the burner.
  • the resonators are arranged alternately on the end face of the combustion chamber between the burners. By these resonators, vibration energy is absorbed by combustion vibrations occurring in the combustion chamber and the combustion vibrations are thereby damped.
  • a combustion chamber is disclosed with a resonator formed in the form of a cylindrical double sleeve, which is arranged concentrically between a combustion chamber housing and a combustion chamber liner.
  • the double sleeve is formed inter alia by an annular flange and the inner surface of the combustion chamber housing.
  • the object of the invention is to specify a gas turbine with a particularly low tendency to form combustion oscillations, wherein structural measures should be avoided on a combustion chamber wall.
  • This object is achieved by specifying a gas turbine having a combustion chamber and a burner opening into the combustion chamber at a burner mouth, wherein the burner mouth is annularly surrounded by a Helmholtz resonator and according to the invention the characterizing features of claim 1 are provided.
  • the Helmholtz resonator is placed around the mouth of a burner.
  • the attenuation of combustion oscillations by a resonator can lead to local temperature differences if the resonator acts unevenly on the combustion area. This is avoided by the symmetrical, annular arrangement around the burner flame.
  • the consequent temperature uniformity increases the damping effect and at the same time leads to a reduction of the formation of nitrogen oxides.
  • by the arrangement of the resonator immediately around the flame around can be acted intensively directly on the place of the highest heat release. Also, this improved contact with the main source of combustion vibrations increases the effect of the resonator.
  • the Helmholtz resonator preferably has a resonator volume and opens at a resonator opening into the combustion chamber, the resonator mouth having a small tube continuing into the resonator volume. More preferably, the resonator mouth is formed by a plurality of openings which are each continued via a tube into the resonator volume. The tubes thus protrude into the resonator volume.
  • a resonator consists of a volume V and holes of a certain length I and cross section A.
  • the outer dimensions of the resonator and thus the burner insert and the open total cross-sectional area need not be changed.
  • the tube or tubes are curved or twisted so that the tube length is increased without falling below a minimum distance to the resonator wall.
  • the resonator volume is adjustable, for example by a piston-like displacement of a resonator wall.
  • the acoustic properties, in particular the impedance can be adjusted and adjusted.
  • the combustion chamber is designed as an annular combustion chamber. Especially in annular combustion chambers combustion oscillations can lead to very disturbing and damaging combustion oscillations by a comparatively large combustion chamber volume and burners coupled together. In addition, the acoustic properties of such a combustion chamber are difficult to calculate.
  • the Helmholtz resonator is integrated in a burner insert, wherein the burner is connected to the burner via the burner insert.
  • the burner insert can be a separate component, which is bolted to the combustion chamber wall, for example, and in the then the actual burner is used. But it can also be connected to the burner, so that, for example, the burner insert forms a flange on the burner, with which the burner is connected to the combustion chamber wall.
  • the Helmholtz resonator is formed through air.
  • the impedance of the resonator can be changed and adjusted in a simple manner.
  • a cooling of the resonator and in the case of integration of the resonator in the burner insert a cooling of the entire burner insert is achieved.
  • FIG. 1 a gas turbine 51 is shown.
  • the gas turbine 51 has a compressor 53, an annular combustion chamber 55 and a turbine part 57. Air 58 from the environment is fed to the compressor 53 where it is compressed to combustion air 9 high. Subsequently, the combustion air 9 of the annular combustion chamber 55 is supplied. About gas turbine burner 1 is burned there with fuel 11 to a hot gas 59. The hot gas 59 drives the turbine part 57.
  • annular combustion chamber 55 may, for reasons described above, for the formation of combustion vibrations come that can significantly affect the operation of the gas turbine 51.
  • Helmholtz resonators may be used to dampen such combustion oscillations, with a particularly effective design being described below:
  • FIG. 2 a gas turbine combustor 1 is shown, which is connected via a burner insert 2 with a combustion chamber wall 56 of a combustion chamber 55 and opens at a burner port 4 into the combustion chamber 55.
  • a burner channel 3 of the gas turbine burner 1 surrounds a central channel 41 as an annular channel 30.
  • the annular channel 30 is designed as a premixing channel in which fuel 11 and combustion air 9 are intensively mixed prior to combustion. This is called pre-mixed combustion.
  • the fuel 11 is introduced via hollow swirl blades 13 in the annular channel 30.
  • the central channel 41 opens into the combustion zone 27 together with a central fuel lance 45, the fuel, in particular oil, via a swirl nozzle 47 supplies.
  • fuel 11 and combustion air 9 are first mixed in the combustion zone 27 and it is called a diffusion combustion.
  • fuel 11, in particular natural gas can also be added via a fuel inlet 43 into the central channel 41 upstream of the combustion zone 27.
  • the Helmholtz resonator 19 surrounds the burner mouth 4 annular.
  • the annular enclosure of the burner opening 4 through the resonator 19 leads to a uniform action on the combustion zone 27. This does not lead to temperature irregularities through the resonator 19.
  • the Resonator 19 is very effective immediately on the zone of maximum heat release.
  • the tubes 61 allow a comparatively small size for the resonator 19 so that it can be integrated into the burner insert 2. Air is introduced into the resonator 19 via air inlets 63, so that this can be adapted on the one hand in terms of its impedance, and on the other hand can also be cooled.

Description

Die Erfindung betrifft eine Gasturbine mit einem Brenner, der in eine Brennkammer mündet. Insbesondere ist die Brennkammer als Ringbrennkammer ausgebildet.The invention relates to a gas turbine with a burner, which opens into a combustion chamber. In particular, the combustion chamber is designed as an annular combustion chamber.

In Verbrennungssystemen wie Gasturbinen, Flugtriebwerken, Raketenmotoren und Heizungsanlagen kann es zu thermoakustisch induzierten Verbrennungsschwingungen kommen. Diese entstehen durch eine Wechselwirkung der Verbrennungsflamme und der damit verbundenen Wärmefreisetzung mit akustischen Druckschwankungen. Durch eine akustische Anregung kann die Lage der Flamme, die Flammenfrontfläche oder die Gemischzusammensetzung schwanken, was wiederum zu Schwankungen der Wärmefreisetzung führt. Bei konstruktiver Phasenlage kann es zu einer positiven Rückkopplung und Verstärkung kommen. Eine so verstärkte Verbrennungsschwingung kann zu erheblichen Lärmbelastungen und Schädigungen durch Vibrationen führen.In combustion systems such as gas turbines, aircraft engines, rocket engines and heating systems, thermoacoustically induced combustion oscillations can occur. These arise through an interaction of the combustion flame and the associated heat release with acoustic pressure fluctuations. By means of an acoustic excitation, the position of the flame, the flame front surface or the mixture composition can fluctuate, which in turn leads to fluctuations of the heat release. With a constructive phase position, positive feedback and amplification can occur. Such an increased combustion vibration can lead to considerable noise and vibration damage.

Wesentlich beeinflusst werden diese thermoakustisch hervorgerufenen Instabilitäten durch die akustischen Eigenschaften des Brennraumes und die am Brennraumeintritt und Brennraumaustritt sowie an den Brennkammerwänden vorliegenden Randbedingungen. Die akustischen Eigenschaften können durch den Einbau von Helmholtzresonatoren verändert werden.These thermoacoustically induced instabilities are significantly influenced by the acoustic properties of the combustion chamber and the boundary conditions present at the combustion chamber inlet and the combustion chamber outlet as well as at the combustion chamber walls. The acoustic properties can be changed by installing Helmholtz resonators.

Die WO 93/10401 A1 zeigt eine Einrichtung zur Unterdrückung von Verbrennungsschwingungen in einer Brennkammer einer Gasturbinenanlage. Ein Helmholtzresonator ist mit einer Brennstoffzuführleitung strömungstechnisch verbunden. Die akustischen Eigenschaften der Zuführleitung bzw. des akustischen Gesamtsystems werden hierdurch so verändert, dass Verbrennungsschwingungen unterdrückt werden. Es hat sich allerdings gezeigt, dass diese Maßnahme nicht in allen Betriebszuständen ausreicht, da es auch bei einer Unterdrückung von Schwingungen in der Brennstoffleitung zu Verbrennungsschwingungen kommen kann.The WO 93/10401 A1 shows a device for suppressing combustion oscillations in a combustion chamber of a gas turbine plant. A Helmholtz resonator is fluidly connected to a fuel supply line. The acoustic properties of the supply line or the overall acoustic system are thereby changed so that combustion oscillations are suppressed. However, it has been shown that this measure is not sufficient in all operating conditions, as it is also at a suppression of vibrations In the fuel line to combustion vibrations can come.

Die US-A-6 058 709 schlägt zur Vermeidung von Verbrennungsschwingungen vor, Brennstoff an axial unterschiedlichen Positionen im Brennkanal eines Brenners einzuleiten. Hierdurch werden hinsichtlich der Ausbildung von Verbrennungsschwingungen konstruktive Phasenlagen in der Gemischzusammensetzung durch destruktive überlagert, so dass es insgesamt zu niedrigeren Schwankungen und damit zu einer verringerten Neigung zur Ausbildung von Verbrennungsschwingungen kommt. Diese Maßnahme ist allerdings apparativ im Vergleich zur rein passiven Maßnahme der Verwendung von Helmholtzresonatoren vergleichsweise aufwendig.The US-A-6 058 709 proposes to avoid combustion oscillations to introduce fuel at axially different positions in the combustion channel of a burner. As a result, with regard to the formation of combustion vibrations, constructive phase positions in the mixture composition are superimposed by destructive, so that overall there are lower fluctuations and thus a reduced tendency to form combustion oscillations. However, this measure is comparatively expensive in comparison to the purely passive measure of the use of Helmholtz resonators.

In der EP 0 597 138 A1 ist eine Gasturbinen-Brennkammer beschrieben, die im Bereich der Brenner luftgespülte Helmholtzresonatoren aufweist. Die Resonatoren sind alternierend an der Stirnseite der Brennkammer zwischen den Brennern angeordnet. Durch diese Resonatoren wird Schwingungsenergie von in der Brennkammer auftretenden Verbrennungsschwingungen absorbiert und die Verbrennungsschwingungen werden hierdurch gedämpft.In the EP 0 597 138 A1 a gas turbine combustor is described which has air-purged Helmholtz resonators in the burner. The resonators are arranged alternately on the end face of the combustion chamber between the burners. By these resonators, vibration energy is absorbed by combustion vibrations occurring in the combustion chamber and the combustion vibrations are thereby damped.

Eine weitere Maßnahme zur Dämpfung von Verbrennungsschwingungen ist in der EP 1 004 823 A2 gezeigt. Hier ist ein Helmholtzresonator unmittelbar mit dem Mischbereich des Brenners verbunden. Der Resonator ist stromauf der Brennstoffzuführung anzubringen, da durch den Resonator im Brenner entstehende und auch durch die Zuführleitungen hervorgerufene Verbrennungsschwingungen absorbiert werden sollen.Another measure for damping combustion oscillations is in the EP 1 004 823 A2 shown. Here a Helmholtz resonator is directly connected to the mixing area of the burner. The resonator is to be installed upstream of the fuel supply, since combustion oscillations occurring in the burner and also caused by the supply lines are to be absorbed by the resonator.

In der US 5,644,918 ist eine Brennkammer mit einem in Form einer zylindrischen Doppelhülse gebildeten Resonator offenbart, der konzentrisch zwischen einem Brennkammergehäuse und einem Brennkammer-Liner angeordnet ist. Die Doppelhülse wird u. a. durch einen Ringflansch und die innere Fläche des Brennkammergehäuses gebildet.In the US 5,644,918 a combustion chamber is disclosed with a resonator formed in the form of a cylindrical double sleeve, which is arranged concentrically between a combustion chamber housing and a combustion chamber liner. The double sleeve is formed inter alia by an annular flange and the inner surface of the combustion chamber housing.

Aufgabe der Erfindung ist die Angabe einer Gasturbine mit einer besonders geringen Neigung zur Ausbildung von Verbrennungsschwingungen, wobei bauliche Maßnahmen an einer Brennkammerwand vermieden werden sollen.The object of the invention is to specify a gas turbine with a particularly low tendency to form combustion oscillations, wherein structural measures should be avoided on a combustion chamber wall.

Diese Aufgabe wird gelöst durch Angabe einer Gasturbine mit einer Brennkammer und einem in die Brennkammer an einer Brennermündung mündenden Brenner, wobei die Brennermündung ringförmig von einem Helmholtzresonator umgeben ist und wobei erfindungsgemäß die kennzeichnenden Merkmale des Anspruchs 1 vorgesehen sind.This object is achieved by specifying a gas turbine having a combustion chamber and a burner opening into the combustion chamber at a burner mouth, wherein the burner mouth is annularly surrounded by a Helmholtz resonator and according to the invention the characterizing features of claim 1 are provided.

Der Helmholtzresonator wird um die Mündung eines Brenners herum angeordnet. Die Dämpfung von Verbrennungsschwingungen durch einen Resonator kann zu lokalen Temperaturunterschieden führen, wenn der Resonator ungleichmäßig auf das Verbrennungsgebiet einwirkt. Durch die symmetrische, ringförmige Anordnung um die Brennerflamme herum wird dies vermieden. Die daraus folgende Temperaturvergleichmäßigung erhöht die dämpfende Wirkung und führt gleichzeitig zu einer Verminderung der Stickoxidbildung. Zudem kann durch die Anordnung des Resonators unmittelbar um die Flamme herum intensiv direkt auf den Ort der höchsten Wärmefreisetzung eingewirkt werden. Auch dieser verbesserte Kontakt zur Hauptquelle von Verbrennungsschwingungen erhöht die Wirkung des Resonators.The Helmholtz resonator is placed around the mouth of a burner. The attenuation of combustion oscillations by a resonator can lead to local temperature differences if the resonator acts unevenly on the combustion area. This is avoided by the symmetrical, annular arrangement around the burner flame. The consequent temperature uniformity increases the damping effect and at the same time leads to a reduction of the formation of nitrogen oxides. In addition, by the arrangement of the resonator immediately around the flame around can be acted intensively directly on the place of the highest heat release. Also, this improved contact with the main source of combustion vibrations increases the effect of the resonator.

Bevorzugt weist der Helmholtzresonator ein Resonatorvolumen auf und mündet an einer Resonatormündung in die Brennkammer, wobei die Resonatormündung mit einem Röhrchen in das Resonatorvolumen hinein fortgesetzt ist. Weiter bevorzugt ist die Resonatormündung durch mehrere Öffnungen gebildet, die jeweils über ein Röhrchen in das Resonatorvolumen hinein fortgesetzt sind. Die Röhrchen ragen also in das Resonatorvolumen hinein. Durch diese Ausführung ist es möglich, die Baugröße des Resonators klein zu halten. Üblicherweise besteht ein Resonator aus einem Volumen V und Bohrungen einer bestimmten Länge I sowie Querschnitt A. Diese Geometrie bestimmt zusammen mit der Schallgeschwindigkeit c die Resonanzfrequenz nach der vereinfachten Formel f res = c / 2 π * A / V * 1 .

Figure imgb0001
Um tiefe Frequenzen zu bekämpfen, benötigt man dementsprechend ein sehr großes Volumen. Das ist in der Praxis aufgrund des geringen zur Verfügung stehenden Platzangebotes allerdings mit großen Schwierigkeiten verbunden. In der hier beschriebenen Vorrichtung wird nun die Länge der Bohrungen wesentlich vergrößert. Dies wird erreicht, indem die Bohrungen als Röhrchen ausgeführt werden, die in das Volumen hineinragen. Das innere Volumen des Resonators wird dabei kaum geändert. Die äußeren Abmessungen des Resonators können somit klein gehalten werden. Die Röhrchen können dabei verwunden ausgeführt werden, um genügend Abstand zu den Wänden zu haben. Durch Veränderung der Länge der Röhrchen kann die Dämpfungsvorrichtung auf jede beliebige Frequenz, die im Verbrennungssystem auftritt, eingestellt werden. Dabei müssen die äußeren Abmessungen des Resonators und damit des Brennereinsatzes sowie die offene Gesamtquerschnittsfläche nicht geändert werden. Der Hauptvorteil: um tiefe Frequenzen zu dämpfen, kann mit Hilfe der hineinragenden Röhrchen auf eine Volumenvergrößerung des Resonators verzichtet werden.The Helmholtz resonator preferably has a resonator volume and opens at a resonator opening into the combustion chamber, the resonator mouth having a small tube continuing into the resonator volume. More preferably, the resonator mouth is formed by a plurality of openings which are each continued via a tube into the resonator volume. The tubes thus protrude into the resonator volume. By this embodiment, it is possible to keep the size of the resonator small. Usually, a resonator consists of a volume V and holes of a certain length I and cross section A. This geometry together with the speed of sound c determines the resonance frequency according to the simplified formula f res = c / 2 π * A / V * 1 ,
Figure imgb0001
In order to fight low frequencies, one needs accordingly a very large volume. This is in practice due to the limited space available but associated with great difficulties. In the here described device, the length of the holes is now substantially increased. This is achieved by making the holes as tubes that protrude into the volume. The inner volume of the resonator is hardly changed. The outer dimensions of the resonator can thus be kept small. The tubes can be carried out wounded to have enough distance to the walls. By changing the length of the tubes, the damping device can be adjusted to any frequency that occurs in the combustion system. In this case, the outer dimensions of the resonator and thus the burner insert and the open total cross-sectional area need not be changed. The main advantage: to dampen low frequencies, can be dispensed with the help of the protruding tubes on an increase in volume of the resonator.

Vorzugsweise ist das Röhrchen oder sind die Röhrchen gekrümmt oder verwunden geformt, so dass die Röhrchenlänge vergrößert ist, ohne dabei einen Mindestabstand zur Resonatorwand zu unterschreiten.Preferably, the tube or tubes are curved or twisted so that the tube length is increased without falling below a minimum distance to the resonator wall.

Bevorzugtermassen ist das Resonatorvolumen einstellbar, etwa durch eine kolbenartige Verschiebung einer Resonatorwand. Hierdurch können die akustischen Eigenschaften, insbesondere die Impedanz, angepasst und eingestellt werden.Preferably, the resonator volume is adjustable, for example by a piston-like displacement of a resonator wall. As a result, the acoustic properties, in particular the impedance, can be adjusted and adjusted.

In bevorzugter Ausgestaltung ist die Brennkammer als Ringbrennkammer ausgebildet ist. Gerade bei Ringbrennkammern können Verbrennungsschwingungen durch ein vergleichsweise großes Brennkammervolumen und darin miteinander gekoppelter Brenner zu sehr störenden und schädigenden Verbrennungsschwingungen führen. Zudem sind die akustischen Eigenschaften einer solchen Brennkammer kaum zu berechnen.In a preferred embodiment, the combustion chamber is designed as an annular combustion chamber. Especially in annular combustion chambers combustion oscillations can lead to very disturbing and damaging combustion oscillations by a comparatively large combustion chamber volume and burners coupled together. In addition, the acoustic properties of such a combustion chamber are difficult to calculate.

Gemäß der Erfindung ist der Helmholtzresonator in einen Brennereinsatz integriert, wobei über den Brennereinsatz der Brenner mit der Brennkammer verbunden ist. Der Brennereinsatz kann ein eigenes Bauteil sein, der mit der Brennkammerwand z.B. verschraubt wird und in den dann der eigentliche Brenner eingesetzt wird. Er kann aber auch mit dem Brenner verbunden sein, so dass z.B. der Brennereinsatz einen Flansch am Brenner bildet, mit dem der Brenner mit der Brennkammerwand verbunden wird. Durch die Integration des Resonators in den Brennereinsatz sind keine baulichen Maßnahmen an der Brennkammerwand erforderlich und der Resonator kann bei Bedarf in einfacher Weise ausgebaut werden.According to the invention, the Helmholtz resonator is integrated in a burner insert, wherein the burner is connected to the burner via the burner insert. The burner insert can be a separate component, which is bolted to the combustion chamber wall, for example, and in the then the actual burner is used. But it can also be connected to the burner, so that, for example, the burner insert forms a flange on the burner, with which the burner is connected to the combustion chamber wall. The integration of the resonator in the burner insert no structural measures on the combustion chamber wall are required and the resonator can be expanded if necessary in a simple manner.

Bevorzugtermaßen ist der Helmholtzresonator luftdurchströmbar ausgebildet. Hierdurch lässt sich die Impedanz des Resonators in einfacher Weise ändern und anpassen. Zudem wird eine Kühlung des Resonators und im Falle der Integration des Resonators in den Brennereinsatz auch eine Kühlung des gesamten Brennereinsatzes erreicht.Preferred dimensions of the Helmholtz resonator is formed through air. As a result, the impedance of the resonator can be changed and adjusted in a simple manner. In addition, a cooling of the resonator and in the case of integration of the resonator in the burner insert, a cooling of the entire burner insert is achieved.

Die Erfindung wird beispielhaft und teilweise schematisch anhand der Zeichnung erläutert. Es zeigen:

  • Figur 1: eine Gasturbine
  • Figur 2: einen an einer Brennkammerwand angeordneten Brenner
The invention will be explained by way of example and in part schematically with reference to the drawing. Show it:
  • FIG. 1 : a gas turbine
  • FIG. 2 a burner arranged on a combustion chamber wall

Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.Like reference numerals have the same meaning in the various figures.

In Figur 1 ist eine Gasturbine 51 abgebildet. Die Gasturbine 51 weist einen Verdichter 53, eine Ringbrennkammer 55 und ein Turbinenteil 57 auf. Luft 58 aus der Umgebung wird dem Verdichter 53 zugeleitet und dort hoch zu Verbrennungsluft 9 verdichtet. Anschließend wird die Verbrennungsluft 9 der Ringbrennkammer 55 zugeleitet. Über Gasturbinenbrenner 1 wird sie dort mit Brennstoff 11 zu einem Heißgas 59 verbrannt. Das Heißgas 59 treibt das Turbinenteil 57 an.In FIG. 1 a gas turbine 51 is shown. The gas turbine 51 has a compressor 53, an annular combustion chamber 55 and a turbine part 57. Air 58 from the environment is fed to the compressor 53 where it is compressed to combustion air 9 high. Subsequently, the combustion air 9 of the annular combustion chamber 55 is supplied. About gas turbine burner 1 is burned there with fuel 11 to a hot gas 59. The hot gas 59 drives the turbine part 57.

In der Ringbrennkammer 55 kann es, aus weiter oben beschriebenen Gründen, zur Ausbildung von Verbrennungsschwingungen kommen, die den Betrieb der Gasturbine 51 erheblich beeinträchtigen können. Zur Dämpfung solcher Verbrennungsschwingungen können Helmholtzresonatoren zum Einsatz kommen, wobei eine besonders wirksame Bauart im folgenden beschrieben wird:In the annular combustion chamber 55 may, for reasons described above, for the formation of combustion vibrations come that can significantly affect the operation of the gas turbine 51. Helmholtz resonators may be used to dampen such combustion oscillations, with a particularly effective design being described below:

In Figur 2 ist ein Gasturbinenbrenner 1 dargestellt, der über einen Brennereinsatz 2 mit einer Brennkammerwand 56 einer Brennkammer 55 verbunden ist und an einer Brennermündung 4 in die Brennkammer 55 mündet. Ein Brennerkanal 3 des Gasturbinenbrenners 1 umgibt als ein Ringkanal 30 einen Zentralkanal 41. Der Ringkanal 30 ist als ein Vormischkanal ausgeführt, in dem Brennstoff 11 und Verbrennungsluft 9 vor der Verbrennung intensiv vermischt werden. Dies wird als Vormischverbrennung bezeichnet. Der Brennstoff 11 wird über hohl ausgeführte Drallschaufeln 13 in den Ringkanal 30 eingeleitet. Der Zentralkanal 41 mündet in die Verbrennungszone 27 zusammen mit einer zentralen Brennstofflanze 45, die Brennstoff , insbesondere Öl, über eine Dralldüse 47 zuführt. In diesem Fall werden Brennstoff 11 und Verbrennungsluft 9 erst in der Verbrennungszone 27 gemischt und man spricht von einer Diffusionsverbrennung. In den Zentralkanal 41 kann aber auch stromauf der Verbrennungszone 27 Brennstoff 11, insbesondere Erdgas, über einen Brennstoffeinlass 43 zugegeben werden.In FIG. 2 a gas turbine combustor 1 is shown, which is connected via a burner insert 2 with a combustion chamber wall 56 of a combustion chamber 55 and opens at a burner port 4 into the combustion chamber 55. A burner channel 3 of the gas turbine burner 1 surrounds a central channel 41 as an annular channel 30. The annular channel 30 is designed as a premixing channel in which fuel 11 and combustion air 9 are intensively mixed prior to combustion. This is called pre-mixed combustion. The fuel 11 is introduced via hollow swirl blades 13 in the annular channel 30. The central channel 41 opens into the combustion zone 27 together with a central fuel lance 45, the fuel, in particular oil, via a swirl nozzle 47 supplies. In this case, fuel 11 and combustion air 9 are first mixed in the combustion zone 27 and it is called a diffusion combustion. However, fuel 11, in particular natural gas, can also be added via a fuel inlet 43 into the central channel 41 upstream of the combustion zone 27.

In den Brennereinsatz 2 ist ein Helmholtzresonator 19 integriert, der ein Resonatorvolumen 23 aufweist und über eine aus Bohrungen bestehende Resonatormündung 21 in die Brennkammer 55 mündet. An jede der Bohrungen schließt sich in das Resonatorvolumen 23 hinein ein Röhrchen 61 an, dass verwunden geformt ist. Der Helmholtzresonator 19 umgibt die Brennermündung 4 ringförmig.A Helmholtz resonator 19, which has a resonator volume 23 and opens into the combustion chamber 55 via a resonator opening 21 consisting of bores, is integrated in the burner insert 2. At each of the holes in the resonator volume 23 into a tube 61 connects that is wound wound. The Helmholtz resonator 19 surrounds the burner mouth 4 annular.

Die ringförmige Umschließung der Brennermündung 4 durch den Resonator 19 führt zu einer gleichmäßigen Einwirkung auf die Verbrennungszone 27. Hierdurch kommt es nicht zu Temperaturungleichmäßigkeiten durch den Resonator 19. Zudem wirkt der Resonator 19 sehr effektiv unmittelbar auf die Zone größter Wärmefreisetzung ein.The annular enclosure of the burner opening 4 through the resonator 19 leads to a uniform action on the combustion zone 27. This does not lead to temperature irregularities through the resonator 19. In addition, the Resonator 19 is very effective immediately on the zone of maximum heat release.

Die Röhrchen 61 ermöglichen eine vergleichsweise geringe Baugröße für den Resonator 19, so dass dieser in den Brennereinsatz 2 integrierbar ist. Über Lufteinlässe 63 wird Luft in den Resonator 19 eingeleitet, wodurch dieser einerseits in seiner Impedanz anpassbar, andererseits auch kühlbar ist.The tubes 61 allow a comparatively small size for the resonator 19 so that it can be integrated into the burner insert 2. Air is introduced into the resonator 19 via air inlets 63, so that this can be adapted on the one hand in terms of its impedance, and on the other hand can also be cooled.

Claims (9)

  1. Gas turbine (51) having a combustion chamber (55) and a combustor (1) which leads into the combustion chamber (55) at a combustor port (4), in which the combustor port (4) is surrounded annularly by a Helmholtz resonator (19),
    characterized in that
    the Helmholtz resonator (19) is integrated in a combustor insert (2), wherein the combustor (1) is connected to the combustion chamber (55) via the combustor insert (2).
  2. Gas turbine according to claim 1, in which the Helmholtz resonator (19) has a resonator volume (23) and leads into the combustion chamber (55) at a resonator port (21), wherein the resonator port (21) extends into the resonator volume (23) by means of a small tube (61).
  3. The gas turbine (51) according to claim 2, in which the small tube (61) is curved or twisted in form.
  4. The gas turbine (51) according to claim 2 or 3, in which the resonator volume (23) is adjustable.
  5. The gas turbine (51) according to one of the preceding claims, in which the combustion chamber (55) is designed as an annular combustion chamber.
  6. The gas turbine (51) according to one of the claims 1 to 5, in which the combustor insert (2) is a separate component in which the combustor (1) is installed.
  7. The gas turbine (51) according to claim 6, in which the combustor insert (2) is screwed onto a combustion chamber wall (56).
  8. The gas turbine (51) according to claims 1 to 5, in which the combustor insert (2) forms a flange at the combustor (1).
  9. The gas turbine (51) according to one of the preceding claims, in which the Helmholtz resonator (19) is designed to allow direct airflow.
EP03706564A 2002-03-07 2003-02-24 Gas turbine Expired - Fee Related EP1483536B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES03706564T ES2303892T3 (en) 2002-03-07 2003-02-24 GAS TURBINE.
EP03706564A EP1483536B1 (en) 2002-03-07 2003-02-24 Gas turbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02005137A EP1342953A1 (en) 2002-03-07 2002-03-07 Gas turbine
EP02005137 2002-03-07
EP03706564A EP1483536B1 (en) 2002-03-07 2003-02-24 Gas turbine
PCT/EP2003/001862 WO2003074936A1 (en) 2002-03-07 2003-02-24 Gas turbine

Publications (2)

Publication Number Publication Date
EP1483536A1 EP1483536A1 (en) 2004-12-08
EP1483536B1 true EP1483536B1 (en) 2008-04-23

Family

ID=27741145

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02005137A Withdrawn EP1342953A1 (en) 2002-03-07 2002-03-07 Gas turbine
EP03706564A Expired - Fee Related EP1483536B1 (en) 2002-03-07 2003-02-24 Gas turbine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02005137A Withdrawn EP1342953A1 (en) 2002-03-07 2002-03-07 Gas turbine

Country Status (7)

Country Link
US (1) US7246493B2 (en)
EP (2) EP1342953A1 (en)
JP (1) JP4429730B2 (en)
CN (1) CN1320314C (en)
DE (1) DE50309686D1 (en)
ES (1) ES2303892T3 (en)
WO (1) WO2003074936A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493972A1 (en) * 2003-07-04 2005-01-05 Siemens Aktiengesellschaft Burner unit for a gas turbine and gas turbine
US7272931B2 (en) * 2003-09-16 2007-09-25 General Electric Company Method and apparatus to decrease combustor acoustics
EP1645805A1 (en) * 2004-10-11 2006-04-12 Siemens Aktiengesellschaft burner for fluidic fuels and method for operating such a burner
EP1703208B1 (en) * 2005-02-04 2007-07-11 Enel Produzione S.p.A. Thermoacoustic oscillation damping in gas turbine combustors with annular plenum
DE102005062284B4 (en) * 2005-12-24 2019-02-28 Ansaldo Energia Ip Uk Limited Combustion chamber for a gas turbine
US7788926B2 (en) * 2006-08-18 2010-09-07 Siemens Energy, Inc. Resonator device at junction of combustor and combustion chamber
JP4929357B2 (en) 2007-11-21 2012-05-09 三菱重工業株式会社 Damping device and gas turbine combustor
US8516819B2 (en) 2008-07-16 2013-08-27 Siemens Energy, Inc. Forward-section resonator for high frequency dynamic damping
CH699322A1 (en) * 2008-08-14 2010-02-15 Alstom Technology Ltd METHOD FOR SETTING A Helmholtz resonator AND HELMHOLTZ RESONATOR FOR IMPLEMENTING THE PROCESS.
EP2187125A1 (en) * 2008-09-24 2010-05-19 Siemens Aktiengesellschaft Method and device for damping combustion oscillation
US8336312B2 (en) * 2009-06-17 2012-12-25 Siemens Energy, Inc. Attenuation of combustion dynamics using a Herschel-Quincke filter
US8789372B2 (en) * 2009-07-08 2014-07-29 General Electric Company Injector with integrated resonator
US8474265B2 (en) * 2009-07-29 2013-07-02 General Electric Company Fuel nozzle for a turbine combustor, and methods of forming same
US20110209481A1 (en) * 2010-02-26 2011-09-01 General Electric Company Turbine Combustor End Cover
EP2383515B1 (en) * 2010-04-28 2013-06-19 Siemens Aktiengesellschaft Combustion system for dampening such a combustion system
EP2383514A1 (en) 2010-04-28 2011-11-02 Siemens Aktiengesellschaft Combustion system and method for dampening such a combustion system
US9810081B2 (en) 2010-06-11 2017-11-07 Siemens Energy, Inc. Cooled conduit for conveying combustion gases
US8720204B2 (en) 2011-02-09 2014-05-13 Siemens Energy, Inc. Resonator system with enhanced combustor liner cooling
EP2642203A1 (en) * 2012-03-20 2013-09-25 Alstom Technology Ltd Annular Helmholtz damper
US9188342B2 (en) * 2012-03-21 2015-11-17 General Electric Company Systems and methods for dampening combustor dynamics in a micromixer
ITMI20122265A1 (en) * 2012-12-28 2014-06-29 Ansaldo Energia Spa BURNER GROUP FOR A GAS TURBINE PROVIDED WITH A HELMHOLTZ RESONATOR
US20150362189A1 (en) * 2014-06-13 2015-12-17 Siemens Aktiengesellschaft Burner system with resonator
CN107076416B (en) 2014-08-26 2020-05-19 西门子能源公司 Film cooling hole arrangement for acoustic resonator in gas turbine engine
CN104595928B (en) * 2015-01-23 2020-02-14 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Acoustic flame tube of diffusion combustion chamber
JP2020056542A (en) * 2018-10-02 2020-04-09 川崎重工業株式会社 Annular type gas turbine combustor for aircraft

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819009A (en) * 1973-02-01 1974-06-25 Gen Electric Duct wall acoustic treatment
US4122674A (en) * 1976-12-27 1978-10-31 The Boeing Company Apparatus for suppressing combustion noise within gas turbine engines
US4231447A (en) * 1978-04-29 1980-11-04 Rolls-Royce Limited Multi-layer acoustic linings
DE3241162A1 (en) * 1982-11-08 1984-05-10 Kraftwerk Union AG, 4330 Mülheim PRE-MIXING BURNER WITH INTEGRATED DIFFUSION BURNER
JPH07501137A (en) 1991-11-15 1995-02-02 シーメンス アクチエンゲゼルシヤフト Combustion vibration suppression device in the combustion chamber of gas turbine equipment
DE59208193D1 (en) * 1992-07-03 1997-04-17 Abb Research Ltd Afterburner
EP0597138B1 (en) 1992-11-09 1997-07-16 Asea Brown Boveri AG Combustion chamber for gas turbine
JP3183053B2 (en) * 1994-07-20 2001-07-03 株式会社日立製作所 Gas turbine combustor and gas turbine
US5644918A (en) * 1994-11-14 1997-07-08 General Electric Company Dynamics free low emissions gas turbine combustor
US6058709A (en) 1996-11-06 2000-05-09 The United States Of America Represented By The United States Department Of Energy Dynamically balanced fuel nozzle and method of operation
EP0918190A1 (en) * 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
DE59903398D1 (en) * 1998-03-20 2002-12-19 Siemens Ag GAS TURBINE BURNER
EP0971172B1 (en) * 1998-07-10 2003-12-03 ALSTOM (Switzerland) Ltd Gas turbine combustion chamber with silencing wall structure
DE19839085C2 (en) * 1998-08-27 2000-06-08 Siemens Ag Burner arrangement with primary and secondary pilot burner
DE19851636A1 (en) 1998-11-10 2000-05-11 Asea Brown Boveri Damping device for reducing vibration amplitude of acoustic waves for burner for internal combustion engine operation is preferably for driving gas turbo-group, with mixture area for air and fuel
EP1010939B1 (en) * 1998-12-15 2004-02-11 ALSTOM (Switzerland) Ltd Combustion chamber with acoustic damped fuel supply system
US6351947B1 (en) * 2000-04-04 2002-03-05 Abb Alstom Power (Schweiz) Combustion chamber for a gas turbine
DE10026121A1 (en) * 2000-05-26 2001-11-29 Alstom Power Nv Device for damping acoustic vibrations in a combustion chamber
GB2390150A (en) * 2002-06-26 2003-12-31 Alstom Reheat combustion system for a gas turbine including an accoustic screen

Also Published As

Publication number Publication date
CN1639512A (en) 2005-07-13
ES2303892T3 (en) 2008-09-01
US7246493B2 (en) 2007-07-24
WO2003074936A1 (en) 2003-09-12
EP1342953A1 (en) 2003-09-10
DE50309686D1 (en) 2008-06-05
JP4429730B2 (en) 2010-03-10
EP1483536A1 (en) 2004-12-08
JP2005527763A (en) 2005-09-15
US20050144950A1 (en) 2005-07-07
CN1320314C (en) 2007-06-06

Similar Documents

Publication Publication Date Title
EP1483536B1 (en) Gas turbine
EP1481195B1 (en) Burner, method for operating a burner and gas turbine
DE60105531T2 (en) Gas turbine combustor, gas turbine and jet engine
DE4316475C2 (en) A gas turbine combustor
DE19640980B4 (en) Device for damping thermoacoustic oscillations in a combustion chamber
EP0985882B1 (en) Vibration damping in combustors
DE10058688B4 (en) Damper arrangement for the reduction of combustion chamber pulsations
EP2340397B1 (en) Burner insert for a gas turbine combustion chamber and gas turbine
EP1754002B1 (en) Staged premix burner with an injector for liquid fuel
EP1738112B1 (en) Rocket engine with damping of vibration of the combustion chamber by resonators
DE102009026056A1 (en) combustion chamber structure
EP2962039A1 (en) Damping device for a gas turbine, gas turbine and method for damping thermo-acoustic vibrations
DE10325691A1 (en) Reheat combustion system for a gas turbine
CH701454B1 (en) Burner with a flow conditioner.
DE102015118384A1 (en) Inlet bleed air manifold with acoustically treated feed tube
EP1605209B1 (en) Combustor with thermo-acoustic vibrations dampening device
EP1255074B1 (en) Oscillation reduction in a combustion chamber
EP0971172B1 (en) Gas turbine combustion chamber with silencing wall structure
EP3117148B1 (en) Burner arrangement with resonator
EP2187125A1 (en) Method and device for damping combustion oscillation
DE102015113146A1 (en) Systems and devices related to gas turbine combustors
EP2462379B1 (en) Stabilising of the flame of a burner
EP3241998A1 (en) Turbofan engine and a method for exhausting breather air of an oil separator in a turbofan engine
DE102004010620A1 (en) Method for the effective use of cooling for the acoustic damping of combustion chamber pulsations and combustion chamber
EP2383515A1 (en) Combustion system and method for dampening such a combustion system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50309686

Country of ref document: DE

Date of ref document: 20080605

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2303892

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170327

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200206

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200420

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50309686

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210215

Year of fee payment: 19

Ref country code: IT

Payment date: 20210219

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309686

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228