EP1605209B1 - Combustor with thermo-acoustic vibrations dampening device - Google Patents

Combustor with thermo-acoustic vibrations dampening device Download PDF

Info

Publication number
EP1605209B1
EP1605209B1 EP04013404A EP04013404A EP1605209B1 EP 1605209 B1 EP1605209 B1 EP 1605209B1 EP 04013404 A EP04013404 A EP 04013404A EP 04013404 A EP04013404 A EP 04013404A EP 1605209 B1 EP1605209 B1 EP 1605209B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
combustion
resonator
mouth
fastening element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04013404A
Other languages
German (de)
French (fr)
Other versions
EP1605209A1 (en
Inventor
Sven Dr. Bethke
Tobias Dr. Buchal
Michael Dr. Huth
Harald Nimptsch
Bernd Dr. Prade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE502004011481T priority Critical patent/DE502004011481D1/en
Priority to EP04013404A priority patent/EP1605209B1/en
Publication of EP1605209A1 publication Critical patent/EP1605209A1/en
Application granted granted Critical
Publication of EP1605209B1 publication Critical patent/EP1605209B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the present invention relates to a combustion chamber with a damping device for damping thermoacoustic oscillations, in particular for a gas turbine, and a gas turbine with such a combustion chamber.
  • a gas turbine plant comprises e.g. a compressor, a combustion chamber and a turbine.
  • a compressor In the compressor there is a compression of sucked air, which is then admixed with a fuel.
  • the combustion chamber In the combustion chamber, the mixture is burned, the combustion exhaust gases are supplied to the turbine. From the turbine thermal energy is extracted from the combustion exhaust gases and converted into mechanical energy.
  • cooling air also serves to block openings, for example gaps between two adjoining heat shield elements of a combustion chamber, i. for preventing hot gas from the combustion chamber from entering the opening.
  • thermoacoustic vibrations can increase. This can lead to a swirling interaction between thermal and acoustic disturbances, which can cause high loads on the combustion chamber and, in turn, rising emissions.
  • thermoacoustic oscillations in the combustors of gas turbines - or turbomachines in general - present a problem in the design and operation of new combustors, combustor parts and burners for such gas turbines.
  • a Helmholtz resonator typically includes a volume of air or other gas therein. The volume is followed by a tube, the so-called resonator tube, which also contains air or gas and which opens into the combustion chamber.
  • the air or the gas in the volume and in the resonator tube form a spring-mass system, wherein the air or the gas in the volume of the spring and the air or the gas in the resonator tube forms the mass.
  • the Helmholtz resonator behaves like an infinite-length aperture which prevents a standing wave can form with the resonance frequency.
  • thermoacoustic oscillations which are substantially standing waves, can thus be effectively suppressed for frequencies corresponding to or near the resonant frequency of the Helmholtz resonator.
  • the US 6,351,947 Bl shows a combustion chamber with such Helmholtz resonators.
  • a combustion chamber according to the invention comprises at least one combustion chamber element to be cooled and at least one damping device for damping thermoacoustic oscillations with an opening open towards the combustion chamber. It is characterized by the fact that the mouth is integrated into the combustion chamber element to be cooled.
  • the damping device is integrated in a combustion chamber element to be cooled, the amount of air entering the combustion chamber increases only slightly, if at all, due to the presence of the damping element. This results from the fact that for cooling the combustion chamber element alone anyway a cooling air flow is necessary, which now also serves to lock the mouth of the damping device at the same time.
  • the combustion temperature - and thus the pollution of the combustion gases - is therefore not or only slightly increased.
  • the mouth in the combustion chamber according to the invention may be associated with a blocking air supply. This then serves as a cooling air supply for the cooling of the combustor element to be cooled.
  • the mouth can also be associated with a fuel supply such that the sealing air fuel is added. The addition of fuel to the sealing air leads to a reduction of the combustion temperature in the main burner and thus to a reduction of the pollutant content of the combustion gases.
  • the combustion chamber has a combustion chamber wall which comprises a combustion chamber shell and a combustion chamber lining fastened to the combustion chamber shell by means of fastening elements to be cooled.
  • the combustion chamber lining may, for example, be a heat shield, in particular a ceramic or metallic heat shield.
  • the mouth of the at least one damping device is integrated in a fastening element for fastening the combustion chamber lining to the combustion chamber shell.
  • the combustor element to be cooled is formed as a fastener for fixing the combustor liner. Since the fasteners are present anyway and require cooling, integrating the mouth in a fastener requires only a redesign of the fastener, for example.
  • the fastening element can also be configured as a fastening element, which comprises at least one sliding seat device.
  • a sliding seat device is often located, for example, at the transition from the so-called “basket” to the so-called “transition piece” in a silo burning chamber.
  • the damping device can also be arranged at the transition from the combustion chamber to the first row Leitschauffel #2. As a rule, quite high blocking air flows are needed there. This applies to ring combustion chambers and also for silo separation chambers.
  • the damping element may in particular be designed such that the combustion chamber element to be cooled forms part of the damping device.
  • a fixing screw with an axial through-bore can form the resonator tube of a Helmholtz resonator.
  • the damping device is designed as a Helmholtz resonator, in particular as a Helmholtz resonator with variable resonance frequency.
  • the variability of the resonant frequency can be achieved by making the volume of the Helmholtz resonator changeable.
  • a volume change may e.g. can be achieved via an adjustable rear wall of the resonator.
  • the Helmholtz resonator may also include a plurality of orifices, each of which is integrated into a combustion chamber element to be cooled.
  • a plurality of resonator tubes of the same Helmholtz resonator can be integrated into different fastening screws.
  • the damping device is designed as a ⁇ / 4 tube, ie as a tube with a quarter of the wavelength of the vibration to be damped.
  • a gas turbine according to the invention comprises at least one combustion chamber according to the invention.
  • Fig. 1 shows as a first embodiment, a section of the combustion chamber wall of a combustion chamber according to the invention in a highly schematic representation.
  • Fig. 2 shows a view of the combustion chamber wall of a second embodiment of the invention seen from the combustion chamber inside.
  • Fig. 3 shows a side view of in Fig. 2 shown Brennschwandung.
  • FIG. 1 is shown as a first embodiment of the invention, a combustion chamber of a gas turbine according to the invention.
  • the figure shows a section of the combustion chamber wall 1, which comprises a combustion chamber shell 3 and a metallic heat shield 4.
  • the metallic heat shield 4 is constructed from a number of heat shield elements 2, which are each fixed by means of a screw 7 as a fastening element at a connection point 5 on the combustion chamber shell 3.
  • the screws 7 are like the heat shield elements 2 by means of cooling air to be cooled combustion chamber elements.
  • this is equipped with at least one damping device, which is formed in the present embodiment as opening into the combustion chamber Helmholtz resonator 6.
  • the Helmholtz resonator 6 is attached to the combustion chamber wall 1 in the region of a connection point 5. It is held by means of a fastening element or a plurality of fastening elements (not shown) on the combustion chamber wall 1.
  • a fastening element or a plurality of fastening elements (not shown) on the combustion chamber wall 1.
  • damping devices may be present.
  • the Helmholtz resonator 6 comprises a resonator chamber 15 and a resonator tube, also called resonator neck.
  • the resonator tube is formed in the present embodiment of the screw 7, which has a through hole 8 for this purpose.
  • One end 9 of the through hole 8 opens into the resonator 15.
  • the other end 10 of the through hole 8 opens into the combustion chamber and represents the mouth of the Helmholtz resonator 6 in the combustion chamber.
  • the damping effect of the Helmholtz resonator 6 is based on that the behaves in the resonator 15 and the resonator tube 8 located air as a spring-mass system.
  • the air in the resonator chamber 15, the spring and the air in the resonator tube 8 is the mass of this system.
  • this spring-mass system oscillates at a resonant frequency, by the volume V of the resonator 15, the cross-sectional area F of the through hole. 8 , And by the length L of the through hole 8 (ie, the screw 7) is determined, the Helmholtz resonator 6 behaves like an opening of infinite length, so that no standing wave can form with the resonance frequency.
  • the generation of thermoacoustic oscillations, which are substantially standing waves, can thus be effectively suppressed for frequencies corresponding to or near the resonant frequency of the Helmholtz resonator.
  • the resonator 6 is designed substantially cylindrically symmetrical to the screw 7.
  • the resonance frequency of the Helmholtz resonator 6 are set. For example, Increasing the volume V of the resonator chamber 15 or the length L of the screw 7 leads to a reduced resonance frequency. Increasing the cross-sectional area F of the through-hole 8, on the other hand, leads to an increased resonance frequency.
  • the rear wall 17 of the Helmholtz resonator 6 can be designed to be adjustable. On the cylindrical side wall 12 of the Helmholtz resonator 6 then, for example, a thread 16 is present, in which a matching mating thread of the rear wall 17 engages.
  • the volume V of the resonator 15 and thus the resonator frequency can be changed in the desired manner.
  • it is also possible to change the volume by exchanging the resonator chamber 15 with a resonator chamber 15 having a different volume.
  • the length L of the screw and / or the cross-sectional area F of the through-hole 8 can be changed.
  • a screw 7 can be used whose bore 8 has a larger cross-sectional area F than the previously used screw 7. It can be used for the same purpose but also a screw 7 with a shorter length L. become.
  • the resonance frequency of the Helmholtz resonator 6 can be influenced.
  • the resonator space 15 is at the cold side, i. attached to the combustion chamber facing away from the outside of the combustion chamber shell 3 and projects into the Kompressplplenum 20 inside.
  • spacers 19 are provided between the resonator chamber 15 and the outside of the combustion chamber shell 3, which ensure a distance between the combustion chamber shell 3 and the resonator chamber 15 and thus a flow of pressurized cooling air between allow the combustion chamber shell 3 and the resonator 15.
  • Cooling air can then be conducted from the compressor plenum 20 along the flow paths 13 to the side facing away from the combustion chamber interior, the so-called cold side of the heat shield elements 2, where it provides for an impingement air cooling of the heat shield elements 2.
  • the impingement air flows into the combustion chamber after hitting the cold sides along the flow paths 23 through gaps between adjacent heat shield elements 2, blocking the gaps against hot gas penetration of the combustion chamber.
  • the cooling of the screw 7 takes place together with the locking of the mouth 10 of the Helmholtz resonator 6 against ingress of hot gas.
  • the air first flows from the compressor plenum 20 through the openings 18 (forming the blocking air supply) in the rear wall 17 of the resonator chamber 15 into the resonator chamber 15 and then through the through-hole 8 of the screw 7 into the combustion chamber (flow path 11).
  • the cooling of Helmholtz resonator 6 and screw 7 is carried out with the same cooling air, the proportion of cooling air, which is guided past the burner, compared to a separate cooling of Helmholtz resonator 6 and screw 7, as necessary would be if the screw 7 was not used at the same time as Resonatorrohr be reduced.
  • FIGS. 2 and 3 a second embodiment is shown very schematically.
  • the same or similar components are provided with the same reference numerals as in the first embodiment for simplicity and for better comparability.
  • Fig. 2 shows, seen from the combustion chamber inside, a section of a combustion chamber 1, which is lined with metallic heat shield plates 21, 22 as heat shield elements.
  • Fig. 3 shows a section through the combustion chamber wall 1 along the line A - A.
  • the heat shield plates 21, 22 are screwed to connecting points 5 by means of screws 7 with the combustion chamber shell 3.
  • Helmholtz resonators 6 are arranged, which are fixed by means of screws 7 on the combustion chamber 1.
  • a passage opening or through-bore 8 in the screws 7 serves, as in the first exemplary embodiment, as a resonator tube of the respective Helmholtz resonator 6.
  • FIG FIG. 3 only one of the Helmholtz resonators 6 shown.
  • a resonator chamber 15 in a modification of the second embodiment, it is also possible for a resonator chamber 15 to expand over a plurality of screws 7.
  • all screws 7, over which the resonator chamber 15 extends can be provided with through-holes and thus form resonator tubes.
  • the adjustment of the resonator volume can be done within operating pauses by means of a suitable tool by hand or during operation.
  • a controller (not shown) is provided, by means of which the adjustment of the resonator volume can be controlled.
  • An automatic adjustment or regulation is possible.
  • an electric motor, a hydraulic adjusting device or a pneumatic adjusting device can be used.
  • the regulation can be done online during operation. With a fully automatic control can take place a continuous or at intervals, adjustment to the strongest vibration frequency.
  • a Helmholtz resonator 6 can be switched off by replacing the screw with through hole against a screw without through hole. Alternatively, the resonator 6 can also be completely removed.
  • the invention is particularly suitable for use in annular combustion chambers with metallic heat shields or in the so-called inlet shells of the combustion chambers with ceramic heat shields ("stones").

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

Die vorliegende Erfindung betrifft eine Brennkammer mit einer Dämpfungseinrichtung zur Dämpfung von thermoakustischen Schwingungen, insbesondere für eine Gasturbine, sowie eine Gasturbine mit einer solchen Brennkammer.The present invention relates to a combustion chamber with a damping device for damping thermoacoustic oscillations, in particular for a gas turbine, and a gas turbine with such a combustion chamber.

Eine Gasturbinenanlage umfasst z.B. einen Verdichter, eine Brennkammer und eine Turbine. Im Verdichter erfolgt ein Verdichten von angesaugter Luft, welcher anschließend ein Brennstoff beigemischt wird. In der Brennkammer wird das Gemisch verbrannt, wobei die Verbrennungsabgase der Turbine zugeführt werden. Von der Turbine wird den Verbrennungsabgasen thermische Energie entzogen und in mechanische Energie umgesetzt.A gas turbine plant comprises e.g. a compressor, a combustion chamber and a turbine. In the compressor there is a compression of sucked air, which is then admixed with a fuel. In the combustion chamber, the mixture is burned, the combustion exhaust gases are supplied to the turbine. From the turbine thermal energy is extracted from the combustion exhaust gases and converted into mechanical energy.

Um bei den während des Verbrennungsprozesses vorherrschenden hohen Temperaturen die Funktionssicherheit der Brennkammer dauerhaft zu gewährleisten, wird eine Anzahl von Elementen der Brennkammer mit einem Kühlmassenstrom aus Kühlluft gekühlt. Die Kühlluft dient auch zum Sperren von Öffnungen, bspw. von Spalten zwischen zwei aneinandergrenzenden Hitzeschildelementen einer Brennkammer, d.h. zum Verhindern, dass heißes Gas aus der Brennkammer in die Öffnung eindringt. Dadurch wird die Luftzufuhr zum Brenner reduziert und die Emission von Schadstoffen, wie Stickoxiden, nimmt zu.In order to permanently ensure the functional reliability of the combustion chamber at the high temperatures prevailing during the combustion process, a number of elements of the combustion chamber are cooled with a cooling mass flow of cooling air. The cooling air also serves to block openings, for example gaps between two adjoining heat shield elements of a combustion chamber, i. for preventing hot gas from the combustion chamber from entering the opening. As a result, the air supply to the burner is reduced and the emission of pollutants, such as nitrogen oxides, increases.

Um die Schadstoffemissionen von Gasturbinen zu verringern, wird in modernen Anlagen der Kühlmassenstrom verringert. Dadurch wird auch die akustische Dämpfung verringert, so dass thermoakustische Schwingungen zunehmen können. Dabei kann es zu einer sich aufschaukelnden Wechselwirkung zwischen thermischen und akustischen Störungen kommen, die hohe Belastungen der Brennkammer und wiederum steigende Emissionen verursachen können.In order to reduce the pollutant emissions of gas turbines, the cooling mass flow is reduced in modern systems. This also reduces the acoustic damping, so that thermoacoustic vibrations can increase. This can lead to a swirling interaction between thermal and acoustic disturbances, which can cause high loads on the combustion chamber and, in turn, rising emissions.

Außerdem führen Schwankungen in der Brennstoffqualität und sonstige thermische oder akustische Störungen zu Schwankungen in der freigesetzten Wärmemenge und damit der thermodynamischen Leistung der Anlage. Dabei liegt eine Wechselwirkung von akustischen und thermischen Störungen vor, die sich aufschwingen können. Derartige thermoakustische Schwingungen in den Brennkammern von Gasturbinen - oder auch Strömungsmaschinen im allgemeinen - stellen ein Problem bei dem Entwurf und bei dem Betrieb von neuen Brennkammern, Brennkammerteilen und Brennern für derartige Gasturbinen dar.In addition, fluctuations in fuel quality and other thermal or acoustic disturbances lead to fluctuations in the amount of heat released and thus the thermodynamic performance of the system. There is an interaction of acoustic and thermal disturbances, which can oscillate. Such thermoacoustic oscillations in the combustors of gas turbines - or turbomachines in general - present a problem in the design and operation of new combustors, combustor parts and burners for such gas turbines.

Zum Verringern von thermoakustischen Schwingungen werden deshalb im Stand der Technik z.B. Helmholtz-Resonatoren zur Dämpfung der Schwingungen eingesetzt. Ein Helmholtz-Resonator umfasst in der Regel ein Volumen mit darin befindlicher Luft oder einem anderen Gas. An das Volumen schließt sich ein Rohr, das sog. Resonatorrohr an, in dem sich ebenfalls Luft bzw. Gas befindet und das in die Brennkammer mündet. Die Luft bzw. das Gas im Volumen und im Resonatorrohr bilden ein Feder-Masse-System, wobei die Luft bzw. das Gas im Volumen die Feder und die Luft bzw. das Gas im Resonatorrohr die Masse bildet. Wenn das Feder-Masse-System mit einer Resonanzfrequenz schwingt, die durch das Volumen, die Querschnittsfläche des Resonatorrohres und die Länge des Resonatorrohres bestimmt ist, verhält sich der Helmholtz-Resonator wie eine Öffnung mit unendlicher Länge, die verhindert, dass sich eine stehende Welle mit der Resonanzfrequenz ausbilden kann. Das Entstehen von thermoakustischen Schwingungen, welche im Wesentlichen stehende wellen sind, kann so für Frequenzen, die der Resonanzfrequenz des Helmholtz-Resonators entsprechen oder in deren Nähe liegen, wirksam unterdrückt werden.For reducing thermoacoustic vibrations, therefore, in the prior art e.g. Helmholtz resonators used to dampen the vibrations. A Helmholtz resonator typically includes a volume of air or other gas therein. The volume is followed by a tube, the so-called resonator tube, which also contains air or gas and which opens into the combustion chamber. The air or the gas in the volume and in the resonator tube form a spring-mass system, wherein the air or the gas in the volume of the spring and the air or the gas in the resonator tube forms the mass. When the spring-mass system oscillates at a resonant frequency determined by the volume, the cross-sectional area of the resonator tube and the length of the resonator tube, the Helmholtz resonator behaves like an infinite-length aperture which prevents a standing wave can form with the resonance frequency. The emergence of thermoacoustic oscillations, which are substantially standing waves, can thus be effectively suppressed for frequencies corresponding to or near the resonant frequency of the Helmholtz resonator.

Die US 6,351,947 Bl zeigt eine Brennkammer mit solchen Helmholtz-Resonatoren.The US 6,351,947 Bl shows a combustion chamber with such Helmholtz resonators.

Die zur Brennkammer hin offenen Mündungen der Helmholtz-Resonatoren erfordern jedoch zusätzliche Sperrluft, wodurch die Verbrennungstemperatur wieder erhöht wird. Als Folge dieser Erhöhung steigt der Anteil der Stickoxide in den Verbrennungsabgasen an.However, the mouths open to the combustion chamber Helmholtz resonators require additional sealing air, whereby the combustion temperature is increased again. As a result of this Increases increase the proportion of nitrogen oxides in the combustion exhaust gases.

Es ist deshalb die Aufgabe der vorliegenden Erfindung, eine verbesserte Brennkammer mit einer Dämpfungseinrichtung, insbesondere für eine Gasturbine, zur Verfügung zu stellen.It is therefore the object of the present invention to provide an improved combustion chamber with a damping device, in particular for a gas turbine.

Es ist eine weitere Aufgabe der vorliegenden Erfindung, eine verbesserte Gasturbine zur Verfügung zu stellen.It is another object of the present invention to provide an improved gas turbine.

Erfindungsgemäß wird die erste Aufgabe durch eine Brennkammer nach Anspruch 1 gelöst, die zweite Aufgabe durch eine Gasturbine nach Anspruch 11. Die abhängigen Ansprüche enthalten vorteilhafte Weiterbildungen der Erfindung.According to the first object is achieved by a combustion chamber according to claim 1, the second object by a gas turbine according to claim 11. The dependent claims contain advantageous developments of the invention.

Eine erfindungsgemäße Brennkammer umfasst mindestens ein zu kühlendes Brennkammerelement und wenigstens eine Dämpfungseinrichtung zur Dämpfung thermoakustischer Schwingungen mit einer zur Brennkammer hin offenen Mündung. Sie zeichnet sich dadurch aus, dass die Mündung in das zu kühlende Brennkammerelement integriert ist.A combustion chamber according to the invention comprises at least one combustion chamber element to be cooled and at least one damping device for damping thermoacoustic oscillations with an opening open towards the combustion chamber. It is characterized by the fact that the mouth is integrated into the combustion chamber element to be cooled.

Dadurch, dass die Dämpfungseinrichtung in ein zu kühlendes Brennkammerelement integriert ist, erhöht sich die in die Brennkammer eintretende Luftmenge aufgrund des Vorhandenseins des Dämpfungselementes wenn überhaupt, nur geringfügig. Dies resultiert daraus, dass zum Kühlen des Brennkammerelementes alleine sowieso ein Kühlluftstrom nötig ist, der nun gleichzeitig auch zum Sperren der Mündung der Dämpfungseinrichtung dient. Die Verbrennungstemperatur - und damit die Schadstoffbelastung der Verbrennungsabgase - wird daher nicht oder nur geringfügig gesteigert.Characterized in that the damping device is integrated in a combustion chamber element to be cooled, the amount of air entering the combustion chamber increases only slightly, if at all, due to the presence of the damping element. This results from the fact that for cooling the combustion chamber element alone anyway a cooling air flow is necessary, which now also serves to lock the mouth of the damping device at the same time. The combustion temperature - and thus the pollution of the combustion gases - is therefore not or only slightly increased.

Zum Zuführen der Sperrluft kann der Mündung in der erfindungsgemäßen der Brennkammer eine Sperrluftzufuhr zugeordnet sein. Diese dient dann gleichzeitig als Kühlluftzufuhr für das Kühlen des zu kühlenden Brennkammerelementes. In einer vorteilhaften Weiterbildung kann der Mündung außerdem eine Brennstoffzufuhr derart zugeordnet sein, dass der Sperrluft Brennstoff beigemischt wird. Das Beimischen von Brennstoff zur Sperrluft führt zu einer Absenkung der Verbrennungstemperatur im Hauptbrenner und somit zu einer Verringerung des Schadstoffanteils der Verbrennungsabgase.For supplying the sealing air, the mouth in the combustion chamber according to the invention may be associated with a blocking air supply. This then serves as a cooling air supply for the cooling of the combustor element to be cooled. In a Advantageous development of the mouth can also be associated with a fuel supply such that the sealing air fuel is added. The addition of fuel to the sealing air leads to a reduction of the combustion temperature in the main burner and thus to a reduction of the pollutant content of the combustion gases.

Die Brennkammer weist eine Brennkammerwandung auf, welche eine Brennkammerschale und eine mittels zu kühlenden Befestigungselementen an der Brennkammerschale befestigte Brennkammerauskleidung umfasst. Die Brennkammerauskleidung kann bspw. ein Hitzeschild sein, insbesondere ein keramischer oder metallischer Hitzeschild. Die Mündung der mindestens einen Dämpfungseinrichtung ist in ein Befestigungselement zum Befestigen der Brennkammerauskleidung an der Brennkammerschale integriert. Mit anderen Worten, in der Erfindung ist das zu kühlende Brennkammerelement als Befestigungselement zum Befestigen der Brennkammerauskleidung ausgebildet. Da die Befestigungselemente sowieso vorhanden sind und einer Kühlung bedürfen, erfordert das Integrieren der Mündung in ein Befestigungselement lediglich eine Umgestaltung des Befestigungselementes, bspw. indem Befestigungsschrauben mit einer axialen Bohrung oder einer sonstigen axialen Durchgangsöffnung versehen werden, so dass sie als Mündung des Dämpfungselementes dienen können. Weitere Umgestaltungen des Inneren der Brennkammer sind in dieser Ausgestaltung nicht nötig. Außer als Befestigungsschraube kann das Befestigungselement auch als ein Befestigungselement, welches wenigstens eine Schiebesitzeinrichtung umfasst, ausgestaltet sein. Eine Schiebesitzeinrichtung befindet sich häufig bspw. am Übergang vom sogenannten "Basket" zum sog. "Transitionpiece" in einer Silobrennkammer. Außer am Übergang vom "Basket" zum "Transitionpiece" kann die Dämpfungseinrichtung auch am Übergang von der Brennkammer zur ersten Leitschauffelreihe angeordnet sein. Dort werden in der Regel recht hohe Sperrluftströme benötigt. Das gilt für Ringbrennkammern und auch für Silobrennkammern.The combustion chamber has a combustion chamber wall which comprises a combustion chamber shell and a combustion chamber lining fastened to the combustion chamber shell by means of fastening elements to be cooled. The combustion chamber lining may, for example, be a heat shield, in particular a ceramic or metallic heat shield. The mouth of the at least one damping device is integrated in a fastening element for fastening the combustion chamber lining to the combustion chamber shell. In other words, in the invention, the combustor element to be cooled is formed as a fastener for fixing the combustor liner. Since the fasteners are present anyway and require cooling, integrating the mouth in a fastener requires only a redesign of the fastener, for example. By fastening screws are provided with an axial bore or other axial passage opening so that they can serve as the mouth of the damping element , Further conversions of the interior of the combustion chamber are not necessary in this embodiment. Except as a fastening screw, the fastening element can also be configured as a fastening element, which comprises at least one sliding seat device. A sliding seat device is often located, for example, at the transition from the so-called "basket" to the so-called "transition piece" in a silo burning chamber. Except at the transition from the "Basket" to the "Transitionpiece" the damping device can also be arranged at the transition from the combustion chamber to the first row Leitschauffelreihe. As a rule, quite high blocking air flows are needed there. This applies to ring combustion chambers and also for silo separation chambers.

In der erfindungsgemäßen Brennkammer kann das Dämpfungselement insbesondere derart ausgestaltet sein, dass das zu kühlende Brennkammerelement einen Teil der Dämpfungseinrichtung bildet. Bspw. kann eine Befestigungsschraube mit axialer Durchgangsbohrung das Resonatorrohr eines Helmholtz-Resonators bilden.In the combustion chamber according to the invention, the damping element may in particular be designed such that the combustion chamber element to be cooled forms part of the damping device. For example. For example, a fixing screw with an axial through-bore can form the resonator tube of a Helmholtz resonator.

In einer Ausgestaltung der Erfindung ist die Dämpfungseinrichtung als Helmholtz-Resonator, insbesondere als Helmholtz-Resonator mit veränderbarer Resonanzfrequenz ausgeführt. Beispielsweise kann die Veränderbarkeit der Resonanzfrequenz dadurch erreicht werden, dass das Volumen des Helmholtz-Resonators veränderbar ausgestaltet ist. Eine Volumenänderung kann z.B. über eine verstellbare Rückwand des Resonators erzielt werden.In one embodiment of the invention, the damping device is designed as a Helmholtz resonator, in particular as a Helmholtz resonator with variable resonance frequency. For example, the variability of the resonant frequency can be achieved by making the volume of the Helmholtz resonator changeable. A volume change may e.g. can be achieved via an adjustable rear wall of the resonator.

Der Helmholtz-Resonator kann auch mehrere Mündungen umfassen, die jeweils in ein zu kühlendes Brennkammerelement integriert sind. Bspw. können mehrere Resonatorrohre desselben Helmholtz-Resonators in verschiedene Befestigungsschrauben integriert sein.The Helmholtz resonator may also include a plurality of orifices, each of which is integrated into a combustion chamber element to be cooled. For example. For example, a plurality of resonator tubes of the same Helmholtz resonator can be integrated into different fastening screws.

In einer alternativen Ausgestaltung der Erfindung ist die Dämpfungseinrichtung als λ/4-Rohr, also als Rohr mit einem Viertel der Wellenlänge der zu dämpfenden Schwingung, ausgebildet.In an alternative embodiment of the invention, the damping device is designed as a λ / 4 tube, ie as a tube with a quarter of the wavelength of the vibration to be damped.

Eine erfindungsgemäße Gasturbine umfasst wenigstens eine erfindungsgemäße Brennkammer.A gas turbine according to the invention comprises at least one combustion chamber according to the invention.

Obwohl die Erfindung hier insgesamt mit Bezug auf Brennkammern von Gasturbinen beschrieben wird, ist der Einsatz nicht auf Gasturbinen beschränkt. Es ist ebenso möglich, die Erfindung bei anderen Turbinen und Strömungsmaschinen bzw. bei Brennkammern im Allgemeinen einzusetzen.Although the invention is described herein in its entirety with respect to combustion chambers of gas turbines, the use is not limited to gas turbines. It is also possible to use the invention in other turbines and turbomachines or in combustion chambers in general.

Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen.Further features, characteristics and advantages of the present invention will become apparent from the following description of embodiments with reference to the accompanying drawings.

Fig. 1 zeigt als ein erstes Ausführungsbeispiel einen Ausschnitt aus der Brennkammerwandung einer erfindungsgemäßen Brennkammer in einer stark schematischen Darstellung. Fig. 1 shows as a first embodiment, a section of the combustion chamber wall of a combustion chamber according to the invention in a highly schematic representation.

Fig. 2 zeigt eine Ansicht der Brennkammerwandung eines zweiten Ausführungsbeispiels der Erfindung von der Brennkammerinnenseite her gesehen. Fig. 2 shows a view of the combustion chamber wall of a second embodiment of the invention seen from the combustion chamber inside.

Fig. 3 zeigt eine Seitenansicht der in Fig. 2 dargestellten Brennkammerwandung. Fig. 3 shows a side view of in Fig. 2 shown Brennkammerwandung.

In Figur 1 ist als ein erstes Ausführungsbeispiel der Erfindung eine erfindungsgemäße Brennkammer einer Gasturbine dargestellt. Die Figur zeigt einen Ausschnitt aus der Brennkammerwandung 1, welche eine Brennkammerschale 3 und einen metallischen Hitzeschild 4 umfasst. Der metallische Hitzeschild 4 ist aus einer Anzahl von Hitzeschildelementen 2 aufgebaut, die jeweils mittels einer Schraube 7 als Befestigungselement an einer Verbindungsstelle 5 an der Brennkammerschale 3 fixiert sind. Die Schrauben 7 stellen wie die Hitzeschildelemente 2 mittels Kühlluft zu kühlende Brennkammerelemente dar.In FIG. 1 is shown as a first embodiment of the invention, a combustion chamber of a gas turbine according to the invention. The figure shows a section of the combustion chamber wall 1, which comprises a combustion chamber shell 3 and a metallic heat shield 4. The metallic heat shield 4 is constructed from a number of heat shield elements 2, which are each fixed by means of a screw 7 as a fastening element at a connection point 5 on the combustion chamber shell 3. The screws 7 are like the heat shield elements 2 by means of cooling air to be cooled combustion chamber elements.

Zur Dämpfung von akustischen Schwingungen in der Brennkammer ist diese mit mindestens einer Dämpfungseinrichtung, die im vorliegenden Ausführungsbeispiel als in die Brennkammer mündender Helmholtz-Resonator 6 ausgebildet ist, ausgestattet. Der Helmholtz-Resonator 6 ist im Bereich einer Verbindungsstelle 5 an der Brennkammerwandung 1 angebracht. Er wird mittels eines Befestigungselementes oder mehrerer Befestigungselemente (nicht dargestellt) an der Brennkammerwandung 1 gehalten. In einer alternativen Ausgestaltung ist es auch möglich, den Helmholtz-Resonator 6 mittels der Schraube 7 an der Brennkammerwandung 1 zu halten. In diesem Fall dient die Schraube 7 dann sowohl zum Halten des Hitzeschildelementes 2 als auch zum Halten des Helmholtz-Resonators 6, so dass ein zusätzliches Befestigungselement zum Halten des Helmholtz-Resonators 6 nicht nötig ist.For damping of acoustic oscillations in the combustion chamber, this is equipped with at least one damping device, which is formed in the present embodiment as opening into the combustion chamber Helmholtz resonator 6. The Helmholtz resonator 6 is attached to the combustion chamber wall 1 in the region of a connection point 5. It is held by means of a fastening element or a plurality of fastening elements (not shown) on the combustion chamber wall 1. In an alternative embodiment, it is also possible to mount the Helmholtz resonator 6 by means of the screw 7 the combustion chamber wall 1 to keep. In this case, the screw 7 then serves both for holding the heat shield element 2 and for holding the Helmholtz resonator 6, so that an additional fastening element for holding the Helmholtz resonator 6 is not necessary.

Im vorliegenden Ausführungsbeispiel können auch weitere an Verbindungsstellen 5 angebrachte Dämpfungseinrichtungen vorhanden sein.In the present embodiment, further attached to joints 5 damping devices may be present.

Der Helmholtz-Resonator 6 umfasst einen Resonatorraum 15 und ein Resonatorrohr, auch Resonatorhals genannt. Das Resonatorrohr wird im vorliegenden Ausführungsbeispiel von der Schraube 7 gebildet, die zu diesem Zweck eine Durchgangsbohrung 8 aufweist. Ein Ende 9 der Durchgangsbohrung 8 mündet in den Resonatorraum 15. Das andere Ende 10 der Durchgangsbohrung 8 mündet in die Brennkammer und stellt die Mündung des Helmholtz-Resonators 6 in die Brennkammer dar. Die Dämpfungswirkung des Helmholtz-Resonators 6 beruht darauf, dass sich die im Resonatorraum 15 und im Resonatorrohr 8 befindliche Luft wie ein Feder-Masse-System verhält. Dabei stellt die im Resonatorraum 15 befindliche Luft die Feder und die im Resonatorrohr 8 befindliche Luft die Masse dieses Systems dar. Wenn dieses Feder-Masse-System mit einer Resonanzfrequenz schwingt, die durch das Volumen V des Resonatorraumes 15, die Querschnittsfläche F der Durchgangsbohrung 8, und durch die Länge L der Durchgangsbohrung 8 (also der Schraube 7) bestimmt ist, verhält sich der Helmholtz-Resonator 6 wie eine Öffnung mit unendlicher Länge, so dass sich keine stehende Welle mit der Resonanzfrequenz ausbilden kann. Das Entstehen von thermoakustischen Schwingungen, welche im Wesentlichen stehende Wellen sind, kann so für Frequenzen, die der Resonanzfrequenz des Helmholtz-Resonators entsprechen oder in deren Nähe liegen, wirksam unterdrückt werden.The Helmholtz resonator 6 comprises a resonator chamber 15 and a resonator tube, also called resonator neck. The resonator tube is formed in the present embodiment of the screw 7, which has a through hole 8 for this purpose. One end 9 of the through hole 8 opens into the resonator 15. The other end 10 of the through hole 8 opens into the combustion chamber and represents the mouth of the Helmholtz resonator 6 in the combustion chamber. The damping effect of the Helmholtz resonator 6 is based on that the behaves in the resonator 15 and the resonator tube 8 located air as a spring-mass system. In this case, the air in the resonator chamber 15, the spring and the air in the resonator tube 8 is the mass of this system. When this spring-mass system oscillates at a resonant frequency, by the volume V of the resonator 15, the cross-sectional area F of the through hole. 8 , And by the length L of the through hole 8 (ie, the screw 7) is determined, the Helmholtz resonator 6 behaves like an opening of infinite length, so that no standing wave can form with the resonance frequency. The generation of thermoacoustic oscillations, which are substantially standing waves, can thus be effectively suppressed for frequencies corresponding to or near the resonant frequency of the Helmholtz resonator.

Im dargestellten Ausführungsbeispiel ist der Resonator 6 im Wesentlichen zylindersymmetrisch zur Schraube 7 ausgeführt.In the illustrated embodiment, the resonator 6 is designed substantially cylindrically symmetrical to the screw 7.

Es sind aber auch Ausgestaltungen möglich, die keine Symmetrie aufweisen.However, embodiments are also possible which have no symmetry.

Durch Anpassen der Länge L der Schraube 7 und der Höhe H, mit der die Schraube 7 in den Resonatorraum 15 hinein ragt, und/oder der Querschnittsfläche F der Durchgangsbohrung 8 und/oder des Volumens V des Resonatorraumes 15 kann die Resonanzfrequenz des Helmholtz-Resonators 6 eingestellt werden. Z.B. führt ein Vergrößern des Volumens V des Resonatorraumes 15 oder der Länge L des der Schraube 7 zu einer verringerten Resonanzfrequenz. Ein Vergrößern der Querschnittsfläche F der Durchgangsbohrung 8 führt dagegen zu einer vergrößerten Resonanzfrequenz.By adjusting the length L of the screw 7 and the height H, with which the screw 7 projects into the resonator 15, and / or the cross-sectional area F of the through hole 8 and / or the volume V of the resonator 15, the resonance frequency of the Helmholtz resonator 6 are set. For example, Increasing the volume V of the resonator chamber 15 or the length L of the screw 7 leads to a reduced resonance frequency. Increasing the cross-sectional area F of the through-hole 8, on the other hand, leads to an increased resonance frequency.

Um die Resonanzfrequenz des Helmholtz-Resonators einzustellen, sind verschiedene Vorgehensweisen möglich.To adjust the resonant frequency of the Helmholtz resonator, various approaches are possible.

Zum Verändern des Volumens V des Resonatorraumes 15 kann bspw. die Rückwand 17 des Helmholtz-Resonators 6 verstellbar ausgebildet sein. An der zylindrischen Seitenwand 12 des Helmholtz-Resonators 6 ist dann bspw. ein Gewinde 16 vorhanden, in welches ein passendes Gegengewinde der Rückwand 17 eingreift. Durch Verdrehen der Rückwand 17, was auch automatisch über einen nicht dargestellten Elektromotor erfolgen kann, kann das Volumen V des Resonatorraumes 15 und damit die Resonatorfrequenz in gewünschter Weise verändert werden. Es ist aber auch möglich, das Volumen durch Austausch des Resonatorraumes 15 gegen einen Resonatorraum 15 mit anderem Volumen zu verändern.To change the volume V of the resonator chamber 15, for example, the rear wall 17 of the Helmholtz resonator 6 can be designed to be adjustable. On the cylindrical side wall 12 of the Helmholtz resonator 6 then, for example, a thread 16 is present, in which a matching mating thread of the rear wall 17 engages. By turning the rear wall 17, which can also be done automatically via an electric motor, not shown, the volume V of the resonator 15 and thus the resonator frequency can be changed in the desired manner. However, it is also possible to change the volume by exchanging the resonator chamber 15 with a resonator chamber 15 having a different volume.

Außerdem kann durch Austausch der Schraube 7 die Länge L der Schraube und/oder die Querschnittsfläche F der Durchgangsbohrung 8 verändert werden. So kann z.B., um die Resonanzfrequenz zu erhöhen, eine Schraube 7 eingesetzt werden, deren Bohrung 8 eine größere Querschnittsfläche F als die zuvor eingesetzte Schraube 7 aufweist. Es kann zum gleichen Zweck aber auch eine Schraube 7 mit geringerer Länge L eingesetzt werden. Auch durch Einstellen der Höhe H, mit der die Schraube 7 in den Resonatorraum 15 hinein ragt, mittels der Wahl einer geeigneten Schraube 7 kann die Resonanzfrequenz des Helmholtz-Resonators 6 beeinflusst werden.In addition, by changing the screw 7, the length L of the screw and / or the cross-sectional area F of the through-hole 8 can be changed. For example, in order to increase the resonance frequency, a screw 7 can be used whose bore 8 has a larger cross-sectional area F than the previously used screw 7. It can be used for the same purpose but also a screw 7 with a shorter length L. become. Also, by adjusting the height H, with which the screw 7 projects into the resonator 15, by means of the choice of a suitable screw 7, the resonance frequency of the Helmholtz resonator 6 can be influenced.

Im vorliegenden Ausführungsbeispiel ist der Resonatorraum 15 an der kalten Seite, d.h. an der der Brennkammer abgewandten Außenseite der Brennkammerschale 3 angebracht und ragt in das Kompressorplenum 20 hinein. Um eine Luftzufuhr für eine Prallkühlung der Hitzeschildelemente 2 zu ermöglichen, sind zwischen dem Resonatorraum 15 und der Außenseite der Brennkammerschale 3 lokal Abstandshalter 19 angebracht, die einen Abstand zwischen der Brennkammerschale 3 und dem Resonatorraum 15 sicherstellen und so ein Strömen vom unter Druck stehender Kühlluft zwischen der Brennkammerschale 3 und dem Resonatorraum 15 ermöglichen. Durch Prallkühlungsbohrungen 14 kann Kühlluft dann vom Kompressorplenum 20 aus entlang der Strömungswege 13 an die dem Brennkammerinneren abgewandte Seite, die sog. Kaltseite der Hitzeschildelemente 2 geleitet werden, wo sie für eine Prallluftkühlung der Hitzeschildelemente 2 sorgt. Die Prallluft strömt nach dem Auftreffen auf die Kaltseiten entlang der Strömungspfade 23 durch Spalte zwischen benachbarten Hitzeschildelementen 2 in die Brennkammer ein, wobei sie die Spalte gegen ein Eindringen von heißem Gas der Brennkammer sperrt.In the present embodiment, the resonator space 15 is at the cold side, i. attached to the combustion chamber facing away from the outside of the combustion chamber shell 3 and projects into the Kompressplplenum 20 inside. In order to enable an air supply for an impingement cooling of the heat shield elements 2, spacers 19 are provided between the resonator chamber 15 and the outside of the combustion chamber shell 3, which ensure a distance between the combustion chamber shell 3 and the resonator chamber 15 and thus a flow of pressurized cooling air between allow the combustion chamber shell 3 and the resonator 15. Cooling air can then be conducted from the compressor plenum 20 along the flow paths 13 to the side facing away from the combustion chamber interior, the so-called cold side of the heat shield elements 2, where it provides for an impingement air cooling of the heat shield elements 2. The impingement air flows into the combustion chamber after hitting the cold sides along the flow paths 23 through gaps between adjacent heat shield elements 2, blocking the gaps against hot gas penetration of the combustion chamber.

Die Kühlung der Schraube 7 erfolgt zusammen mit dem Sperren der Mündung 10 des Helmholtz-Resonators 6 gegen ein Eindringen von heißem Gas. Die Luft strömt zuerst aus dem Kompressorplenum 20 durch die Öffnungen 18 (die die Sperrluftzufuhr bilden) in der Rückwand 17 des Resonatorraumes 15 in den Resonatorraum 15 und dann durch die Durchgangsbohrung 8 der Schraube 7 in die Brennkammer ein (Strömungspfad 11). Dadurch dass die Kühlung von Helmholtz-Resonator 6 und Schraube 7 mit derselben Kühlluft erfolgt, kann der Anteil an Kühlluft, die am Brenner vorbei geführt wird, gegenüber einer getrennten Kühlung von Helmholtz-Resonator 6 und Schraube 7, wie sie nötig wäre, wenn die Schraube 7 nicht gleichzeitig als Resonatorrohr diente, verringert werden.The cooling of the screw 7 takes place together with the locking of the mouth 10 of the Helmholtz resonator 6 against ingress of hot gas. The air first flows from the compressor plenum 20 through the openings 18 (forming the blocking air supply) in the rear wall 17 of the resonator chamber 15 into the resonator chamber 15 and then through the through-hole 8 of the screw 7 into the combustion chamber (flow path 11). Characterized that the cooling of Helmholtz resonator 6 and screw 7 is carried out with the same cooling air, the proportion of cooling air, which is guided past the burner, compared to a separate cooling of Helmholtz resonator 6 and screw 7, as necessary would be if the screw 7 was not used at the same time as Resonatorrohr be reduced.

In Figuren 2 und 3 ist ein zweites Ausführungsbeispiel stark schematisch dargestellt. Gleiche oder ähnliche Komponenten werden der Einfachheit und der besseren Vergleichbarkeit halber mit den gleichen Bezugszeichen wie im ersten Ausführungsbeispiel versehen.In FIGS. 2 and 3 a second embodiment is shown very schematically. The same or similar components are provided with the same reference numerals as in the first embodiment for simplicity and for better comparability.

In Fig. 2 zeigt, vom Brennkammerinneren aus gesehen, einen Ausschnitt aus einer Brennkammerwandung 1, die mit metallischen Hitzeschildplatten 21, 22 als Hitzeschildelementen ausgekleidet ist. Fig. 3 zeigt einen Schnitt durch die Brennkammerwandung 1 entlang der Linie A - A.In Fig. 2 shows, seen from the combustion chamber inside, a section of a combustion chamber 1, which is lined with metallic heat shield plates 21, 22 as heat shield elements. Fig. 3 shows a section through the combustion chamber wall 1 along the line A - A.

Die Hitzeschildplatten 21, 22 sind an Verbindungsstellen 5 mittels Schrauben 7 mit der Brennkammerschale 3 verschraubt. An den Verbindungsstellen 5 sind Helmholtz-Resonatoren 6 angeordnet, die mittels der Schrauben 7 an der Brennkammerwandung 1 fixiert sind. Eine Durchgangsöffnung bzw. Durchgangsbohrung 8 in den Schrauben 7 dient wie im ersten Ausführungsbeispiel als Resonatorrohr des jeweiligen Helmholtz-Resonators 6. Der Einfachheit halber ist in Figur 3 lediglich einer der Helmholtz-Resonatoren 6 dargestellt.The heat shield plates 21, 22 are screwed to connecting points 5 by means of screws 7 with the combustion chamber shell 3. At the connection points 5 Helmholtz resonators 6 are arranged, which are fixed by means of screws 7 on the combustion chamber 1. A passage opening or through-bore 8 in the screws 7 serves, as in the first exemplary embodiment, as a resonator tube of the respective Helmholtz resonator 6. For the sake of simplicity, FIG FIG. 3 only one of the Helmholtz resonators 6 shown.

In einer Abwandlung des zweiten Ausführungsbeispiels ist es auch möglich, dass sich ein Resonatorraum 15 über mehrere Schrauben 7 ausdehnt. In diesem Fall können alle Schrauben 7, über die sich der Resonatorraum 15 erstreckt, mit Durchgangsbohrungen versehen sein und somit Resonatorrohre bilden. Alternativ ist es auch möglich, nur einige oder gar nur eine einzige der Schrauben 7, über die sich der Resonatorraum 15 erstreckt, mit einer Durchgangsbohrung 8 zu versehen. Die übrigen Schrauben 7 dienen dann lediglich als Befestigungsschrauben für den die Hitzeschildplatten oder für die Hitzeschildplatten 21, 22 und den Helmholtz-Resonator.In a modification of the second embodiment, it is also possible for a resonator chamber 15 to expand over a plurality of screws 7. In this case, all screws 7, over which the resonator chamber 15 extends, can be provided with through-holes and thus form resonator tubes. Alternatively, it is also possible to provide only a few or even only one of the screws 7, over which the resonator chamber 15 extends, with a through-hole 8. The remaining screws 7 then serve only as fastening screws for the heat shield plates or for the heat shield plates 21, 22 and the Helmholtz resonator.

In den beschriebenen Ausführungsbeispielen kann das Einstellen des Resonatorvolumens innerhalb von Betriebspausen mittels eines geeigneten Werkzeuges von Hand oder auch während des Betriebes erfolgen. In einer vorteilhaften Ausgestaltung ist eine Steuerung (nicht dargestellt) vorgesehen, mittels derer das Verstellen des Resonatorvolumens gesteuert werden kann. Auch eine automatische Einstellung oder Regelung ist möglich. Es können bspw. ein Elektromotor, eine hydraulische Stelleinrichtung oder eine pneumatische Stelleinrichtung eingesetzt werden. Durch eine gesteuerte automatische Verstellung wird der Aufwand zur nachträglichen Einstellung der Resonatorfrequenz besonders gering gehalten. Die Regelung kann online während des Betriebes erfolgen. Mit einer vollautomatischen Regelung kann eine kontinuierliche oder in gewissen Zeitabständen erfolgende Justage auf die stärkste Schwingungsfrequenz erfolgen. Durch eine entsprechende Anpassung des Resonators 6 kann auf veränderte Bedingungen, wie z.B. eine veränderte Brennstoffzusammensetzung, reagiert und eine Anpassung der Resonanzfrequenz durchgeführt werden. Die einfache Verstellbarkeit ist insbesondere vorteilhaft bei der Prototyperprobung und auch bei der Inbetriebnahme einer Gasturbine. Ein erheblicher Vorteil der einfachen Einstellbarkeit ergibt sich nicht nur durch den Betrieb mit unterschiedlichen Brennstoffen, sondern auch bei stark unterschiedlichen Betriebsbedingungen, hervorgerufen z.B. durch erhebliche Änderungen der Umgebungstemperatur.In the described embodiments, the adjustment of the resonator volume can be done within operating pauses by means of a suitable tool by hand or during operation. In an advantageous embodiment, a controller (not shown) is provided, by means of which the adjustment of the resonator volume can be controlled. An automatic adjustment or regulation is possible. For example, an electric motor, a hydraulic adjusting device or a pneumatic adjusting device can be used. By a controlled automatic adjustment of the effort for subsequent adjustment of the resonator frequency is kept particularly low. The regulation can be done online during operation. With a fully automatic control can take place a continuous or at intervals, adjustment to the strongest vibration frequency. By appropriate adaptation of the resonator 6, it is possible to adapt to changed conditions, e.g. an altered fuel composition, reacts and an adjustment of the resonant frequency are performed. The simple adjustability is particularly advantageous in the prototype testing and also during the commissioning of a gas turbine. A significant advantage of the ease of adjustability results not only from the operation with different fuels, but also under widely varying operating conditions, e.g. due to significant changes in the ambient temperature.

In den beschriebenen Ausführungsbeispielen kann ein Helmholtz-Resonator 6 durch Austausch der Schraube mit Durchgangsbohrung gegen eine Schraube ohne Durchgangsbohrung abgeschaltet werden. Alternativ kann der Resonator 6 auch ganz entfernt werden.In the described embodiments, a Helmholtz resonator 6 can be switched off by replacing the screw with through hole against a screw without through hole. Alternatively, the resonator 6 can also be completely removed.

Statt der beschriebenen Helmholtz-Resonatoren können auch andere Dämpfungseinrichtungen, bspw. λ/4-Rohre Verwendung finden.Instead of the described Helmholtz resonators, other damping devices, for example. Λ / 4 tubes can be used.

Die Erfindung eignet sich insbesondere zur Anwendung bei Ringbrennkammern mit metallischen Hitzeschilden bzw. bei den sogenannten Einlaufschalen der Brennkammern mit keramischen Hitzeschilden ("Steinen").The invention is particularly suitable for use in annular combustion chambers with metallic heat shields or in the so-called inlet shells of the combustion chambers with ceramic heat shields ("stones").

Claims (11)

  1. Combustion chamber, in particular for a gas turbine, with at least one fastening element (7) to be cooled and with at least one damping device (6) for the damping of thermoacoustic vibrations, having a mouth (10) open towards the combustion chamber, the mouth (10) being integrated into the fastening element (7) to be cooled, so that, in order to cool the fastening element, all that is necessary is only a cooling-air stream which serves at the same time also for shutting off the mouth of the damping device, characterized in that the combustion chamber comprises a combustion-chamber wall (1) which comprises a combustion-chamber shell (3) and a combustion-chamber lining (4) fastened to the combustion-chamber shell (3) by means of fastening elements (7) to be cooled, so that the mouth (10) of the at least one damping device (6) is integrated into a fastening element (7) for fastening the combustion-chamber lining (4) to the combustion-chamber shell (3).
  2. Combustion chamber according to Claim 1, characterized in that the mouth (10) is assigned a shut-off air supply (18) for the supply of shut-off air shutting off the mouth (10) against the ingress of hot gas from the combustion chamber.
  3. Combustion chamber according to Claim 2, characterized in that, moreover, the mouth (10) is assigned a fuel supply in such a way that fuel is admixed to the shut-off air.
  4. Combustion chamber according to one of the preceding claims, characterized in that the fastening element is a fastening screw (7).
  5. Combustion chamber according to one of the preceding claims, characterized in that the fastening element comprises at least one sliding-seat device.
  6. Combustion chamber according to one of the preceding claims, characterized in that the combustion-chamber lining is a heat shield (4).
  7. Combustion chamber according to one of the preceding claims, characterized in that the damping device is designed as a Helmholtz resonator (6).
  8. Combustion chamber according to Claim 7, characterized in that the Helmholtz resonator (6) is configured as a Helmholtz resonator with a variable resonant frequency.
  9. Combustion chamber according to Claim 7 or Claim 8, characterized in that the Helmholtz resonator (6) comprises a plurality of mouths (10) towards the combustion chamber, which are integrated in each case into a fastening element (7) to be cooled.
  10. Combustion chamber according to one of Claims 1 to 6, characterized in that at least one damping device is designed as a quarter-wave tube.
  11. Gas turbine having at least one combustion chamber according to one of the preceding claims.
EP04013404A 2004-06-07 2004-06-07 Combustor with thermo-acoustic vibrations dampening device Expired - Lifetime EP1605209B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE502004011481T DE502004011481D1 (en) 2004-06-07 2004-06-07 Combustion chamber with a damping device for damping thermoacoustic oscillations
EP04013404A EP1605209B1 (en) 2004-06-07 2004-06-07 Combustor with thermo-acoustic vibrations dampening device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04013404A EP1605209B1 (en) 2004-06-07 2004-06-07 Combustor with thermo-acoustic vibrations dampening device

Publications (2)

Publication Number Publication Date
EP1605209A1 EP1605209A1 (en) 2005-12-14
EP1605209B1 true EP1605209B1 (en) 2010-08-04

Family

ID=34925277

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04013404A Expired - Lifetime EP1605209B1 (en) 2004-06-07 2004-06-07 Combustor with thermo-acoustic vibrations dampening device

Country Status (2)

Country Link
EP (1) EP1605209B1 (en)
DE (1) DE502004011481D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108980894A (en) * 2017-05-31 2018-12-11 安萨尔多能源公司 Watt retainer of burner for gas turbine
WO2020200568A1 (en) 2019-04-03 2020-10-08 Siemens Aktiengesellschaft Heat-shield tile having a damping function

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7401682B2 (en) 2005-08-10 2008-07-22 United Technologies Corporation Architecture for an acoustic liner
US7311175B2 (en) * 2005-08-10 2007-12-25 United Technologies Corporation Acoustic liner with bypass cooling
EP1816357A1 (en) * 2006-02-02 2007-08-08 Siemens Aktiengesellschaft Screw for a thermally charged environment
GB0610800D0 (en) 2006-06-01 2006-07-12 Rolls Royce Plc Combustion chamber for a gas turbine engine
EP2187125A1 (en) * 2008-09-24 2010-05-19 Siemens Aktiengesellschaft Method and device for damping combustion oscillation
CH700799A1 (en) * 2009-04-11 2010-10-15 Alstom Technology Ltd Combustor with Helmholtz damper for a gas turbine.
EP2299177A1 (en) 2009-09-21 2011-03-23 Alstom Technology Ltd Combustor of a gas turbine
DE102009046066A1 (en) * 2009-10-28 2011-05-12 Man Diesel & Turbo Se Burner for a turbine and thus equipped gas turbine
EP2385303A1 (en) 2010-05-03 2011-11-09 Alstom Technology Ltd Combustion Device for a Gas Turbine
CN103765107B (en) 2011-09-01 2016-05-04 西门子公司 For the combustion chamber of gas-turbine plant
DE102011081962A1 (en) 2011-09-01 2013-03-07 Siemens Aktiengesellschaft Combustion chamber for a gas turbine plant
EP3227611A1 (en) * 2014-12-01 2017-10-11 Siemens Aktiengesellschaft Resonators with interchangeable metering tubes for gas turbine engines
DE102015224524A1 (en) * 2015-12-08 2017-06-08 Siemens Aktiengesellschaft Combustion chamber with resonators
US11506382B2 (en) 2019-09-12 2022-11-22 General Electric Company System and method for acoustic dampers with multiple volumes in a combustion chamber front panel
US11698192B2 (en) 2021-04-06 2023-07-11 Raytheon Technologies Corporation CMC combustor panel attachment arrangement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351947B1 (en) * 2000-04-04 2002-03-05 Abb Alstom Power (Schweiz) Combustion chamber for a gas turbine
EP1423645B1 (en) * 2001-09-07 2008-10-08 Alstom Technology Ltd Damping arrangement for reducing combustion chamber pulsations in a gas turbine system
GB2390150A (en) * 2002-06-26 2003-12-31 Alstom Reheat combustion system for a gas turbine including an accoustic screen
ES2278847T3 (en) * 2002-08-16 2007-08-16 Siemens Aktiengesellschaft INTERIOR COOLING SCREW.
GB2396687A (en) * 2002-12-23 2004-06-30 Rolls Royce Plc Helmholtz resonator for combustion chamber use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108980894A (en) * 2017-05-31 2018-12-11 安萨尔多能源公司 Watt retainer of burner for gas turbine
CN108980894B (en) * 2017-05-31 2021-11-05 安萨尔多能源公司 Tile retainer for a combustor of a gas turbine
WO2020200568A1 (en) 2019-04-03 2020-10-08 Siemens Aktiengesellschaft Heat-shield tile having a damping function

Also Published As

Publication number Publication date
EP1605209A1 (en) 2005-12-14
DE502004011481D1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
EP1605209B1 (en) Combustor with thermo-acoustic vibrations dampening device
DE10058688B4 (en) Damper arrangement for the reduction of combustion chamber pulsations
EP0985882B1 (en) Vibration damping in combustors
EP1004823B1 (en) Damping device for the reduction of the oscillation amplitude of acoustic waves for a burner
DE102010037078B4 (en) Acoustically stiffened gas turbine combustor duct
DE60105531T2 (en) Gas turbine combustor, gas turbine and jet engine
DE19640980B4 (en) Device for damping thermoacoustic oscillations in a combustion chamber
DE102008037480A1 (en) Lean premixed dual-fuel annular tube combustion chamber with radial multi-ring stage nozzle
EP1738112B1 (en) Rocket engine with damping of vibration of the combustion chamber by resonators
DE102005042889B4 (en) Gas turbine group
WO2003074936A1 (en) Gas turbine
EP0687860A2 (en) Self igniting combustion chamber
DE10050248A1 (en) Pre-mixing burner comprises swirl burner with inner chamber, with widening passage, injector with adjustable elements.
DE102008016931A1 (en) System for reducing combustion chamber dynamics
EP1342952A1 (en) Burner, process for operating a burner and gas turbine
EP2500648B1 (en) Gas turbine combustion chamber
EP0971172B1 (en) Gas turbine combustion chamber with silencing wall structure
WO2013029981A1 (en) Combustion chamber for a gas turbine plant
DE60225411T2 (en) Flame pipe or clothing for the combustion chamber of a gas turbine with low pollutant emissions
WO2013029984A2 (en) Combustion chamber for a gas turbine plant
EP2187125A1 (en) Method and device for damping combustion oscillation
EP2417394B1 (en) Combustion chamber having a helmholtz damper
WO2010149420A1 (en) Combustion chamber arrangement for damping thermo-acoustic oscillations, gas turbine and method of operating such a gas turbine
EP2462379B1 (en) Stabilising of the flame of a burner
EP1624251A1 (en) apparatus for reducing thermoacoustic oscillations in combustion chambers with adjustable resonance frequency

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060410

17Q First examination report despatched

Effective date: 20060714

AKX Designation fees paid

Designated state(s): CH DE GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/60 20060101ALI20100127BHEP

Ipc: F23R 3/00 20060101AFI20100127BHEP

Ipc: F23R 3/06 20060101ALI20100127BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 502004011481

Country of ref document: DE

Date of ref document: 20100916

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004011481

Country of ref document: DE

Effective date: 20110506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180614

Year of fee payment: 15

Ref country code: DE

Payment date: 20180820

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180910

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004011481

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190607

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630