EP1421630B1 - Abscheidungsverfahren von einer oxydschicht auf einem substrat und dieses verwendende photovoltaische zelle - Google Patents

Abscheidungsverfahren von einer oxydschicht auf einem substrat und dieses verwendende photovoltaische zelle Download PDF

Info

Publication number
EP1421630B1
EP1421630B1 EP02754092A EP02754092A EP1421630B1 EP 1421630 B1 EP1421630 B1 EP 1421630B1 EP 02754092 A EP02754092 A EP 02754092A EP 02754092 A EP02754092 A EP 02754092A EP 1421630 B1 EP1421630 B1 EP 1421630B1
Authority
EP
European Patent Office
Prior art keywords
substrate
chamber
depositing
oxide layer
sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02754092A
Other languages
English (en)
French (fr)
Other versions
EP1421630A2 (de
Inventor
Ulrich Kroll
Johannes Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Neuchatel
Original Assignee
Universite de Neuchatel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Neuchatel filed Critical Universite de Neuchatel
Priority to EP02754092A priority Critical patent/EP1421630B1/de
Publication of EP1421630A2 publication Critical patent/EP1421630A2/de
Application granted granted Critical
Publication of EP1421630B1 publication Critical patent/EP1421630B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a method of depositing a transparent oxide layer on a substrate, which is particularly applicable to the manufacture of a photovoltaic cell, also called solar cell.
  • the invention also relates to such a cell whose transparent oxide layer is deposited according to this method.
  • the most technologically advanced solar cells comprise a substrate, a transparent conductive oxide (TCO) conductive oxide layer deposited on the substrate and a photovoltaically active layer deposited on the oxide layer.
  • This photosensitive layer is advantageously composed of three sub-layers of amorphous hydrogenated silicon, microcrystalline or nanocrystalline forming a p-i-n junction. More precisely, the two external sublayers are respectively positively and negatively doped, while the intermediate sublayer is intrinsic.
  • a cell of this type is described in detail, for example, according to several embodiments, in WO 97/24769.
  • US-A-5,002,796 discloses a method for depositing a transparent conductive oxide layer which consists in providing sources containing an oxygen-based liquid compound.
  • photovoltaic cells generally use a transparent conductive oxide layer made of tin dioxide (SnO 2 ) or zinc oxide (ZnO) deposited on a glass substrate by the chemical vaporization process. known under the abbreviation CVD (Chemical Vapor Deposition), which is carried out at a temperature generally between 400 and 550 ° C.
  • CVD Chemical Vapor Deposition
  • U.S. Patent No. 5,252,140 discloses a solar cell on tempered glass in which the soaking is performed after formation of the oxide layer. To avoid degradation thereof, heating is carried out at 650 ° C maximum for less than 2 minutes, before being rapidly cooled by air. These precautions, however, increase the process and do not guarantee the quality of the soaking.
  • US Pat. Nos. 4,751,149 and 5,002,796 disclose methods of depositing the vapor phase oxide layer in which the chemical compounds participating in the reaction are brought to the chamber by a carrier gas saturated with these compounds by bubbling.
  • Such a method makes it possible, of course, to have softer reaction conditions, which do not alter the properties of the substrate, and therefore to be used, in particular, for the production of solar cells on tempered glass.
  • the method does not allow good control of the amount of reagents involved, because the thermodynamic equilibrium that governs the saturation threshold of the carrier gas strongly depends on the temperature and the flow of this gas. Since it is problematic to precisely set the temperature in the entire circuit, there is a risk of uncontrolled recondensation of reagents in a colder place of the installation. The regularity and reproducibility of the layer are, therefore, quite difficult to ensure.
  • the chemical vaporization is carried out in a plasma of the deposition gases, formed inside the pregnant, preferably using the technique of PECVD (Plasma Enhanced Chemical Vapor Deposition), well known to those skilled in the art.
  • PECVD Pulsma Enhanced Chemical Vapor Deposition
  • the active layer of the cell comprises three sub-layers of amorphous, microcrystalline or nanocrystalline hydrogenated silicon forming a p-i-n junction, the two external sublayers being respectively positively and negatively doped.
  • the substrate is made of glass, preferably tempered glass, but it can also be made of stainless steel, aluminum or a polymer.
  • the cell shown in FIG. 1 uses as substrate a thin tempered glass plate, having a thickness of the order of 1 to 8 mm, on which is deposited a transparent conductive oxide (TCO) layer 12 having, typically, a thickness of 0.2 to 4 ⁇ m.
  • TCO transparent conductive oxide
  • the layer 12 advantageously consisting of tin dioxide (SnO 2 ), zinc oxide (ZnO) or an oxide of tin and zinc, is deposited by chemical vaporization (CVD) according to a process which will be described further.
  • a photovoltaic active layer 14 having a thickness of about 0.2 to 10 ⁇ m, is deposited on the oxide layer 12. It is composed of three sublayers of amorphous hydrogenated silicon, microcrystalline or nanocrystalline 16, 18 and 20, forming a pine junction. The two outer sublayers 16 and 20 are respectively positively and negatively doped.
  • the cell further comprises a rear contact layer 22, for example zinc oxide, deposited on the active layer 14 and a reflective layer 24, for example silver or aluminum, deposited on the layer 22.
  • a rear contact layer 22 for example zinc oxide
  • a reflective layer 24 for example silver or aluminum
  • FIG. 2 shows the equipment for the CVD deposition of a layer of zinc oxide 12 on the tempered glass plate 10.
  • a sealed chamber with a heating support 28 on which is deposited the tempered glass plate.
  • the chamber 26 is connected to a vacuum pump 30 and three reservoirs 32, 34 and 36 containing, first, water, the second, diethyl (C 2 H 5 ) 2 Zn and the third, a dopant, advantageously in the form of diborane (B 2 H 6 ).
  • B 2 H 6 diborane
  • the contents of the two tanks 32 and 34 are liquid, while that of the tank 36 is a gaseous mixture of 0.5 to 2% of diborane diluted in a gas such as nitrogen, argon or hydrogen. It will be noted that the tanks 32 and 34 are connected directly to the enclosure.
  • the reservoir 36 is pre-connected to the supply conduit of the reservoir 34, but it can also be connected directly to the enclosure.
  • the enclosure 26 is carried, using the heating support 28, at a temperature of about 180 ° C, but may be between 130 and 300 ° C, while the pump 30 lowers the pressure at a value of 0.3 to 0.5 mbar, but which can be between 0.01 and 20 mbar.
  • the adjustable valves (not shown) connecting the reservoirs 32, 34 and 36 to the enclosure 26 are then open.
  • the diethylzinc and the water contained therein in the liquid state evaporate on their surface and the resulting gases sucked into the chamber, react with each other and with the doping gas (B 2 H 6 ) to cause, at the temperature of the substrate, according to a known reaction, the deposition of the desired zinc oxide layer 12 on the tempered glass plate 10.
  • the tempered glass Since the operation takes place at a relatively low temperature, the tempered glass undergoes no deterioration of its properties. Moreover, given the homogeneous and low pressure prevailing in the installation, the gases sprays are not likely to recondense before admission to the enclosure.
  • the above method is ideal for depositing zinc oxide doped with diborane because the chemical reactions involved are without problems at the temperatures mentioned.
  • a CVD deposition of tin dioxide or a deposit of zinc oxide with a more stable dopant such as methyl tetrafluoride (CF 4 ) these temperatures are too low for that the reactions take place normally.
  • the deposition of the oxide layer is then carried out by the PECVD plasma chemical vaporization method.
  • the enclosure 26 is equipped with an electrode, for example in the form of a grid 38, disposed above the heating support 28 and an electric generator 40 is connected between this electrode and the support.
  • the gases introduced into the chamber 26 give rise to the formation of a plasma between the electrode 38 and the support 28. Active radicals are thus generated by the plasma and allow the chemical reactions giving rise to the deposition of the oxide layer to be at a temperature substantially lower than that normally required, thus preserving the properties of the substrate.
  • the tanks 34 and 36 respectively contain, for example, tetramethyltin (CH 3 ) 4 Sn and, as a dopant, methyl tetrafluoride (CF 4 ). It goes without saying that other compounds, well known in the art, can be used.
  • the water in the reservoir 32 may be replaced by any oxygen-containing compound (N 2 O, CH 3 OH, C 2 H 5 OH, ...) and that the dopant contained in the reservoir 36 may also be be in liquid form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Hybrid Cells (AREA)

Claims (5)

  1. Verfahren zur Abscheidung einer Schicht (12) aus transparentem leitfähigem Oxid auf einem in einer Kammer (26) angeordneten Substrat (10), dadurch gekennzeichnet, daß:
    - Quellen (32, 34, 36), die eine flüssige Verbindung auf Basis von Sauerstoff, eine flüssige Verbindung des zur Bildung des Oxids vorgesehenen Metalls bzw. einen Dotierstoff in gasförmiger oder flüssiger Form enthalten, bereitgestellt werden,
    - in der Kammer eine Temperatur zwischen 130 und 300°C und ein Druck zwischen 0,01 und 2 mbar eingestellt wird und dann
    - die Quellen mit der Kammer in Verbindung gebracht werden, wodurch die Flüssigkeiten an ihrer Oberfläche verdampfen, in die Kammer gesaugt werden, ohne daß die Verwendung eines Trägergases notwendig ist, und dort mit dem Dotierstoff unter Ausbildung der Oxidschicht auf dem Substrat reagieren.
  2. Verfahren nach Anspruch 1 zur Abscheidung einer Zinkoxidschicht, dadurch gekennzeichnet, daß die Quellen (32, 34, 36) Wasser, Diethylzink in flüssiger Form bzw. ein Gasgemisch auf Basis von Diboran enthalten.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dabei außerdem ein Plasma der in der Kammer verdampften Flüssigkeiten gebildet wird.
  4. Verfahren nach Anspruch 3 zur Abscheidung einer Zinnoxidschicht, dadurch gekennzeichnet, daß die Quellen (32, 34, 36) Wasser, Tetramethylzinn in flüssiger Form bzw. ein Gasgemisch auf Basis von Tetrafluormethan enthalten.
  5. Verfahren nach Anspruch 3 zur Abscheidung einer Zinkoxidschicht, dadurch gekennzeichnet, daß die Quellen (32, 34, 36) Wasser, Diethylzink in flüssiger Form bzw. ein Gasgemisch auf Basis von Tetrafluormethan enthalten.
EP02754092A 2001-08-30 2002-08-23 Abscheidungsverfahren von einer oxydschicht auf einem substrat und dieses verwendende photovoltaische zelle Expired - Lifetime EP1421630B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02754092A EP1421630B1 (de) 2001-08-30 2002-08-23 Abscheidungsverfahren von einer oxydschicht auf einem substrat und dieses verwendende photovoltaische zelle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01810840A EP1289025A1 (de) 2001-08-30 2001-08-30 Abscheidungsverfahren von einer Oxydschicht auf einem Substrat und dieses verwendende photovoltaische Zelle
EP01810840 2001-08-30
EP02754092A EP1421630B1 (de) 2001-08-30 2002-08-23 Abscheidungsverfahren von einer oxydschicht auf einem substrat und dieses verwendende photovoltaische zelle
PCT/CH2002/000458 WO2003021690A2 (fr) 2001-08-30 2002-08-23 Procede de depot d'une couche d'oxyde sur un substrat et cellule photovoltaique utilisant ce substrat

Publications (2)

Publication Number Publication Date
EP1421630A2 EP1421630A2 (de) 2004-05-26
EP1421630B1 true EP1421630B1 (de) 2006-10-18

Family

ID=8184115

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01810840A Withdrawn EP1289025A1 (de) 2001-08-30 2001-08-30 Abscheidungsverfahren von einer Oxydschicht auf einem Substrat und dieses verwendende photovoltaische Zelle
EP02754092A Expired - Lifetime EP1421630B1 (de) 2001-08-30 2002-08-23 Abscheidungsverfahren von einer oxydschicht auf einem substrat und dieses verwendende photovoltaische zelle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01810840A Withdrawn EP1289025A1 (de) 2001-08-30 2001-08-30 Abscheidungsverfahren von einer Oxydschicht auf einem Substrat und dieses verwendende photovoltaische Zelle

Country Status (8)

Country Link
US (1) US7390731B2 (de)
EP (2) EP1289025A1 (de)
JP (1) JP4491233B2 (de)
CN (1) CN1326255C (de)
AU (1) AU2002322952A1 (de)
DE (1) DE60215523T2 (de)
ES (1) ES2274069T3 (de)
WO (1) WO2003021690A2 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE364900T1 (de) * 2004-02-13 2007-07-15 Shell Solar Gmbh Einrichtung zum aufbringen einer flüssigen dotierungsstofflösung auf einem wafer
WO2005078154A1 (ja) * 2004-02-16 2005-08-25 Kaneka Corporation 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法
JP4918224B2 (ja) * 2005-01-21 2012-04-18 昭和シェル石油株式会社 透明導電膜製膜装置及び多層透明導電膜連続製膜装置
US8197914B2 (en) 2005-11-21 2012-06-12 Air Products And Chemicals, Inc. Method for depositing zinc oxide at low temperatures and products formed thereby
EP1840966A1 (de) * 2006-03-30 2007-10-03 Universite De Neuchatel Transparente, leitende und strukturierte Schicht sowie Verfahren zu ihrer Herstellung
MY148287A (en) 2006-08-29 2013-03-29 Pilkington Group Ltd Method of making a low-resistivity, doped zinc oxide coated glass article and the coated glass article made thereby
US20080128022A1 (en) * 2006-11-15 2008-06-05 First Solar, Inc. Photovoltaic device including a tin oxide protective layer
DE102006062019A1 (de) * 2006-12-29 2008-07-03 Näbauer, Anton, Dr. Verfahren zur Herstellung von mechanisch stabilen Dünnschicht Photovoltaik Solarmodulen unter Verwendung von Glas
US8203071B2 (en) 2007-01-18 2012-06-19 Applied Materials, Inc. Multi-junction solar cells and methods and apparatuses for forming the same
US7741144B2 (en) 2007-11-02 2010-06-22 Applied Materials, Inc. Plasma treatment between deposition processes
US20100264035A1 (en) * 2009-04-15 2010-10-21 Solopower, Inc. Reel-to-reel plating of conductive grids for flexible thin film solar cells
WO2010151430A1 (en) 2009-06-22 2010-12-29 Arkema Inc. Chemical vapor deposition using n,o polydentate ligand complexes of metals
JP5508800B2 (ja) * 2009-09-30 2014-06-04 株式会社カネカ 薄膜の製造方法、並びに、太陽電池の製造方法
US8525019B2 (en) 2010-07-01 2013-09-03 Primestar Solar, Inc. Thin film article and method for forming a reduced conductive area in transparent conductive films for photovoltaic modules
WO2012031102A2 (en) 2010-09-03 2012-03-08 Corning Incorporated Thin film silicon solar cell in multi-junction configuration on textured glass
US8906732B2 (en) * 2010-10-01 2014-12-09 Stion Corporation Method and device for cadmium-free solar cells
US8628997B2 (en) * 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
DE102015215434A1 (de) * 2015-08-13 2017-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Abscheidung dünner Schichten

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513057A (en) * 1982-06-10 1985-04-23 Hughes Aircraft Company Process for forming sulfide layers
US4605565A (en) * 1982-12-09 1986-08-12 Energy Conversion Devices, Inc. Method of depositing a highly conductive, highly transmissive film
JPH0682625B2 (ja) * 1985-06-04 1994-10-19 シーメンス ソーラー インダストリーズ,エル.ピー. 酸化亜鉛膜の蒸着方法
JPS6289873A (ja) * 1985-10-14 1987-04-24 Semiconductor Energy Lab Co Ltd 透明導電膜形成方法
US4640221A (en) * 1985-10-30 1987-02-03 International Business Machines Corporation Vacuum deposition system with improved mass flow control
US5252140A (en) * 1987-07-24 1993-10-12 Shigeyoshi Kobayashi Solar cell substrate and process for its production
JPH01298164A (ja) * 1988-05-25 1989-12-01 Canon Inc 機能性堆積膜の形成方法
US4990286A (en) * 1989-03-17 1991-02-05 President And Fellows Of Harvard College Zinc oxyfluoride transparent conductor
JP2538042B2 (ja) * 1989-03-29 1996-09-25 株式会社エステック 有機金属化合物の気化供給方法とその装置
JP2881929B2 (ja) * 1990-03-27 1999-04-12 松下電器産業株式会社 アルミナ膜の製造方法
US5711816A (en) * 1990-07-06 1998-01-27 Advanced Technolgy Materials, Inc. Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same
JP3380610B2 (ja) * 1993-11-30 2003-02-24 株式会社サムコインターナショナル研究所 液体原料cvd装置
US5397920A (en) * 1994-03-24 1995-03-14 Minnesota Mining And Manufacturing Company Light transmissive, electrically-conductive, oxide film and methods of production
US6096389A (en) * 1995-09-14 2000-08-01 Canon Kabushiki Kaisha Method and apparatus for forming a deposited film using a microwave CVD process
FR2743193B1 (fr) 1996-01-02 1998-04-30 Univ Neuchatel Procede et dispositif de depot d'au moins une couche de silicium hydrogene microcristallin ou nanocristallin intrinseque, et cellule photovoltaique et transistor a couches minces obtenus par la mise en oeuvre de ce procede
JP4510186B2 (ja) * 1999-09-28 2010-07-21 株式会社アルバック カーボン薄膜製造方法

Also Published As

Publication number Publication date
DE60215523T2 (de) 2007-06-21
US7390731B2 (en) 2008-06-24
JP2005501182A (ja) 2005-01-13
DE60215523D1 (de) 2006-11-30
US20040235286A1 (en) 2004-11-25
EP1289025A1 (de) 2003-03-05
AU2002322952A1 (en) 2003-03-18
JP4491233B2 (ja) 2010-06-30
WO2003021690A3 (fr) 2003-11-06
CN1550045A (zh) 2004-11-24
CN1326255C (zh) 2007-07-11
ES2274069T3 (es) 2007-05-16
WO2003021690A2 (fr) 2003-03-13
EP1421630A2 (de) 2004-05-26

Similar Documents

Publication Publication Date Title
EP1421630B1 (de) Abscheidungsverfahren von einer oxydschicht auf einem substrat und dieses verwendende photovoltaische zelle
EP0871979B1 (de) Verfahren zur Herstellung einer Silizium Solarzelle und so hergestellte Solarzelle
EP2714961B1 (de) Verfahren zur abscheidung von schichten auf einem glassubstrat mittels niederdruck-pecvd
EP2005473B1 (de) Texturierte transparente leitfähige schicht und herstellungsverfahren dafür
FR2514201A1 (fr) Pile solaire a semi-conducteur amorphe
CH648977A5 (fr) Appareil pour former une couche solide d'oxyde et/ou de nitrure sur la surface d'un article.
EP2989656B1 (de) Verfahren zur herstellung einer schottky-diode auf einem diamantsubstrat
EP1913642A1 (de) Antireflexbeschichtung, insbesondere für solarzellen und herstellungsverfahren dafür
CH640276A5 (en) Process for producing films of stannic oxide on a heated substrate
US4485265A (en) Photovoltaic cell
EP0965571B1 (de) Verfahren zum Abscheiden einer Metalloxid-Dünnschicht auf einem Glassubstrat, so beschichtetetes Glassubstrat
EP0335769B1 (de) Elektroleitendes Glas und Verfahren zu seiner Herstellung
EP0413617B1 (de) Verfahren zur Abscheidung von Dünnschichten
JPS6091627A (ja) Pin形半導体装置の製造方法
WO2006098185A1 (ja) 薄膜光電変換装置用基板の製造方法、及び薄膜光電変換装置
EP1307907B1 (de) Verfahren zur ablagerung einer fluordotierten siliziumdioxidschicht
EP2744760B1 (de) Antireflexverglasungseinheit mit einer porösen Beschichtung und Verfahren zur Herstellung
FR2573249A1 (fr) Procede pour la preparation d'elements semi-conducteurs a couches minces, et en particulier de cellules solaires
FR2640078A1 (fr) Procede de depot de nitrure de silicium, dispositif de mise en oeuvre de ce procede, et application dudit procede a la fabrication de capacites hyperfrequences
JPS58111379A (ja) 薄膜太陽電池
FR2511047A1 (fr) Procede pour appliquer un revetement antireflechissant et/ou dielectrique pour des cellules solaires
FR2487584A1 (fr) Element conducteur, procede de preparation de cet element conducteur et cellule photovoltaique comprenant cet element
Klyui et al. Effect of active treatments on photovoltaic characteristics of structures based on CdTe films
FR2487585A1 (fr) Procede de realisation d'une couche en silicium amorphe et dispositif electronique mettant en oeuvre ce procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040225

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES IT

REF Corresponds to:

Ref document number: 60215523

Country of ref document: DE

Date of ref document: 20061130

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2274069

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190923

Year of fee payment: 18

Ref country code: IT

Payment date: 20190827

Year of fee payment: 18

Ref country code: DE

Payment date: 20190822

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60215523

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200823