EP1412135A1 - Verfahren zur steuerung eines intermittierend arbeitenden schraubwerkzeugs - Google Patents
Verfahren zur steuerung eines intermittierend arbeitenden schraubwerkzeugsInfo
- Publication number
- EP1412135A1 EP1412135A1 EP02760283A EP02760283A EP1412135A1 EP 1412135 A1 EP1412135 A1 EP 1412135A1 EP 02760283 A EP02760283 A EP 02760283A EP 02760283 A EP02760283 A EP 02760283A EP 1412135 A1 EP1412135 A1 EP 1412135A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- torque
- angle
- rotation
- stroke
- joining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/14—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
- B25B23/145—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for fluid operated wrenches or screwdrivers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B21/00—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
- B25B21/004—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose of the ratchet type
- B25B21/005—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose of the ratchet type driven by a radially acting hydraulic or pneumatic piston
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/14—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
Definitions
- the invention relates to a method for controlling a screwing tool, which performs intermittently rotating strokes and has a torque sensor and a rotation angle sensor.
- the invention is based on the object of specifying a method for controlling a screwing tool with which a high degree of accuracy and reproducibility of the screwing process is achieved, so that the screwing processes carried out with this method offer the security of the correct tightening of the screw.
- the increment of the angle of rotation continues when the torque reaches a value that corresponds to the torque at the end of the previous stroke corresponds and storage of the values of angle of rotation and torque reached at the end of the stroke
- a torque mode is first carried out in which the screw is tightened to a joining torque.
- the previously defined joining torque is dimensioned in such a way that the parts to be connected have a certain hold, so that the screw connection is already generally secured when the joining torque is reached.
- the system switches to the angle of rotation mode, in which a certain predetermined angle of rotation, which is referred to as the target angle, is swept over.
- the rotation angle is covered by incrementing the rotation angle, which is supplied by a rotation angle sensor.
- the method according to the invention enables reliable control of the screwing process. It is assumed that the joining torque is reproducible in torque mode and with high accuracy can be determined. From the moment the joining torque is reached, the system switches to the angle of rotation mode, in which an angle measurement is carried out until the target angle is reached. The screwing process is therefore only terminated as a function of the angle of rotation that was swept after reaching the joining torque.
- the angle of rotation mode is only started when the joining torque is reached from the movement. If the joining torque is reached, for example, at the end of a stroke while the turning process has come to a complete or almost standstill, there are no defined frictional relationships on the screw connection. It can also happen that the torque rises above the value of the joining torque due to temporary hooking or blocking, so that a random state would be assumed for the start of the angle of rotation mode. In order to avoid this, the achievement of the joining moment is only assumed if the screwing process takes place in a linear area, namely at a certain distance from the end of the stroke.
- the counting-up in the event that after the joining torque has been reached during a stroke, the counting-up remains below a predetermined limit value, the reaching of the joining moment is not utilized and the utilization is shifted to the next stroke.
- This condition corresponds to the case that the joining torque is reached at the end of a stroke.
- the torque mode is retained and a new stroke is carried out in the torque mode after the next return stroke, in which the joining torque is then reached again.
- This second achievement of the joining moment is evaluated in order to form the zero point of the angle count.
- the method according to the invention also enables the differential quotient of the dependency between torque and angle of rotation to be determined and evaluated.
- this differential quotient is determined and stored before the joining torque is reached. On the basis of the respectively measured torque and the stored differential quotient, it is predetermined whether the joining torque is reached at the end of the stroke.
- the torque indicates the actual state and the differential quotient enables extrapolation, so that it can be predetermined whether the joining torque is reached at the end of the stroke. If this is the case, the stroke is ended before the stroke end is reached, so that the achievement of the joining moment is postponed to the next stroke.
- the differential quotient of the dependency between torque and angle of rotation can also be used for the control of the angle of rotation mode, the screwing operation being discarded if a deviation outside the tolerance range from the stored value is found while the angle of rotation is being counted up.
- anomalies can be identified, for example the blocking of a screw or a screw resistance that is far too high. Such a condition occurs when the screwing tool is attached to a screw that is already tightened. Even screws that are too easy to move after reaching the joining torque can be identified and discarded.
- a narrower special tolerance range is expediently defined in an angular range before the target angle is reached. This ensures that the target angle is approached only with a differential quotient that is close to the stored predetermined differential quotient. It prevents the target angle from being reached with a jerk. If the differential quotient is outside the special tolerance range, the screwing process is rejected.
- 1 is a schematic representation of a hydraulic power wrench with torque sensor and angle of rotation sensor
- Fig. 3 is a diagram of the torque over the angle of rotation during a screwing
- Fig. 4 shows the determination of the differential quotient of the linear branch of a stroke.
- a hydraulic power wrench is shown.
- This' has a drive part 10 and a functional part 11.
- the drive part contains a hydraulic cylinder in which a piston 12 is slidably guided.
- the piston 12 is driven hydraulically in the feed direction (according to FIG. 1 to the left) and in the retraction direction (to the right).
- a pivotable connection device 13 has a pressure connection and a return connection.
- the functional part 11 has a housing 14 in which a ratchet lever 15 moves.
- the ratchet lever 15 is connected to the piston 12 via a piston rod 16.
- a shaft 17 is rotatably mounted in a transverse bore in the housing 14.
- the shaft 17 has in the interior of the housing 14 a circumferential toothing 18, in which a toothing (not shown) of the ratchet lever 15 engages. With each stroke of the piston 12, the shaft 17 is rotated about its axis by a certain angular amount. This is followed by the return stroke of the ratchet lever 15, in which the shaft 17 is not taken along.
- the shaft 17 has at one end a driving device in the form of a plug-in recess 21 of hexagonal cross section.
- a torsion sensor 23 in the form of the measuring strips that are glued to the peripheral wall.
- the region of the shaft 17 which carries the torsion sensor 23 forms the measuring section 25.
- a data transmission element 28 is provided at the rear end of the shaft 17.
- a cable channel 29 extends from the torsion sensor 23 to the data transmission element 28.
- the data transmission element 28 is, for example, a slip ring arrangement which connects an external cable 30 to the torsion sensor 23, which is rotatable with the shaft 17. Alternatively, the transmission can also take place wirelessly.
- the cable 30 leads to a cable connection 31 (FIG. 1) which is provided on the housing 14 and to which a control device can be connected.
- the hydraulic power wrench is also equipped with a rotation angle measuring device 33. This has a code disk 34, which is fastened to the shaft 17, and an angle sensor 35, which reacts to the lines of the code disk 34 and thereby generates rotation angle pulses.
- the angle sensor 35 consists of a fork light barrier into which the code disk protrudes radially from the shaft 17.
- a cable 38 leads from the angle sensor 25 to the cable connection 31, so that both the torsion sensor 23 and the angle sensor 35 are electrically accessible at the cable connection 31.
- the signals from the torque sensor 23 and the angle of rotation sensor 33 are fed to a control unit (not shown) which in turn controls a valve which can interrupt the pressure supply in the hose connections 13.
- a control unit not shown
- the operation of the power wrench is controlled in such a way that the two hydraulic connections of the power wrench are alternately connected to a pressure line and a return line, the ' reversing being carried out either mechanically by actuating a reversing valve when the piston 12 hits the relevant stop and there is no further movement, or by automatic reversing.
- the joining moment M F is run through in motion, ie the mode is changed from DMM to DWM without the stroke being interrupted.
- the torque reaches the value M HF i f, which relates to the stroke end 1 after the joining torque has been reached.
- the torque goes back to 0 and on the third stroke there is first a non-linear increase 53 until the torque M HEI is reached and then a linear region 54 follows, in which the screw is further tightened.
- the value of the torque at the end of the stroke M HEI HE2 and HE3 is saved, as well as the associated angle of rotation OC HEI ⁇ ⁇ HE2 / O.HE3- If the torque on the next stroke has reached the same value as the torque end of the previous stroke, the further counting of the angle of rotation ⁇ begins.
- the angle ⁇ HE i r that was stored at the end of the second stroke also forms the initial angle O. A2 at which the counting continues in the linear region 54 during the third stroke.
- the final value HE2 is saved and at the 4th stroke the angle continues to be counted with the value ⁇ H A3 r which is equal to ⁇ H E2.
- the screwing process is ended when a target angle ⁇ z has been reached, which is fixed, for example, at 90 ° (after the joining torque M F has been reached ). Then the power wrench is switched off. The screw is now tightened in a defined manner, the desired tension of the screw bolt being reached.
- the condition for the detection of the angle of rotation is that the angle of rotation is only counted up when the torque measured at the same time has at least the height of the joining moment M F. This ensures that the angle of rotation is generally only recorded from the moment of joining.
- the reaching of the joining moment should only be determined when the linear part of the clamping line is traversed, in the middle between the end points. If the joining torque is reached in the upper end of the linear range, the achievement of the joining torque is redetermined.
- Such an operating mode is possible both with manual control of the power wrench and with automatic control.
- the differential quotient of the relationship between torque and angle of rotation is determined, i.e. the slope of the straight line.
- M D ⁇ means the torque that is measured at a certain angle of rotation ⁇ i after the joining torque has been reached
- the torque M D2 is the torque that is measured at a higher angle of rotation ⁇ 2 .
- the differential quotient Q can also be used for other tests, for example to check whether a screw has already been tightened. In this case, the power wrench works at very high torque without further rotation. As a result, the differential quotient is outside a tolerance range. The screwing process is then stopped.
- the differential quotient can also be evaluated immediately before the target value is reached.
- a special tolerance range is defined for the differential quotient and the target value is only considered to have been reached if the differential quotient was previously determined in the special tolerance range. In this way it is avoided that the target angle is reached by a sudden jerk.
- Another possibility is to measure the duration of the individual strokes, the screwing process being rejected if the duration is too long. For example, it is possible to measure numerous durations of the individual strokes in several tightening operations for a specific screwdriving event and then to define an average stroke duration that is saved. In the same way also for the differential quotient Q, a typical value of many ', telt previously averaged values measured or determined in other ways.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10137896A DE10137896A1 (de) | 2001-08-02 | 2001-08-02 | Verfahren zur Steuerung eines intermittierend arbeitenden Schraubwerkzeugs |
DE10137896 | 2001-08-02 | ||
PCT/EP2002/008386 WO2003013797A1 (de) | 2001-08-02 | 2002-07-27 | Verfahren zur steuerung eines intermittierend arbeitenden schraubwerkzeugs |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1412135A1 true EP1412135A1 (de) | 2004-04-28 |
EP1412135B1 EP1412135B1 (de) | 2008-04-30 |
Family
ID=7694126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02760283A Expired - Lifetime EP1412135B1 (de) | 2001-08-02 | 2002-07-27 | Verfahren zur steuerung eines intermittierend arbeitenden schraubwerkzeugs |
Country Status (6)
Country | Link |
---|---|
US (1) | US7000486B2 (de) |
EP (1) | EP1412135B1 (de) |
JP (1) | JP4119365B2 (de) |
DE (2) | DE10137896A1 (de) |
ES (1) | ES2305281T3 (de) |
WO (1) | WO2003013797A1 (de) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2409833B (en) * | 2002-10-16 | 2006-09-13 | Snap On Tools Corp | Ratcheting torque-angle wrench and method |
DE102004017979A1 (de) | 2004-04-14 | 2005-11-03 | Wagner, Paul-Heinz | Verfahren zum winkelgesteuerten Drehen eines Teiles |
DE102005019258B4 (de) * | 2005-04-26 | 2009-02-12 | Junkers, Holger, Dipl.-Ing.(FH) | Verfahren zur Schraubstellenanalyse und zum streckgrenzengesteuerten Anziehen von Schraubverbindungen unter Einsatz intermittierend arbeitendender Schraubwerkzeuge |
JP4749787B2 (ja) * | 2005-07-22 | 2011-08-17 | 瓜生製作株式会社 | 手持ち式パルスツールにおけるねじの締付角度測定装置 |
DE102006021329A1 (de) * | 2006-05-05 | 2007-11-08 | DSM Meßtechnik GmbH | Schraubwerkzeug |
US7497147B2 (en) * | 2006-09-12 | 2009-03-03 | Unex Corporation | Torque tool for tightening or loosening connections, and method of tightening or loosening the same |
DE102007048187B4 (de) * | 2007-10-02 | 2016-05-25 | Andreas Ermisch | Verfahren zur Herstellung einer Schraubverbindung |
US7721631B2 (en) * | 2007-11-05 | 2010-05-25 | The Boeing Company | Combined wrench and marking system |
JP5431006B2 (ja) | 2009-04-16 | 2014-03-05 | Tone株式会社 | ワイヤレス・データ送受信システム |
SE533830C2 (sv) * | 2009-06-11 | 2011-02-01 | Atlas Copco Tools Ab | Mutterdragare med växelhus och parametergivare |
US8714057B2 (en) | 2010-01-04 | 2014-05-06 | Apex Brands, Inc. | Ratcheting device for an electronic torque wrench |
DE102010009712A1 (de) * | 2010-01-08 | 2011-07-14 | Liebherr-Werk Nenzing GmbH, Vorarlberg | Verfahren zum Anziehen einer Schraubverbindung unter Längung der Schraube |
WO2011097653A1 (en) * | 2010-02-08 | 2011-08-11 | Junkers John K | Apparatus and methods for tightening threaded fasteners |
DE102011013926A1 (de) | 2011-03-14 | 2012-09-20 | Wagner Vermögensverwaltungs-GmbH & Co. KG | Verfahren zum Drehen eines drehbaren Teils |
WO2013113768A1 (de) | 2012-02-01 | 2013-08-08 | Koellges Ralf | Verfahren zum herstellen einer mechanisch spannbaren schraubverbindung und spannbare schraubverbindung mit einem schraubbolzen und einer mutter |
JP5763708B2 (ja) * | 2013-05-27 | 2015-08-12 | トヨタ自動車株式会社 | 制御装置、制御方法及び制御プログラム |
US9839998B2 (en) * | 2015-04-07 | 2017-12-12 | General Electric Company | Control system and apparatus for power wrench |
TWI619582B (zh) * | 2017-06-09 | 2018-04-01 | China Pneumatic Corp | Torque control system of electric impact type torque tool and torque control method thereof |
US10940577B2 (en) * | 2017-07-19 | 2021-03-09 | China Pneumatic Corporation | Torque control system and torque control method for power impact torque tool |
KR102623683B1 (ko) * | 2018-09-21 | 2024-01-12 | 아틀라스 콥코 인더스트리얼 테크니크 에이비 | 전기 펄스 도구 |
CN110653661A (zh) * | 2019-09-30 | 2020-01-07 | 山东大学 | 基于信号融合和多重分形谱算法的刀具状态监测识别方法 |
KR102414904B1 (ko) * | 2020-04-17 | 2022-07-01 | (주)볼팅마스타 | 유압 토크 렌치 |
CN112227205A (zh) * | 2020-09-04 | 2021-01-15 | 中铁大桥局集团有限公司 | 桥梁高强度螺栓的施工方法 |
USD1042067S1 (en) * | 2023-02-28 | 2024-09-17 | Primesource Consulting Llc | Limited clearance tool |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3230642A1 (de) * | 1982-08-18 | 1984-02-23 | Volkswagenwerk Ag, 3180 Wolfsburg | Verfahren und vorrichtung zum anziehen eines ein gewinde tragenden verbindungselements |
US4969105A (en) * | 1988-05-02 | 1990-11-06 | Ingersoll-Rand Company | Gasket compression control method having tension-related feedback |
DE4330481A1 (de) * | 1993-09-09 | 1995-03-16 | Bosch Gmbh Robert | Verfahren zum Herstellen einer Fügeverbindung, insbesondere einer Schraubverbindung |
DE4344849A1 (de) * | 1993-12-29 | 1995-07-06 | Fein C & E | Werkzeugmaschine |
US5589644A (en) * | 1994-12-01 | 1996-12-31 | Snap-On Technologies, Inc. | Torque-angle wrench |
DE19503524A1 (de) * | 1995-02-03 | 1996-08-08 | Bosch Gmbh Robert | Impulsschrauber und Verfahren zum Anziehen einer Schraubverbindung mittels des Impulsschraubers |
US5581042A (en) * | 1995-12-11 | 1996-12-03 | Ingersoll-Rand Company | Method for torque wrench non-contact angle measurement |
JP3793272B2 (ja) * | 1996-02-09 | 2006-07-05 | 株式会社マキタ | ねじ打込方法及び装置 |
DE19637067A1 (de) * | 1996-09-12 | 1998-03-19 | Saltus Werk Max Forst Gmbh | Drehmomentschlüssel |
DE19639566A1 (de) * | 1996-09-26 | 1998-04-23 | Daimler Benz Ag | Einrichtung zur Ermittlung der Schraubqualität bei einem handgeführten Maschinenschraubwerkzeug |
DE19845871A1 (de) * | 1997-10-08 | 1999-04-15 | Christoph Prof Dr Ing Hartung | Verfahren und Vorrichtung zum Anziehen von Schrauben |
US6070506A (en) * | 1998-07-20 | 2000-06-06 | Snap-On Tools Company | Ratchet head electronic torque wrench |
-
2001
- 2001-08-02 DE DE10137896A patent/DE10137896A1/de not_active Withdrawn
-
2002
- 2002-07-27 EP EP02760283A patent/EP1412135B1/de not_active Expired - Lifetime
- 2002-07-27 JP JP2003518779A patent/JP4119365B2/ja not_active Expired - Lifetime
- 2002-07-27 ES ES02760283T patent/ES2305281T3/es not_active Expired - Lifetime
- 2002-07-27 WO PCT/EP2002/008386 patent/WO2003013797A1/de active IP Right Grant
- 2002-07-27 US US10/485,473 patent/US7000486B2/en not_active Expired - Lifetime
- 2002-07-27 DE DE50212187T patent/DE50212187D1/de not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO03013797A1 * |
Also Published As
Publication number | Publication date |
---|---|
ES2305281T3 (es) | 2008-11-01 |
DE10137896A1 (de) | 2003-02-20 |
US7000486B2 (en) | 2006-02-21 |
EP1412135B1 (de) | 2008-04-30 |
DE50212187D1 (de) | 2008-06-12 |
US20040177704A1 (en) | 2004-09-16 |
JP2004537432A (ja) | 2004-12-16 |
WO2003013797A1 (de) | 2003-02-20 |
JP4119365B2 (ja) | 2008-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1412135B1 (de) | Verfahren zur steuerung eines intermittierend arbeitenden schraubwerkzeugs | |
EP3597369B1 (de) | Verfahren zum dokumentierten anziehen oder nachziehen einer schraubverbindung | |
DE2817910C2 (de) | Verfahren und Vorrichtung zur Verschraubung von zwei Elementen | |
EP0860221B1 (de) | Pressgerät | |
DE4406946C2 (de) | Blindnietmutter-Setzgerät | |
EP2686138B1 (de) | Verfahren zum drehen eines drehbaren teils | |
DE2033207C3 (de) | Druckluftschrauber | |
EP1511599B1 (de) | Verfahren zur steuerung einer hydraulischen kolbenzylindereinheit | |
EP0699508B1 (de) | Hydro-Impulsschrauber insbesondere zum Anziehen von Schraubverbindungen | |
EP0042548B1 (de) | Schraubvorrichtung mit Drehmomentermittlung | |
EP3829817A1 (de) | Schraubvorrichtung, antriebsdrehmomenterzeugungsmittel, verschraubsystem sowie verfahren zur drehmomentsteuerung | |
DE69921010T2 (de) | Druckmittelbetriebenes Werkzeug | |
DE2459645C2 (de) | Schraub- und Transportvorrichtung für eine aus Stiftschrauben und zugehörigen Befestigungsmuttern bestehende Deckelverschraubung eines Druckbehälters, insbesondere eines Kernreaktor-Druckbehälters | |
DE102004017979A1 (de) | Verfahren zum winkelgesteuerten Drehen eines Teiles | |
DE102013000412B4 (de) | Schraubautomat mit einem Streckenmessgerät | |
DE60016499T2 (de) | Druckmittelbetriebenes Werkzeug | |
DE3431630A1 (de) | Elektrowerkzeug | |
WO1999050029A1 (de) | Hydraulisch betriebener kraftschrauber und verfahren zu seiner steuerung | |
EP2353788B1 (de) | Verfahren zum Anziehen einer Schraubverbindung unter Längung der Schraube | |
DE2557114A1 (de) | Kupplung mit drehmomentbegrenzung | |
EP2113341A2 (de) | Druckbetriebener Kraftschrauber mit Messabschnitt | |
DE102004061629A1 (de) | Drehtürantrieb | |
DE2622053A1 (de) | Anzugsteuerung fuer schlagschrauber | |
EP1815148A1 (de) | Verfahren zur steuerung der druckversorgung einer an eine druckquelle angeschlossenen hydraulischen kolben-zylindereinheit und hydraulische antriebseinrichtung | |
DE19726473C1 (de) | Vorrichtung zum Dosieren von viskosen Massen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50212187 Country of ref document: DE Date of ref document: 20080612 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2305281 Country of ref document: ES Kind code of ref document: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
ET | Fr: translation filed | ||
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: ITH GMBH Effective date: 20090129 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20100204 AND 20100211 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20101029 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210730 Year of fee payment: 20 Ref country code: FR Payment date: 20210721 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210802 Year of fee payment: 20 Ref country code: GB Payment date: 20210722 Year of fee payment: 20 Ref country code: ES Payment date: 20210819 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50212187 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220803 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20220726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20220726 Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20220728 |