EP1407056B1 - Verahren zur herstellung eines formteiles aus einem intermetallischen gamma-ti-al-werkstoff - Google Patents

Verahren zur herstellung eines formteiles aus einem intermetallischen gamma-ti-al-werkstoff Download PDF

Info

Publication number
EP1407056B1
EP1407056B1 EP02759850A EP02759850A EP1407056B1 EP 1407056 B1 EP1407056 B1 EP 1407056B1 EP 02759850 A EP02759850 A EP 02759850A EP 02759850 A EP02759850 A EP 02759850A EP 1407056 B1 EP1407056 B1 EP 1407056B1
Authority
EP
European Patent Office
Prior art keywords
preparing
accordance
atom
moulded part
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02759850A
Other languages
English (en)
French (fr)
Other versions
EP1407056A2 (de
Inventor
Andreas Dr. Hoffmann
Heinrich Dr. Kestler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Priority to AT02759850T priority Critical patent/ATE305526T1/de
Publication of EP1407056A2 publication Critical patent/EP1407056A2/de
Application granted granted Critical
Publication of EP1407056B1 publication Critical patent/EP1407056B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component

Definitions

  • the invention relates to a method for producing a molded part from an intermetallic ⁇ -TiAl Material ( ⁇ -titanium aluminide) with 41-49 atom% Al.
  • ⁇ -TiAl materials are often referred to as "near- ⁇ -titanium aluminides".
  • the metal structure consists mainly of TiAl phase ( ⁇ -phase) with a small proportion of Ti 3 Al ( ⁇ 2 -phase).
  • ⁇ -phase TiAl phase
  • Ti 3 Al ⁇ 2 -phase
  • individual groups of advantageous alloying elements in ⁇ -TiAl alloys can be generally as follows (in atom%): Ti-Al 45-48 - (Cr, Mn, V) 0-3 - (Nb, Ta, Mo, W) 0-5 - (Si, B) 0-1 .
  • Niobium, tungsten, molybdenum and, to a lesser extent, tantalum improve oxidation resistance, while chromium, manganese and vanadium have a ductile effect.
  • intermetallic ⁇ -TiAl materials are of interest for a variety of applications. These include, for example, turbine components, as well as engine or transmission components of automobiles.
  • the prerequisite for large-scale application of ⁇ -TiAl is the availability of a technically reliable forming method that enables the cost-effective production of molded parts with requirements-oriented properties.
  • No. 5,429,796 describes a cast molding made of a titanium aluminide material consisting of 44-52 atom% aluminum, 0.05-8 atom% of one or more elements of the group chromium, carbon, gallium, molybdenum, manganese, niobium , Nickel, silicon, tantalum, vanadium and tungsten and at least 0.5% by volume of a boride phase having a yield strength of 55 ksi and an ultimate elongation of at least 0.5%.
  • Powder metallurgically produced moldings are much finer-grained than after Casting manufactured.
  • powder metallurgically produced material has filled with gas pores on - usually in the spraying Powder production used inert gas argon.
  • the pores have an effect disadvantageous both on the creep behavior, as well as on the Fatigue behavior.
  • ⁇ -TiAl casting molds In the case of ⁇ -TiAl casting molds, a satisfactory grain refinement can be achieved by means of specially developed forming processes, such as extrusion, forging, rolling and combinations of these processes.
  • ⁇ -TiAl alloys are therefore usually made of VAR (Vacuurn-Arc-Remelting) starting material, which is converted by forming and annealing in a feinkömigen state, the actual shaping following the hot working by means of complex mechanical, predominantly machining processing takes place.
  • VAR Vauurn-Arc-Remelting
  • the processing of an alloy in the solidus-liquidus phase state is a semi-solid process.
  • a semi-solid process typically, in a semi-solid process, partially liquid masses are processed in a thixotropic state.
  • Thixotropy is the property of a material to behave highly viscous in the absence of external forces, but under the action of shear forces to assume a viscosity several orders of magnitude lower. Thixotropic behavior is limited to certain alloy compositions and those temperature ranges where both solid and liquid phase portions are present in the alloy.
  • a semi-solid phase is sought, in which regular, that is as globular as possible grains in the solid phase portion, which are uniformly surrounded by melt.
  • the shaping of an alloy by means of a semi-solid process as such is known.
  • molten alloys are slowly cooled to a temperature in the solidus-liquidus two-phase region using one of the known stirring techniques, such as MHD (Magneto-Hydrodynamic Stirring) or mechanical stirring. Stirring destroys dendrites leaving the melt. Thixotropic properties are imparted to the material and the formation of globular primary crystals in the solid phase is promoted.
  • MHD Magnetic-Hydrodynamic Stirring
  • Stirring destroys dendrites leaving the melt.
  • Thixotropic properties are imparted to the material and the formation of globular primary crystals in the solid phase is promoted.
  • This method is described in US Pat. No. 5,358,687 for intermetallic materials, mention being made, inter alia, of TiAl, but in contrast to the present invention, there is no mention of further shaping involving mechanical hot forming steps.
  • the achievable grain size was> 50 microns.
  • this technique, applied to ⁇ -TiAl does not allow for economical production. With TiAl the mechanical stir
  • ⁇ -TiAl alloys formed into semifinished products in a first hot forming process section exhibit thixotropic behavior after being heated to a temperature in the solidus-liquidus phase region for the further shaping processing.
  • the alloy formed as a flowable suspension which could be used to form complex designed components.
  • This impressions must be made slowly and free of flow turbulence in the material, so that the material propagates free of pores and voids in the mold.
  • a mechanical, machining could be omitted or greatly reduced, so that in addition to excellent microstructural and mechanical properties of the moldings according to the invention also high efficiency was given in their production.
  • the advantage according to the invention lies in the substantially finer-grained microstructure and the high degree of freedom from pores.
  • the particle size distribution was determined by means of the linear section method and the d 95 value.
  • the d 95 grain size gives a significantly higher numerical value than is the case with the indication in the form of the mean grain size.
  • the d 95 value is the more meaningful value especially for structures with a high particle size distribution range.
  • the achievable d 95 grain sizes are values of ⁇ 100 ⁇ m to ⁇ 300 ⁇ m. Such, for comparison purposes manufactured by investment casting and not further treated by hot forming moldings show an at least a factor of 5 coarse-grained structure than inventively produced moldings.
  • alloys are used with a niobium content between 1.5 and 12 atom%. These alloys show a finer grain size by a factor of 7 up to a factor of 16 than in conventional precision casting. The best results were achieved with ⁇ -TiAl alloys with a niobium content of 5 to 10 atom%. An additional refining effect was achieved by the alloying elements carbon and boron in amounts of up to 0.4 atom% each.
  • thixoforging and thixocross extrusion molding each of which is a well-known and well-proven technique, have been proven.
  • Thixoschmieden the partially liquid bolt is inserted into an open tool, or die tool. The shaping takes place by a subsequent tool movement, for example in a forging press.
  • the Thixoquerf beaupressen represents a modification of Thixogie calls. The pushed by a punch bolt is deflected on its way from the casting chamber to the mold or the forming tool by an angle of 90 °.
  • the production of the primary casting of an alloy of the composition titanium - 46.5 at% Al - 2 at% Cr - 1.5 at% Nb - 0.5 at% Ta - 0.1 at% Boron was achieved by vacuum arc melting (VAR) , To achieve satisfactory homogeneity, the ingot was remelted twice. The ingot diameter was 210 mm, the ingot length 420 mm. The ingot was extruded in the known state according to previously known process conditions, wherein the degree of deformation was 83%. A 110 mm length of stud was then heated to a solidus-liquidus phase temperature range of the 1460-1470 ° C alloy and, in this state, pressed in a servo-hydraulic press into a closed die cast molybdenum alloy die.
  • VAR vacuum arc melting
  • the molded part thus produced a cylindrical member having an average diameter of 40 mm, a length of 100 mm, a laterally mounted flange and a recess of dimensions 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically.
  • the grain size d 95 was 120 ⁇ m.
  • the relative density was determined by buoyancy method and was 99.98%.
  • the grain size d 95 of the twice remelted investment casting was 1400 microns.
  • an ingot of the alloy composition titanium-45 atom% Al-5 atom% Nb-0.2 atom% C-0.2 atom% boron was produced by vacuum arc melting (VAR) and remelted twice.
  • the ingot diameter was 210 mm, the ingot length 420 mm.
  • the ingot was extruded in the known state by conventional methods, wherein the degree of deformation was 83%.
  • a 110 mm length of stud was heated to a temperature of 1460-1480 ° C, the alloy was thus brought into the solidus-liquidus phase region and, in this state, pressed in a servo-hydraulic press into a closed die-casting mold made of a molybdenum alloy.
  • the molded part thus produced a cylindrical member having an average diameter of 40 mm, a length of 100 mm, a laterally mounted flange and a recess of 35 mm ⁇ 35 mm ⁇ 35 mm in the cylindrical portion was examined metallographically.
  • the grain size d 95 was 75 microns.
  • the relative density was 99.99%.
  • the grain size d 95 of the initially produced investment casting had been 1200 ⁇ m.
  • a primary casting blank of the alloy titanium-46.5 at% Al-2 at% Cr-0.5 at% Ta-0.1 at% boron was produced by vacuum arc melting (VAR) and remelted twice.
  • the ingot diameter was 170 mm, the ingot length 420 mm.
  • the ingot was extruded in the known state, wherein the degree of deformation was 83%.
  • a 110 mm length of stud was heated to a temperature of 1440-1470 ° C and pressed in a servo-hydraulic press into a closed die casting tool made of a molybdenum alloy.
  • the molded part thus produced a cylindrical member having an average diameter of 40 mm, a length of 100 mm, a laterally mounted flange and a recess of 35 mm ⁇ 35 mm ⁇ 35 mm in the cylindrical portion was examined metallographically.
  • the grain size d 95 was 220 microns.
  • the relative density was 99.99%.
  • the grain size d 95 of the precision casting had been 1500 ⁇ m.
  • a primary cast ingot of the alloy titanium -46.5 at.% Al-10 at.% Nb was fabricated and remelted twice in accordance with the process steps of Example 1 by vacuum arc melting (VAR).
  • the ingot diameter was 170 mm, the ingot length 420 mm.
  • the ingot was extruded in the known state, wherein the degree of deformation was 83%.
  • a 110 mm length of stud was heated to a temperature of 1440-1470 ° C and pressed in a servo-hydraulic press into a closed die casting tool made of a molybdenum alloy.
  • the molded part thus produced a cylindrical member having an average diameter of 40 mm, a length of 100 mm, a laterally mounted flange and a recess of 35 mm ⁇ 35 mm ⁇ 35 mm in the cylindrical portion was examined metallographically.
  • the grain size d 95 was 90 microns.
  • the relative density was 99.98%.
  • the grain size d 95 of the precision casting had been 1300 ⁇ m.
  • the primary cast ingot of the alloy titanium - 46.5 at.% Al - 10 at.% Nb was manufactured in accordance with Example 1 by means of vacuum arc melting (VAR) and remelted twice.
  • the ingot diameter was 170 mm, the ingot length 420 mm.
  • the ingot was extruded in the known state, wherein the degree of deformation was 72%.
  • a 110 mm length of stud was heated to a temperature of 1440-1470 ° C and pressed in a servo-hydraulic press into a closed die casting tool made of a molybdenum alloy.
  • the molded part thus produced a cylindrical member having an average diameter of 40 mm, a length of 100 mm, a laterally mounted flange and a recess of 35 mm ⁇ 35 mm ⁇ 35 mm in the cylindrical portion was examined metallographically.
  • the grain size d 95 was 170 ⁇ m.
  • the relative density was 99.98%.
  • the grain size d 95 of the precision casting had been 1300 ⁇ m.
  • the invention is not limited to the aforementioned embodiments.
  • Preferred application areas for molded parts according to the invention are the Automotive industry, e.g. Transmission and engine parts, but also parts for stationary Gas turbines and aerospace, e.g. Turbine components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Extrusion Of Metal (AREA)

Description

Die Erfindung betrifft eine ein Verfahren zur Herstellung eines Formteils aus einem intermetallischen γ-TiAl Werkstoff (γ-Titanaluminid) mit 41 - 49 Atom% Al.
γ-TiAl Werkstoffe werden häufig auch als "Near-γ-Titanaluminide" bezeichnet. Bei diesen besteht das Metallgefüge hauptsächlich aus TiAl-Phase (γ-Phase) mit einem geringen Anteil an Ti3Al (α2-Phase). Bei einigen Vielkomponentenlegierungen kann auch noch ein geringer Anteil an β-Phase vorliegen, wobei diese Phase durch Elemente wie Chrom, Wolfram oder Molybdän stabilisiert wird.
Gemäß J.W. Kim (J. Met 41 (7), p 24 -30, 1989, J. Met. 46 (7), p 30 - 39, 1994) können einzelne Gruppen von vorteilhaften Legierungselementen in γ-TiAl-Legierungen allgemein wie folgt beschrieben werden (in Atom%): Ti-Al45-48 - (Cr, Mn, V)0-3 - (Nb, Ta, Mo, W)0-5 - (Si, B)0-1. Niob, Wolfram, Molybdän und in geringem Ausmaß Tantal verbessem die Oxidationsbeständigkeit, Chrom, Mangan und Vanadin wirken duktilisierend.
Aufgrund ihres hohen Festigkeit / Dichte-Verhältnisses, des hohen spezifischen E-Moduls, sowie der Oxidationsbesendigkeit und der Kriechfestigkeit sind intermetallische γ-TiAl-Werkstoffe für eine Vielzahl von Anwendungen von Interesse. Dazu zählen beispielhaft Turbinenkomponenten, sowie Motor- oder Getriebebauteile von Automobilen.
Voraussetzung für eine großtechnische Anwendung von γ-TiAl ist die Verfügbarkeit einer technisch zuverlässigen Formgebungsmethode, die eine kostengünstige Herstellung von Formteilen mit anforderungsgerechten Eigenschaften ermöglicht.
Auf den Erfahrungen mit der gusstechnischen Verarbeitung von Titan aufbauend, wurden in den letzten Jahren große Anstrengungen unternommen, eine Feingusstechnik für γ-TiAl Werkstoffe zu etablieren.
Es zeigte sich, dass die üblicherweise gebildete grobe Gussstruktur für mechanische Eigenschaften von je γ-TiAl höchst nachteilig ist. Formteile aus intermetallischen γ-TiAl Werkstoffen, basierend auf Ti - 45 Atom% Al - 5 Atom% Nb, die mittels Feinguss hergestellt wurden, wiesen ein unerwünscht grobes Gefüge mit einer mittleren Korngröße von > 500 µm auf, wobei zudem die minimale und maximale Korngröße in einem weiten Bereich streuten. Auch ein mittels Feinguss hergestellter Formteil mit der Legierungszusammensetzung 44 Atom% Al - 1 Atom% V - 5 Atom% Nb - 1 Atom% B, Rest Ti, eine Legierung gemäß der EP 0 634 496, weist eine mittlere Korngröße im Bereich von 550 µm auf ebenfalls mit einem breiten Streubereich.
Aus der Vielzahl von Versuchen, sowohl legierungs- als auch verfahrenstechnisch ein feinkörniges Gefüge zu erreichen, werden die Nachfolgenden repräsentativ genannt.
In der US 5 429 796 ist ein gegossener Formteil aus einem Titanaluminid-Werkstoff beschrieben, bestehend aus 44 - 52 Atom% Aluminium, 0,05 - 8 Atom% eines oder mehrerer Elemente der Gruppe Chrom, Kohlenstoff, Gallium, Molybdän, Mangan, Niob, Nickel, Silizium, Tantal, Vanadin und Wolfram und zumindest 0,5 Vol.% einer Boridphase, der eine Streckgrenze von 55 ksi und eine Bruchdehnung von zumindest 0,5 % aufweist. Bei den dort nach den genannten Verfahren bevorzugt gefertigten Legierungen Ti - 47,7 Atom% Al - 2 Atom% Nb - 2 Atom% Mn - 1 Vol.% TiB2, Ti - 44,2 Atom% Al - 2 Atom% Nb - 1,4 Atom% Mn - 2 Vol.% TiB2 sowie Ti - 45,4 Atom% Al - 1,9 Atom% Nb - 1,6 Atom% Mn - 4,6 Vol.% TiB2, lagen die erreichbaren mittleren Korngrößen bei 50 bis 150 µm, d.h. das Gefüge war vergleichsweise fein. Bei einer Legierungsausgestaltung mit Ti - 45,4 Atom% Al - 1,9 Atom% Nb - 1,4 Atom% Mn - 0,1 Vol.% TiB2, lag die mittlere Korngröße bei 1000 µm, d.h. das Gefüge war vergleichsweise grob.
Die beiden Legierungen mit einem hohen Anteil von TiB2-Phase, neigen indes bei langsamer Abkühlung nach dem Gussvorgang zur Ausbildung von groben Borid-Ausscheidungen an den Komgrenzen, die sich sehr nachteilig auf die mechanischen Eigenschaften auswirken. Eine hohe Abkühlgeschwindigkeit kann nicht angewandt werden, da in diesen Fällen aufgrund thermisch induzierter Spannungen Risse auftreten. Die Boride werden der Vorlegierung im schmelzflüssigen Zustand zugegeben. Um eine unvermeidliche Vergröberung der Boride in der Schmelze möglichst gering zu halten, ist als weitere Fertigungserschwemis die Zeit zwischen Abguss und Einsetzen der Erstarrung kurz zu halten. Neben den prozesstechnischen Schwierigkeiten verschlechtern hohe Borgehalte, die einerseits für eine effektive Kornfeinung geeignet erscheinen, auf der anderen Seite dessen mechanische Eigenschaften.
Es ist bekannt, intermetallische γ-TiAl Werkstoffe durch Glühbehandlungen in einen feinkörnigeren Zustand überzuführen, siehe beispielsweise US 5 634 992, US 5 226 985, US 5 204 058 und US 5 653 828. Mittels der dort beschriebenen Glühungen erreicht man eine Kornfeinung, wobei die Korngröße des Gussgefüges die mittels Glühbehandlung günstigstenfalls erreichbare Korngröße vorgibt. Eine aus Anwendersicht ausreichende Kornfeinung ist bei einer über Gusstechnik hergestellten Gefügestruktur letztendlich nicht möglich.
Neben der groben Gefügestruktur beeinflussen auch Gussporen / Gusslunker die mechanischen Eigenschaften von mittels Gusstechnik gefertigtem γ-TiAl nachteilig, so dass für die Herstellung technisch brauchbarer Formteile Nachverdichtungsverfahren, wie z.B. heißisostatisches Pressen bzw. Umformverfahren angewandt werden müssen.
Wegen der oben beschriebenen Schwierigkeiten hat die Herstellung von Formteilen aus intermetallischen γ-Titanaluminiden mittels der üblichen Gussverfahren, wie z.B. Feinguss, bisher keine großtechnische Umsetzung erfahren.
Alternativ zur Herstellung mittels Gusstechnik werden endformnahe Formteile, Formteile mit Endform, aber auch Vormaterial für eine weitere umformtechnische Verarbeitung mittels üblicher pulvermetallurgischer Verfahren, wie z.B. heißisostatisches Pressen, hergestellt, siehe beispielsweise US 4 917 858, US 5 015 534 und US 5 424 027. In diesen Fällen werden als Vormaterial üblicherweise mittels Sprühtechnik hergestellte Pulver verwendet.
Pulvermetallurgisch gefertigte Formteile sind deutlich feinkörniger, als nach Gussverfahren gefertigte. Pulvermetallurgisch gefertigtes Material weist jedoch mit Gas gefüllte Poren auf - üblicherweise das bei der sprühtechnischen Pulverherstellung verwendete Schutzgas Argon. Die Poren wirken sich nachteilig sowohl auf das Kriechverhalten, als auch auf das Ermüdungsverhalten aus.
Bei Gussformen aus γ-TiAl lässt sich mittels speziell entwickelter Umformverfahren, wie Strangpressen, Schmieden, Walzen und Kombinationen dieser Verfahren, eine zufriedenstellende Kornfeinung erreichen. Im industriellen Maßstab werden heute γ-TiAl Legierungen daher üblicherweise aus VAR (Vacuurn-Arc-Remelting) Vormaterial, das mittels Umformung und Glühbehandlung in einen feinkömigen Zustand übergeführt wird, hergestellt, wobei die eigentliche Formgebung im Anschluss an die Warmbearbeitung mittels aufwendiger mechanischer, überwiegend spanbildender Bearbeitung erfolgt.
Die gesamte Fertigungsroute für solche Formteile ist daher teuer und beschränkt aus Kostengründen die mögliche Anwendungsvielfalt.
Die Herstellung von feinkörnigen Formteilen aus γ-TiAe mit einer niedrigeren Porsität ist z.B. aus Semiatin et al. "Processing of intermetallics alloys" - Sructural Intermetallics 1997 - Seiten 263-276, bekannt.
Es ist danach Aufgabe der vorliegenden Erfindung, gemessen am oben beschriebenen Stand der Technik, einen feinkörnigen, möglichst porentrelen und duktilen Formteil auf Basis von intermetallischem γ-TiAl, mittels einer vergleichsweise wirtschaftlichen Verfahrenstechnik bereitzustellen.
Diese Aufgabe wird gemäß der Erfindung gelöst durch ein Verfahren zur Herstellung eines Formteilsaus einer intermetallischen γ-TiAl-Legierung mit 41 - 49 Atom% Al, der eine Korngröße d85< 300 µm und ein Porenvolumen < 0,2 Vol.% aufweist und das zumindest folgende Verfahrensschritte umfasst:
  • Fertigen eines Halbzeuges unter Einbeziehung eines Umformprozesses, wobei der Umformgrad > 65 % beträgt,
  • Ausformen des Halbzeuges im Solidus-Liquidus Phasenzustand der Legierung in einem Formwerkzeug unter zumindest zeitweisem Aufbringen von mechanischen Formungskräften.
Die Unteransprüche enthalten bevorzugte Ausführungen des Formteils gemäß Erfindung.
Die Verarbeitung einer Legierung im Solidus-Liquidus Phasenzustand ist ein Semi-Solid Prozess. Üblicherweise werden bei einem Semi-Solid-Prozess teilflüssige Massen in einem thixotropen Zustand verarbeitet. Thixotropie ist die Eigenschaft eines Materials, sich bei Abwesenheit äußerer Kräfte hochviskos zu verhalten, unter der Wirkung von Scherkräften aber eine um mehrere Größenordnungen niedrigere Viskosität anzunehmen. Thixotropes Verhalten ist auf bestimmte Legierungszusammensetzungen und solche Temperaturbereiche beschränkt, bei denen sowohl feste, als auch flüssige Phasenanteile in der Legierung vorliegen. Dabei wird eine Semi-Solid Phase angestrebt, bei der regelmäßige, das heißt möglichst globulare Körner im festen Phaseanteil vorliegen, die gleichmäßig von Schmelze umgeben sind.
Die Formgebung einer Legierung mittels Semi-Solid Prozess als solche ist bekannt.
Üblicherweise werden im Zuge dieses Prozesses schmelzflüssige Legierungen in Anwendung einer der bekannten Rührtechniken, wie MHD (Magneto-Hydrodynamic-Stirring) oder mechanisches Rühren, langsam auf eine Temperatur im Solidus-Liquidus Zweiphasenbereich abgekühlt. Durch das Rühren werden aus der Schmelze ausscheidende Dendriten zerstört. Dabei werden dem Material thixotrope Eigenschaften verliehen und die Ausbildung von globularen Primärkristallen in der festen Phase gefördert. Dieses Verfahren ist in der US 5 358 687 für intermetallische Werkstoffe beschrieben, wobei unter anderen auch TiAl erwähnt ist, im Unterschied zur vorliegenden Erfindung aber eine weitere Formgebung in Einbeziehung von mechanischen Warmumformschritten nicht genannt ist. Die erreichbare Korngröße lag bei > 50 µm.
Diese Technik auf γ-TiAl angewandt, lässt indes keine wirtschaftliche Fertigung zu. Bei TiAl ist der mechanische Rührerverschleiß zu hoch.
Ebenfalls schon früher wurde in Halbzeug aus einzelnen Stahllegierungen mittels Strangpressen im Labormaßstab ein Gefüge erzeugt, das bei einer nachfolgenden Weiterverarbeitung im Solidus-Liquidus Zweiphasengebiet thixotrope Eigenschaften aufwies (Dissertation H. Müller-Späth, RWTH Aachen, 1999). Dort konnten indes keine ermutigenden Qualitäts- und/oder Kostenziele erreicht werden.
Anders als Stahllegierungen sind aber intermetallische Werkstoffe umformtechnisch schwierig zu handhaben. Speziell bei γ-TiAl ist die erreichbare Gefügekonsolidierung wenig zufriedenstellend. Dies drückt sich darin aus, dass das umgeformte und dynamisch rekristallisierte Gefüge regelmäßig eine zeilige Struktur und durch Segregation entstandene chemische Inhomogenitäten aufweist.
Für den Fachmann war es daher nicht vorhersehbar, dass gemäß der Erfindung in einem ersten Warmumform-Prozessabschnitt zu Halbzeug umgeformte γ-TiAl-Legierungen, nach einem Anwärmen auf eine Temperatur im Solidus-Liquidus Phasengebiet für die weitere formgebende Verarbeitung thixotropes Verhalten zeigen. Voraussetzung ist jedoch ein Umformgrad von > 65 %, wobei dieser Wert folgendermaßen definiert ist: Umformgrad = {(Querschnittsfläche vor der Umformung - Querschnittsfläche im umgeformten Zustand) / Querschnittsfläche vor der Umformung} x 100 [%]. Bei niedrigeren Umformgraden ist das thixotrope Verhalten nicht zufriedenstellend.
Der Nachweis der beschriebenen Vorteile gelang mittels einer Verfahrensroute, die in den Beispielen für einzelnen unterschiedliche γ-TiAl-Legierungen näher beschrieben ist.
Mittels VAR (Vacuum Arc Remelting) erzeugtes γ-TiAl Vormaterial wurde vorzugsweise durch Strangpressen mit einem Umformgrad > 65 % umgeformt. Dann wurde das Halbzeug in Gestalt eines grobgeformten Bolzens induktiv auf eine Temperatur zwischen Solidus und Liquidus erwärmt. Das Halbzeug wies in diesem Zustand eine ausreichend hohe "Handlings"-Festigkeit auf, um dieses durch Thixogießen formgebend zu verarbeiten. Dazu wurde es in die Füllkammer einer Druckgussmaschine eingelegt und mit dem Gießkolben in die angrenzende Kokille gedrückt. Bei der dabei auftretenden Scherbelastung bildete sich die Legierung als fließfähige Suspension aus, die sich zur Formung komplex gestalteter Bauteile nutzen ließ. Dieses Eindrücken hat langsam und frei von Strömungsturbulenzen im Werkstoff zu erfolgen, so dass sich der Werkstoff frei von Poren und Lunkern in der Kokille ausbreitet.
Durch diesen Formgebungsprozess konnte eine mechanische, spanende Bearbeitung entfallen oder stark reduziert werden, so dass neben hervorragender Gefüge- und mechanischer Eigenschaften für die erfindungsgemäßen Formteile auch hohe Wirtschaftlichkeit bei deren Fertigung gegeben war. Im Vergleich zu direkt aus der Schmelze in eine Endform gegossenen Formteilen liegt der Vorteil gemäß Erfindung in der wesentlich feinkörnigeren Gefügestruktur und dem hohen Grad an Porenfreiheit.
Als Maß für die Korngrößen der so gefertigten Formteile wurde die Korngrößenverteilung mittels Linienschnittverfahrens und der d95 Wert ermittelt. Darunter ist zu verstehen, dass 95 % der ausgewerteten Körner einen Durchmesser aufweisen, der kleiner ist als der angegebene Wert. Dazu ist anzumerken, dass die d95 Korngröße einen deutlich höheren Zahlenwert ergibt, als dies bei der Angabe in Form der mittleren Korngröße der Fall ist.
Der d95-Wert ist jedoch speziell bei Gefügen mit einem hohen Korngrößenstreubereich der aussagekräftigere Wert. Die erzielbaren d95-Korngrößen liegen je nach Zusammensetzung des γ-TiAl Werkstoffes und des angewandten Semi-Solid Prozess bei Werten < 100 µm bis < 300 µm.
Solche, zu Vergleichszwecken mittels Feinguss gefertigte und nicht durch Warmumformen weiterbehandelte Formteile zeigen ein zumindest um einen Faktor 5 grobkörnigeres Gefüge als erfindungsgemäß hergestellte Formteile.
Besonders ausgeprägt ist der Korngrößenunterschied, wenn gemäß einer bevorzugten Ausführung der Erfindung, Legierungen mit einem Niobgehalt zwischen 1,5 und 12 Atom% verwendet werden. Diese Legierungen zeigen ein um den Faktor 7 bis zu einem Faktor 16 feinkörnigeres Gefüge als bei konventioneller Fertigung mittels Feinguss.
Die besten Resultate konnten mit γ-TiAl-Legierungen mit einem Niobgehalt von 5 bis 10 Atom% erreicht werden. Ein zusätzlicher Feinungseffekt wurde durch die Legierungselemente Kohlenstoff und Bor in Gehalten von jeweils bis zu 0,4 Atom% erzielt.
Als brauchbare alternative Ausformungs- bzw. Formgebungsverfahren für die erfindungsgemäßen γ-TiAl-Legierungen im Solidus-Liquidus Phasenzustand haben sich das Thixoschmieden und das Thixoquerfließpressen, jede eine an sich bereits bekannte und erprobte Technik, bewährt. Beim Thixoschmieden wird der teilflüssige Bolzen in ein offenes Werkzeug, bzw. Gesenkwerkzeug eingelegt. Die Formgebung erfolgt durch eine anschließende Werkzeugbewegung, zum Beispiel in einer Schmiedepresse.
Das Thixoquerfließpressen stellt eine Abwandlung des Thixogießens dar. Dabei wird der von einem Stempel geschobene Bolzen auf seinem Weg von der Gießkammer zur Kokille bzw. zum Formgebungswerkzeug um einen Winkel von 90° umgelenkt.
Im Folgenden wird die Erfindung an Hand von Herstellbeispielen näher erläutert.
Beispiel 1
Die Herstellung des Primärgusses einer Legierung der Zusammensetzung Titan - 46,5 Atom% Al - 2 Atom% Cr - 1,5 Atom% Nb - 0,5 Atom% Ta - 0,1 Atom% Bor erfolgte über Vakuum-Lichtbogenschmelzen (VAR). Für das Erreichen einer zufriedenstellenden Homogenität wurde der Gussblock zweimal umgeschmolzen. Der Ingotdurchmesser betrug 210 mm, die Ingotlänge 420 mm.
Der Ingot wurde im gekannten Zustand gemäß vorbekannter Verfahrensbedingungen vorbeschrieben stranggepresst, wobei der Umformgrad 83 % betrug. Ein Bolzenabschnitt der Länge 110 mm wurde anschließend auf eine Temperatur im Solidus-Liquidus Phasenbereich der Legierung von 1460 - 1470°C erwärmt und in diesem Zustand in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst.
Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung der Abmessung 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße d95 betrug 120 µm.
Die relative Dichte wurde mittels Auftriebsmethode bestimmt und betrug 99,98 %.
Zum Vergleich, die Korngröße d95 des zweimal umgeschmolzenen Feingussteiles betrug 1400 µm.
Beispiel 2
Analog zur Prozessführung in Beispiel 1 wurde ein Ingot der Legierungszusammensetzung Titan - 45 Atom% Al - 5 Atom% Nb - 0,2 Atom% C - 0,2 Atom% Bor über Vakuum-Lichtbogenschmelzen (VAR) gefertigt und zweimal umgeschmolzen. Der Ingotdurchmesser betrug 210 mm, die Ingotlänge 420 mm.
Der Ingot wurde im gekannten Zustand nach üblichen Verfahren stranggepresst, wobei der Umformgrad 83 % betrug. Ein Bolzenabschnitt mit der Länge von 110 mm wurde auf eine Temperatur von 1460 - 1480°C erwärmt, die Legierung damit in den Solidus-Liquidus Phasenbereich gebracht und in diesem Zustand in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst.
Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung von 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße d95 betrug 75 µm.
Die relative Dichte betrug 99,99 %.
Die Korngröße d95 des eingangs gefertigten Feingussteiles hatte 1200 µm betragen.
Beispiel 3
Analog dem Prozess von Beispiel 1 wurde ein Primärgussrohling der Legierung Titan - 46,5 Atom% Al - 2 Atom % Cr - 0,5 Atom% Ta - 0,1 Atom% Bor über Vakuum-Lichtbogenschmelzen (VAR) hergestellt und zweimal umgeschmolzen. Der Ingotdurchmesser betrug 170 mm, die Ingotlänge 420 mm.
Der Ingot wurde im gekannten Zustand stranggepresst, wobei der Umformgrad 83 % betrug. Ein Bolzenabschnitt mit der Länge von 110 mm wurde auf eine Temperatur von 1440 - 1470°C erwärmt und in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst.
Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung von 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße d95 betrug 220 µm.
Die relative Dichte betrug 99.99 %.
Die Korngröße d95 des Feingussteiles hatte 1500 µm betragen.
Beispiel 4
Ein Primärgussblock der Legierung Titan -46,5 Atom% Al - 10 Atom% Nb wurde entsprechend der Prozessschritte von Beispiel 1 über Vakuum-Lichtbogenschmelzen (VAR) gefertigt und zweimal umgeschmolzen. Der Ingotdurchmesser betrug 170 mm, die Ingotlänge 420 mm.
Der Ingot wurde im gekannten Zustand stranggepresst, wobei der Umformgrad 83 % betrug. Ein Bolzenabschnitt mit der Länge von 110 mm wurde auf eine Temperatur von 1440 - 1470°C erwärmt und in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst.
Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung von 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße d95 betrug 90 µm.
Die relative Dichte betrug 99,98 %.
Die Korngröße d95 des Feingussteiles hatte 1300 µm betragen.
Beispiel 5
Der Primärgussblock der Legierung Titan - 46,5 Atom% Al - 10 Atom% Nb wurde entsprechend Beispiel 1 über Vakuum-Lichtbogenschmelzen (VAR) gefertigt und zweimal umgeschmolzen. Der Ingotdurchmesser betrug 170 mm, die Ingotlänge 420 mm.
Der Ingot wurde im gekannten Zustand stranggepresst, wobei der Umformgrad 72 % betrug. Ein Bolzenabschnitt mit der Länge von 110 mm wurde auf eine Temperatur von 1440 - 1470°C erwärmt und in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst.
Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung von 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße d95 betrug 170 µm.
Die relative Dichte betrug 99,98 %.
Die Korngröße d95 des Feingussteiles hatte 1300 µm betragen.
Die Erfindung ist nicht auf die vorgenannten Ausführungsbeispiele beschränkt. Bevorzugte Anwendungsbereiche für Formteile gemäß Erfindung sind die Automobilindustrie, z.B. Getriebe- und Motorteile, aber auch Teile für stationäre Gasturbinen und für die Luft- und Raumfahrt, z.B. Turbinenkomponenten.

Claims (15)

  1. Verfahren zur Herstellung eines Formteils aus einer intermetallischen γ-TiAl-Legierung mit 41 - 49 Atom% Al, mit einer Korngröße d95< 300 µm und einem Porenvolumen < 0,2 Vol.%, das zumindest folgende Verfahrensschritte umfasst:
    Fertigen eines Halbzeuges unter Einbeziehung eines Warmumformprozesses, wobei der Umformgrad > 65 % beträgt,
    Ausformen des Halbzeuges im Solidus-Liquidus Phasenzustand der Legierung in einem Formwerkzeug unter zumindest zeitweisem Aufbringen von mechanischen Formungskräften.
  2. Verfahren zur Herstellung eines Formteils gemäß Anspruch 1, dadurch gekennzeichnet, dass sich die Legierung beim Ausformen im thixotropen Zustand befindet
  3. Verfahren zur Herstellung eines Formteils gemäß Anspruch 1 und 2, dadurch gekennzeichnet, dass der feste Bestandteil der Legierung im Solidus-Liquidus Phasenzustand beim Ausformen globulares Gefüge aufweist.
  4. Verfahren zur Herstellung eines Formteils gemäß Anspruch 1 bis 3, dadurch gekennzeichnet, dass das Ausformen des Halbzeuges mittels Thixoschmieden in einer Gesenkform erfolgt.
  5. Verfahren zur Herstellung eines Formteils gemäß Anspruch 1 bis 3, dadurch gekennzeichnet, dass das Ausformen mittels Thixofließpressen des Halbzeuges in eine Formkokille erfolgt.
  6. Verfahren zur Herstellung eines Formteil, gemäß Anspruch 1 bis 5, dadurch gekennzeichnet, dass das Fertigen des Halbzeuges in Einbeziehung eines Strangpress-Prozesses erfolgt.
  7. Verfahren zur Herstellung eines Formteils gemäß Anspruch 1 bis 6, dadurch gekennzeichnet, dass dieser eine Korngröße d95 < 200 µm aufweist.
  8. Verfahren zur Herstellung einer Formteils gemäß Anspruch 1 bis 7, dadurch gekennzeichnet, dass dieser eine Korngröße d95 < 150 µm aufweist
  9. Verfahren zur Herstellung eines Formteils gemäß Anspruch 1 bis 8, dadurch gekennzeichnet, dass die Legierung 43 - 47 Atom% Al und 1,5 -12 Atom% Niob enthält
  10. Verfahren zur Herstellung eines Formteils gemäß Anspruch 9, dadurch gekennzeichnet, dass der Niobgehalt 5 - 10 Atom% beträgt.
  11. Verfahren zur Herstellung eines Formteils gemäß Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Legierung weiters folgende Bestandteile enthält: Bor. 0,05 - 0,5 Atom%, Kohlenstoff: 0 - 0,5 Atom%, Chrom: 0 - 3 Atom%, Ta: 0 - 2 Atom%.
  12. Verfahren zur Herstellung eines Formteils gemäß Anspruch 11, dadurch gekennzeichnet, dass der Kohlenstoffgehalt 0,1- 0,4 Atom% und der Borgehalt 0,1- 0,4 Atom% beträgt.
  13. Verfahren zur Herstellung einer Formteils gemäß Anspruch 1 bis 7, dadurch gekennzeichnet, dass der Warmumformprozess mit einem Umformgrad > 80 % erfolgt.
  14. Verfahren zur Herstellung eines Formteils gemäß Anspruch 1 bis 13 zur Verwendung als für Motor- oder Getriebebautell in Automobilen.
  15. Verfahren zur Herstellung eines Formteils Anspruch 1 bis 14 zur Verwendung als Komponente in stationären und nicht stationären Gasturbinen.
EP02759850A 2001-07-19 2002-07-12 Verahren zur herstellung eines formteiles aus einem intermetallischen gamma-ti-al-werkstoff Expired - Lifetime EP1407056B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT02759850T ATE305526T1 (de) 2001-07-19 2002-07-12 Verahren zur herstellung eines formteiles aus einem intermetallischen gamma-ti-al-werkstoff

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0057301U AT5199U1 (de) 2001-07-19 2001-07-19 Formteil aus einem intermetallischen gamma-ti-al-werkstoff
AT5732001 2001-07-19
PCT/AT2002/000205 WO2003008655A2 (de) 2001-07-19 2002-07-12 FORMTEIL AUS EINEM INTERMETALLISCHEN GAMMA-TiAl WERKSTOFF

Publications (2)

Publication Number Publication Date
EP1407056A2 EP1407056A2 (de) 2004-04-14
EP1407056B1 true EP1407056B1 (de) 2005-09-28

Family

ID=3494171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02759850A Expired - Lifetime EP1407056B1 (de) 2001-07-19 2002-07-12 Verahren zur herstellung eines formteiles aus einem intermetallischen gamma-ti-al-werkstoff

Country Status (5)

Country Link
US (1) US6805759B2 (de)
EP (1) EP1407056B1 (de)
AT (1) AT5199U1 (de)
DE (1) DE50204409D1 (de)
WO (1) WO2003008655A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1568486B1 (de) * 2004-02-26 2008-04-30 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur Herstellung von Bauteilen oder Halbzeugen, die intermetallische Titanaluminid-Legierungen enthalten, sowie mittels des Verfahrens herstellbare Bauteile
DE102004056582B4 (de) * 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Legierung auf der Basis von Titanaluminiden
DE102005022506B4 (de) * 2005-05-11 2007-04-12 Universität Stuttgart Verfahren zum Schmieden eines Bauteils aus einer Titanlegierung
FR2913898B1 (fr) * 2007-03-23 2009-05-08 Alcan Rhenalu Sa Element structural en alliage d'aluminium incluant un capteur optique.
TW200900541A (en) * 2007-06-29 2009-01-01 Jun-Yen Uan Method for making lithium-aluminum compound with high lithium content
AT509768B1 (de) 2010-05-12 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg Verfahren zur herstellung eines bauteiles und bauteile aus einer titan-aluminium-basislegierung
US9061351B2 (en) * 2011-11-10 2015-06-23 GM Global Technology Operations LLC Multicomponent titanium aluminide article and method of making
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
FR3019561B1 (fr) * 2014-04-08 2017-12-08 Snecma Traitement thermique d'un alliage a base d'aluminure de titane
CN108034857A (zh) * 2017-11-23 2018-05-15 中国航发北京航空材料研究院 一种防钛火阻燃涂层及其制备方法
CN108559872B (zh) * 2018-06-05 2020-06-30 中国航发北京航空材料研究院 一种TiAl合金及其制备方法
JP7233659B2 (ja) * 2019-03-18 2023-03-07 株式会社Ihi 熱間鍛造用のチタンアルミナイド合金材及びチタンアルミナイド合金材の鍛造方法並びに鍛造体
CN110643877A (zh) * 2019-09-09 2020-01-03 中国航发北京航空材料研究院 一种含W、Mn、Si、B、C及稀土元素的TiAl金属间化合物
CN116607048A (zh) * 2022-02-09 2023-08-18 中国科学院金属研究所 一种用于精密铸造的γ-TiAl合金及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015534A (en) 1984-10-19 1991-05-14 Martin Marietta Corporation Rapidly solidified intermetallic-second phase composites
US4917858A (en) 1989-08-01 1990-04-17 The United States Of America As Represented By The Secretary Of The Air Force Method for producing titanium aluminide foil
US5284620A (en) 1990-12-11 1994-02-08 Howmet Corporation Investment casting a titanium aluminide article having net or near-net shape
US5204058A (en) 1990-12-21 1993-04-20 General Electric Company Thermomechanically processed structural elements of titanium aluminides containing chromium, niobium, and boron
US5131959A (en) 1990-12-21 1992-07-21 General Electric Company Titanium aluminide containing chromium, tantalum, and boron
US5226985A (en) 1992-01-22 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
JP3839493B2 (ja) * 1992-11-09 2006-11-01 日本発条株式会社 Ti−Al系金属間化合物からなる部材の製造方法
US5768679A (en) * 1992-11-09 1998-06-16 Nhk Spring R & D Center Inc. Article made of a Ti-Al intermetallic compound
US5358687A (en) * 1993-06-21 1994-10-25 Agency Of Industrial Science And Technology Processes for manufacturing intermetallic compounds, intermetallic alloys and intermetallic matrix composite materials made thereof
JP3626507B2 (ja) 1993-07-14 2005-03-09 本田技研工業株式会社 高強度高延性TiAl系金属間化合物
US5424027A (en) 1993-12-06 1995-06-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce hot-worked gamma titanium aluminide articles
US6231699B1 (en) * 1994-06-20 2001-05-15 General Electric Company Heat treatment of gamma titanium aluminide alloys
US5634992A (en) 1994-06-20 1997-06-03 General Electric Company Method for heat treating gamma titanium aluminide alloys
US5609698A (en) * 1995-01-23 1997-03-11 General Electric Company Processing of gamma titanium-aluminide alloy using a heat treatment prior to deformation processing
US5653828A (en) 1995-10-26 1997-08-05 National Research Council Of Canada Method to procuce fine-grained lamellar microstructures in gamma titanium aluminides
US5823243A (en) * 1996-12-31 1998-10-20 General Electric Company Low-porosity gamma titanium aluminide cast articles and their preparation
GB9714391D0 (en) * 1997-07-05 1997-09-10 Univ Birmingham Titanium aluminide alloys
AT2881U1 (de) * 1998-06-08 1999-06-25 Plansee Ag Verfahren zur herstellung eines tellerventiles aus gamma-tial-basislegierungen

Also Published As

Publication number Publication date
AT5199U1 (de) 2002-04-25
DE50204409D1 (de) 2006-02-09
US6805759B2 (en) 2004-10-19
US20040094242A1 (en) 2004-05-20
WO2003008655A3 (de) 2003-10-30
EP1407056A2 (de) 2004-04-14
WO2003008655A2 (de) 2003-01-30

Similar Documents

Publication Publication Date Title
DE112005000511B4 (de) Magnesiumknetlegierung mit verbesserter Extrudierbarkeit und Formbarkeit
EP3069802B1 (de) Verfahren zur herstellung eines bauteils aus einem verbund-werkstoff mit einer metall-matrix und eingelagerten intermetallischen phasen
DE3382585T2 (de) Feinkoernige metallzusammensetzung.
EP1407056B1 (de) Verahren zur herstellung eines formteiles aus einem intermetallischen gamma-ti-al-werkstoff
DE69303417T2 (de) Metallmatrixverbundwerkstoff auf Aluminiumbasis
EP1287173B1 (de) Bauteil auf basis von gamma-tial-legierungen mit bereichen mit gradiertem gefüge
EP3370900B1 (de) Verfahren zum herstellen eines leichtmetallgussbauteils und leichtmetallgussbauteil
DE68907331T2 (de) Verfahren zur Herstellung von Aluminiumlegierungen der Serie 7000 mittels Sprühabscheidung und nichtkontinuierlich verstärkten Verbundwerkstoffen, deren Matrix aus diesen Legierungen mit hoher mechanischer Festigkeit und guter Duktilität besteht.
US20110146853A1 (en) Titanium Alloy Microstructural Refinement Method and High Temperature, High Strain Rate Superplastic Forming of Titanium Alloys
EP0987344A1 (de) Schmiedstücke aus hochfester Aluminium-Legierung
DE3445767A1 (de) Verfahren zum Schmieden von Superlegierungen auf Nickelbasis sowie ein Gegenstand aus einer Superlegierung auf Nickelbasis mit verbesserter Schmiedbarkeit
EP0464366A1 (de) Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen Legierung auf der Basis Titanaluminid
EP0519849B1 (de) Chrom enthaltende Gammatitanaluminiden und Verfahren zu ihrer Herstellung
DE102011121292B4 (de) Bremsscheibe aus einer Aluminium-Matrix-Verbundlegierung mit Siliziumcarbid-Partikeln und Herstellungsverfahren hierfür
EP3372700A1 (de) Verfahren zur herstellung geschmiedeter tial-bauteile
US4869751A (en) Thermomechanical processing of rapidly solidified high temperature al-base alloys
DE3041942A1 (de) Gussstrang aus aluminiumknetlegierung hoher zugfestigkeit usw. sowie verfahren zu seiner herstellung
EP1680246B1 (de) Verfahren zur herstellung von metall-matrix-verbundwerkstoffen
DE69120299T2 (de) Übereutektisches aluminium-silikon-pulver und dessen herstellung
DE3835253A1 (de) Gegenstand aus einer aluminium-silizium-legierung und verfahren zu seiner herstellung
DE102014002583B3 (de) Verfahren zur Herstellung eines verschleißbeständigen Leichtmetall-Bauteils
DE3544759C2 (de)
DE2929812C2 (de) Rad für Kraftfahrzeuge
DE2108978A1 (de) Verfahren zur Herstellung von Superlegierungen
DE102017201513A1 (de) Metallisches Bauteil und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040113

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20041028

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PROCESS FOR PRODUCING A MOULDED PIECE MADE FROM AN INTERMETALLIC GAMMA-TI-AL MATERIAL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050928

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060108

REF Corresponds to:

Ref document number: 50204409

Country of ref document: DE

Date of ref document: 20060209

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060228

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050928

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060629

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070719

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060712

BERE Be: lapsed

Owner name: PLANSEE A.G.

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060712

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203