EP1403402A1 - Procédé pour la déposition electrolytique des materiaux avec aluminium, magnesium ou les alliages d'aluminium et magnesium - Google Patents

Procédé pour la déposition electrolytique des materiaux avec aluminium, magnesium ou les alliages d'aluminium et magnesium Download PDF

Info

Publication number
EP1403402A1
EP1403402A1 EP02021402A EP02021402A EP1403402A1 EP 1403402 A1 EP1403402 A1 EP 1403402A1 EP 02021402 A EP02021402 A EP 02021402A EP 02021402 A EP02021402 A EP 02021402A EP 1403402 A1 EP1403402 A1 EP 1403402A1
Authority
EP
European Patent Office
Prior art keywords
alet
electrolyte
magnesium
aluminum
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02021402A
Other languages
German (de)
English (en)
Inventor
Jörg Dr. Heller
Hans De Vries
Matthias Dr. Härtel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aluminal Oberflachentechnik GmbH
Original Assignee
Aluminal Oberflachentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminal Oberflachentechnik GmbH filed Critical Aluminal Oberflachentechnik GmbH
Priority to EP02021402A priority Critical patent/EP1403402A1/fr
Priority to US10/528,125 priority patent/US7468123B2/en
Priority to CN038230569A priority patent/CN1685087B/zh
Priority to AU2003250061A priority patent/AU2003250061A1/en
Priority to PCT/EP2003/007632 priority patent/WO2004033762A1/fr
Priority to JP2004542263A priority patent/JP2006500476A/ja
Priority to EP03807748A priority patent/EP1543180B1/fr
Priority to DE50303610T priority patent/DE50303610D1/de
Publication of EP1403402A1 publication Critical patent/EP1403402A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals

Definitions

  • the present invention relates to a method for the electrolytic coating of materials with aluminum, magnesium or alloys of aluminum and magnesium, the material being dipped into an electrolyte for pretreatment and being anodically switched there, and the electrolytic coating being carried out in the same electrolyte immediately thereafter.
  • the quality of the deposited aluminum, magnesium or aluminum / magnesium coating is improved by the method according to the invention.
  • the deposition of aluminum, magnesium or aluminum / magnesium alloys on materials consisting of base metals is a tried and tested means of protecting these materials from corrosion. At the same time, they are provided with a decorative coating.
  • the protective metal layer is mainly galvanically deposited on the material. It is advantageous here if the aluminum, magnesium or aluminum / magnesium layer is carried out on the material without the application of metallic intermediate layers between said metal layer and the material. If intermediate layers between the material and the surface layer made of aluminum, magnesium or aluminum / magnesium alloy are applied, there is a risk of contact corrosion due to the applied intermediate layer. In addition, thermal problems can arise due to the different expansion coefficients of the surface layer and the intermediate layer.
  • the electrolytes that have proven themselves in the prior art include melt flow electrolytes, such as electrolytes, which contain aluminum halides or aluminum alkyl complexes. All these electrolyte systems have in common that the material on its surface must be cleaned before coating. This is particularly the case for materials made from base metal exist which form an oxide layer, the problem that this oxide layer must be completely removed before coating. If the surface of the materials is not completely cleaned, impurities or residues of the oxide layer of the metal from which the material is made adhere to the surface and impair the adhesion of the subsequently electrolytically applied metal layer. Furthermore, it is possible that no metal layer is applied at the points where contaminants are present on the surface, since the contaminants are generally not electrically conductive and thus electrolytic deposition is prevented at this point. This then inevitably leads to corrosion problems of the finished coated material at the point where the metal layer was not completely applied.
  • DE-C3-22 60 191 describes a method for the preparation of materials made of electrically conductive materials.
  • the last step in the process of shaping the materials, in which a new bare surface is created on the material, is carried out in a suitable inert gas or inert liquid medium with the exclusion of atmospheric oxygen and moisture.
  • This method has the disadvantage that, in particular when using an inert liquid medium which covers the surface of the material and can thus be placed in the coating electrolyte, the latter subsequently contaminates or hydrolyzes the electrolyte.
  • inert gas media When using inert gas media, the problem arises in large-scale industrial use that an absolutely oxygen-free inert gas atmosphere is practically impossible to achieve.
  • DE-AS-12 12 213 describes the pretreatment of a material in a protective gas atmosphere.
  • the oxide layer on the surface of the material can be removed by anodically switching the material before depositing the aluminum layer in the electrolyte, which is made from sodium fluoride and aluminum triethyl. Then the polarity of the current is reversed and aluminum is deposited on the material.
  • the electrolyte can only be used for the deposition of aluminum on materials.
  • the deposition of magnesium or aluminum / magnesium layers is not possible, since the presence of halide ions in the electrolyte during the anodic polarization would result in immediately insoluble magnesium halide compounds which prevent the deposition of magnesium or aluminum / magnesium on the material.
  • the resulting magnesium halides would immediately prevent the current flow in the electrolyte by blocking the electrodes.
  • DE-AS-21 22 610 describes a process for the anodic pretreatment of light metals for the galvanic deposition of aluminum.
  • the components are cleaned by treating the light metal materials in a melt electrolyte, the materials being anodically loaded.
  • the light metal materials cleaned in this way are immersed in an electrolytic cell, moist with electrolyte, i.e. still loaded with the molten electrolyte. It cannot be ruled out that atmospheric oxygen will still reach the pretreated material and oxidize it again on the surface.
  • the aluminum electrolyte is contaminated by the surface treatment electrolyte, which is a melt electrolyte.
  • the material consists of beryllium or aluminum is it possible that the material in the melt electrolyte, which is used for surface treatment by anodic oxidation of the material, also for the galvanic deposition of aluminum on the Beryllium or aluminum material is used.
  • the melting electrolyte described in DE-AS-21 22 610 is only suitable for pretreating beryllium or aluminum materials in order to subsequently coat them with aluminum in the same melting electrolyte.
  • the melting electrolyte is not suitable for the galvanic application of aluminum, magnesium or aluminum / magnesium layers on other materials.
  • DE-A1-198 55 666 describes an electrolyte which is suitable for the deposition of aluminum / magnesium alloy layers.
  • the disclosed aluminum-organic electrolyte contains K [AIEt 4 ] or Na [Et 3 Al-H-AlEt 3 ], as well as Na [AlEt 4 ], and trialkyl aluminum.
  • the electrolyte can be in the form of a toluene solution.
  • the electrolytic deposition of aluminum / magnesium alloy layers from the described electrolyte is carried out using a soluble aluminum and a likewise soluble magnesium anode or using an anode made of aluminum / magnesium alloy.
  • the electrolyte composition is adjusted by pre-electrolysis so that the deposited layer has the desired aluminum / magnesium ratio.
  • Mg [AlEt 4 ] 2 can also be added to the electrolyte.
  • DE-A1-198 55 666 thus teaches that the ratio of aluminum and magnesium in the deposited aluminum / magnesium layer depends very much on the concentration ratio of magnesium and aluminum in the electrolyte.
  • great care is required in the pretreatment of the materials to be coated, since contamination of the material surface by oxidation or other influences leads to a reduced quality of the galvanically deposited metal layer.
  • the technical object of the present invention is to provide a method in which aluminum, magnesium or aluminum / magnesium layers can be applied to materials, the quality of the metal coating being increased by an improved pretreatment of the material.
  • a method is to be made available be, in which the materials to be coated are reliably and inexpensively freed from adhering oxide layers or other impurities, wherein after the pretreatment of the materials a renewed contamination or oxidation of the materials should be prevented.
  • the technical object of the present invention is achieved by a method for the electrolytic coating of materials with aluminum, magnesium or alloys of aluminum and magnesium, the material being immersed in the electrolyte for pretreatment, being anodically switched there and immediately thereafter the electrolytic coating in the same Electrolytes take place, the electrolyte bath organoaluminum compounds of the general formula M [(R 1 ) 3 Al- (H-Al (R 2 ) 2 ) n -R 3 ] (I) and Al (R 4 ) 3 (II) as the electrolyte contains and n is 0 or 1, M is sodium or potassium and R 1 , R 2 , R 3 , R 4 may be the same or different, where R 1 , R 2 , R 3 , R 4 is a C 1 - bis C 4 alkyl group and a halogen-free, aprotic solvent is used as the solvent for the electrolyte.
  • the method according to the invention makes it possible to pretreat the material in the bath in which the electrolytic coating takes place later. Surprisingly, impurities that adhere to the non-pretreated material and any oxide layers on the material are removed.
  • the impurities which are thus introduced into the electrolyte bath surprisingly do not hinder the deposition of magnesium, aluminum or alloys of aluminum and magnesium on the material. Insoluble impurities can be continuously removed from the electrolyte bath using suitable filtration systems.
  • an electrolyte is used as a mixture of the complexes K [AlEt 4 ], Na [AlEt 4 ] and AlEt 3 used.
  • the molar ratio of the complexes to AIEt 3 is 1: 0.5 to 1: 3, the ratio of 1: 2 being preferred.
  • 0 to 25 mol%, preferably 5 to 20 mol% Na [AlEt 4 ], based on the mixture of the complexes K [AlEt 4 ] and Na [AlEt 4 ], are used.
  • a mixture of 0.8 mol of K [AlEt 4 ] , 0.2 mol of Na [AlEt 4 ], 2.0 mol of AlEt 3 in 3.3 mol of toluene can preferably be used as the electrolyte.
  • a mixture of Na [Et 3 Al-H-AlEt 3 ] and Na [AlEt4] and AIEt 3 can be used as the electrolyte in the process according to the invention.
  • the molar ratio of Na [Et 3 Al-H-AlEt 3 ] to Na [AlEt 4 ] is 4: 1 to 1: 1, with a ratio of 2: 1 being preferred. It is further preferred that the molar ratio of Na [AlEt 4 ] to AlEt 3 is 1: 2.
  • a mixture of 1 mol of Na [Et 3 Al-H-AlEt 3 ], 0.5 mol of Na [AlEt 4 ] and 1 mol of AlEt 3 in 3 mol of toluene is used as the electrolyte.
  • the electrolytic coating of materials with magnesium, aluminum or aluminum / magnesium alloys is preferably carried out at a temperature of 80 to 105 ° C. A temperature of the electroplating bath of 91 to 100 ° C. is preferred.
  • the electrolytic deposition of aluminum, magnesium, or aluminum / magnesium layers on the materials is carried out using a soluble aluminum and a likewise soluble magnesium anode or using an anode made of an aluminum / magnesium alloy.
  • a soluble aluminum and a likewise soluble magnesium anode or using an anode made of an aluminum / magnesium alloy are soluble aluminum and a likewise soluble magnesium anode or using an anode made of an aluminum / magnesium alloy.
  • the anodic switching of the material for pretreatment can be carried out for a period of 1 to 20 minutes, with 5 to 15 minutes being preferred.
  • the anodic loading of the materials required for the pretreatment is carried out with a current density of 0.2 to 2 A / dm 2 , preferably 0.5 to 1.5 A / dm 2 .
  • the material consists of a metal and / or a metal alloy and / or is a metallized, electrolyte-resistant material that can be dissolved in the electrolyte by anodic switching.
  • the materials to be coated are preferably rack goods, bulk goods or continuous products such as wire, square sheets, screws or nuts.
  • the method according to the invention is characterized in that impurities or oxide layers which adhere to the materials are reliably removed.
  • impurities or oxide layers which adhere to the materials are reliably removed.
  • there is no disadvantageous change in the electrolyte composition that would prevent high-quality deposition of aluminum, magnesium or aluminum / magnesium layers on the materials.
  • the galvanically applied metal layers are firmly adhering and homogeneously applied to the material, since after the cleaning a renewed contamination of the material is prevented.
  • the process steps mentioned also achieve a cost optimization of coating molded parts with metal layers.
  • Phase b) The dry part was introduced into a coating cell flooded with argon or nitrogen and, after a pre-rinsing in toluene, was introduced immediately into the coating electrolyte. A mixture of the complexes K [AlEt 4 ], K [AlEt 4 ] and AlEt 3 was used as the electrolyte, dissolved in toluene. An AIMg25 alloy plate served as the counter electrode. The product to be coated was first anodically poled and treated at a current density of 1 A / dm 2 for 5 minutes at an electrolyte temperature of 95 C. Then the polarity was reversed without removing the part from the electrolyte and immediately for 45 minutes at a current density of 1 , 5 A / dm 2 coated. An AIMg alloy layer approximately 14 ⁇ m thick was deposited.
  • the adhesive strength of the layer was checked by means of a cross cut test and a heat shock test (1 h at 220 ° C. and quenching in cold water). It was found that the deposited layer had excellent adhesion to the base material. No detachments or bubbles were found.
  • a part treated as a comparative sample was pretreated and coated as in Example 1, but without anodic polarity beforehand.
  • the layer could be peeled off as a film during the cross cut test. In the heat shock test, the layer showed bubbles.
  • a magnesium die-cast part made of an AZ-91 alloy was blasted with corundum (grain size 0-50 ⁇ m) at 2 bar pressure. The part was then immediately placed in the inert gas atmosphere of the coating cell, rinsed in toluene and immersed in the electrolyte bath as described in Example 1.
  • the product to be coated was anodized for 10 minutes at a current density of 1 A / dm 2 .
  • a layer of approx. 2 ⁇ m was removed from the product surface.
  • the polarity was then reversed and the part was connected cathodically for 1 hour at 1.5 A / dm 2 .
  • An AIMg layer with 23-25% Mg content and a layer thickness of approx. 18 ⁇ m was deposited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
EP02021402A 2002-09-25 2002-09-25 Procédé pour la déposition electrolytique des materiaux avec aluminium, magnesium ou les alliages d'aluminium et magnesium Withdrawn EP1403402A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP02021402A EP1403402A1 (fr) 2002-09-25 2002-09-25 Procédé pour la déposition electrolytique des materiaux avec aluminium, magnesium ou les alliages d'aluminium et magnesium
US10/528,125 US7468123B2 (en) 2002-09-25 2003-07-15 Method for electrolytic coating of materials with aluminum, magnesium or aluminum and magnesium alloys
CN038230569A CN1685087B (zh) 2002-09-25 2003-07-15 用铝、镁或铝镁合金对材料电解涂敷的方法
AU2003250061A AU2003250061A1 (en) 2002-09-25 2003-07-15 Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys
PCT/EP2003/007632 WO2004033762A1 (fr) 2002-09-25 2003-07-15 Procede d'enduction par electrolyse de materiaux avec de l'aluminium, du magnesium ou des alliages d'aluminium et de magnesium
JP2004542263A JP2006500476A (ja) 2002-09-25 2003-07-15 材料をアルミニウム、マグネシウム又はアルミニウムとマグネシウムの合金で電解被覆する方法
EP03807748A EP1543180B1 (fr) 2002-09-25 2003-07-15 Procede d'enduction par electrolyse de materiaux avec de l'aluminium, du magnesium ou des alliages d'aluminium et de magnesium
DE50303610T DE50303610D1 (de) 2002-09-25 2003-07-15 Verfahren zur elektrolytischen beschichtung von werkstoffen mit aluminium, magnesium oder legierungen von aluminium und magnesium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02021402A EP1403402A1 (fr) 2002-09-25 2002-09-25 Procédé pour la déposition electrolytique des materiaux avec aluminium, magnesium ou les alliages d'aluminium et magnesium

Publications (1)

Publication Number Publication Date
EP1403402A1 true EP1403402A1 (fr) 2004-03-31

Family

ID=31970302

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02021402A Withdrawn EP1403402A1 (fr) 2002-09-25 2002-09-25 Procédé pour la déposition electrolytique des materiaux avec aluminium, magnesium ou les alliages d'aluminium et magnesium
EP03807748A Expired - Fee Related EP1543180B1 (fr) 2002-09-25 2003-07-15 Procede d'enduction par electrolyse de materiaux avec de l'aluminium, du magnesium ou des alliages d'aluminium et de magnesium

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP03807748A Expired - Fee Related EP1543180B1 (fr) 2002-09-25 2003-07-15 Procede d'enduction par electrolyse de materiaux avec de l'aluminium, du magnesium ou des alliages d'aluminium et de magnesium

Country Status (7)

Country Link
US (1) US7468123B2 (fr)
EP (2) EP1403402A1 (fr)
JP (1) JP2006500476A (fr)
CN (1) CN1685087B (fr)
AU (1) AU2003250061A1 (fr)
DE (1) DE50303610D1 (fr)
WO (1) WO2004033762A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1524336A1 (fr) * 2003-10-18 2005-04-20 Aluminal Oberflächtentechnik GmbH & Co. KG Pièces à usiner recouvertes d'un alliage aluminium-magnesium
JP2016000838A (ja) * 2012-10-15 2016-01-07 住友電気工業株式会社 アルミニウム膜、アルミニウム膜形成体、及びアルミニウム膜の製造方法
CN104884666B9 (zh) 2012-12-26 2017-09-22 Posco公司 铝镁镀层钢板及其制造方法
TWI464276B (zh) * 2013-06-19 2014-12-11 China Steel Corp 陽極用鋁鎂合金片及其製造方法
CN104674219A (zh) * 2015-03-25 2015-06-03 东莞仁海科技股份有限公司 一种压铸件表面处理新工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1212213B (de) * 1964-02-29 1966-03-10 Aluminium Walzwerke Singen Verfahren zur Herstellung von stab- oder drahtfoermigen Elektroden fuer Elektrolytkondensatoren
DE2122610A1 (de) * 1971-05-07 1972-11-23 Siemens Ag Verfahren zur Beschichtung und Oberflaechenveredlung von Formstuecken aus Leichtmetallen und -legierungen
DE19855666A1 (de) * 1998-12-01 2000-06-08 Studiengesellschaft Kohle Mbh Aluminiumorganische Elektrolyte und Verfahren zur elektrolytischen Beschichtung mit Aluminium oder Aluminium-Magnesium Legierungen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148204A (en) * 1971-05-07 1979-04-10 Siemens Aktiengesellschaft Process of mechanically shaping metal articles
US3969195A (en) * 1971-05-07 1976-07-13 Siemens Aktiengesellschaft Methods of coating and surface finishing articles made of metals and their alloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1212213B (de) * 1964-02-29 1966-03-10 Aluminium Walzwerke Singen Verfahren zur Herstellung von stab- oder drahtfoermigen Elektroden fuer Elektrolytkondensatoren
DE2122610A1 (de) * 1971-05-07 1972-11-23 Siemens Ag Verfahren zur Beschichtung und Oberflaechenveredlung von Formstuecken aus Leichtmetallen und -legierungen
DE19855666A1 (de) * 1998-12-01 2000-06-08 Studiengesellschaft Kohle Mbh Aluminiumorganische Elektrolyte und Verfahren zur elektrolytischen Beschichtung mit Aluminium oder Aluminium-Magnesium Legierungen

Also Published As

Publication number Publication date
JP2006500476A (ja) 2006-01-05
WO2004033762A1 (fr) 2004-04-22
AU2003250061A1 (en) 2004-05-04
US20060137990A1 (en) 2006-06-29
CN1685087B (zh) 2010-12-29
US7468123B2 (en) 2008-12-23
EP1543180B1 (fr) 2006-05-31
DE50303610D1 (de) 2006-07-06
EP1543180A1 (fr) 2005-06-22
CN1685087A (zh) 2005-10-19

Similar Documents

Publication Publication Date Title
DE3048083C2 (de) Verfahren zur chemischen Entfernung von Oxidschichten von Gegenständen aus Titan oder Titanlegierungen
WO2009068168A1 (fr) Élément structurel en aluminium et/ou en alliage d'aluminium ayant une résistance à la corrosion très élevée et son procédé de réalisation
DE1496937B2 (de) Verfahren zum galvanischen abscheiden von aluminium aus aluminiumhalogenid enthaltenden salzschmelzbaedern auf metalloberflaechen
EP0090268B1 (fr) Procédé d'anodisation de produits en aluminium et pièces aluminées
EP0154367B1 (fr) Procédé de phosphatation de métaux
DE2845736C2 (fr)
DE3706711A1 (de) Verfahren zum reinigen von oberflaechen eines aluminiumgegenstandes
EP1543180B1 (fr) Procede d'enduction par electrolyse de materiaux avec de l'aluminium, du magnesium ou des alliages d'aluminium et de magnesium
EP1088117B1 (fr) Procede permettant d'appliquer une couche metallique sur la surface polymere d'une piece
EP3070188A2 (fr) Procede de revetement d'une broche inseree par compression et broche inseree par compression
DE3211782A1 (de) Bad und verfahren zum anodisieren von aluminierten teilen
EP2180088B1 (fr) Procédé de dépôt galvanique de couches en chrome dur
DE2263013A1 (de) Verfahren zum verbinden von titan oder tantal mit kupfer oder eisen
DE2512339A1 (de) Verfahren zur erzeugung einer haftenden metallschicht auf einem gegenstand aus aluminium, magnesium oder einer legierung auf aluminium- und/oder magnesiumbasis
WO2005045102A2 (fr) Revetement de substrats
EP1524336A1 (fr) Pièces à usiner recouvertes d'un alliage aluminium-magnesium
EP1533401A1 (fr) Electroplacage de substrats suivi d'une étape de diffusion
EP2045364A2 (fr) Déposition galvanique de couches de métaux sur des surfaces en magnésium ou en alliages de magnésium
EP1624093A1 (fr) Recouvrir des substrats en métaux legers ou en alliages de métaux légers
DE19533748C2 (de) Aktivierungslösung zur Vorbehandlung von metallischen Werkstoffen für die galvanische Metallbeschichtung aus nicht wäßrigen Elektrolyten, Verwendung und Verfahren
DE19751256C2 (de) Aluminiumdruckgußteil mit einer Aluminiumoxid-Konversionsschicht und Verfahren zu seiner Herstellung
AT395600B (de) Verfahren zum galvanisieren von keramischen materialien
DE3111369A1 (de) Bad und verfahren zum galvanischen aluminieren von polytetrafluoraethylenteilen
DE3107384A1 (de) Bauteil
WO1993020264A1 (fr) Procede de fabrication d'un materiau stratifie ou de pieces stratifiees pour palier lisse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041001