EP1381817B1 - Kühlelement zur kühlung eines metallurgischen ofens - Google Patents

Kühlelement zur kühlung eines metallurgischen ofens Download PDF

Info

Publication number
EP1381817B1
EP1381817B1 EP02724254A EP02724254A EP1381817B1 EP 1381817 B1 EP1381817 B1 EP 1381817B1 EP 02724254 A EP02724254 A EP 02724254A EP 02724254 A EP02724254 A EP 02724254A EP 1381817 B1 EP1381817 B1 EP 1381817B1
Authority
EP
European Patent Office
Prior art keywords
cooling
furnace
cooling element
plate
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02724254A
Other languages
English (en)
French (fr)
Other versions
EP1381817A1 (de
Inventor
Peter Heinrich
Luciano Ambrosi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Wurth SA
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP1381817A1 publication Critical patent/EP1381817A1/de
Application granted granted Critical
Publication of EP1381817B1 publication Critical patent/EP1381817B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/24Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/0051Cooling of furnaces comprising use of studs to transfer heat or retain the liner
    • F27D2009/0054Cooling of furnaces comprising use of studs to transfer heat or retain the liner adapted to retain formed bricks

Definitions

  • the invention relates to a cooling element for cooling a metallurgical furnace, in particular the slag and / or the metal zone of this furnace, wherein the Oven armor of the furnace on its side facing the furnace interior with Refractory material is delivered, and the cooling element with a coolant flowed through cooling part, which has a coolant inlet and outlet, as well as a thermally conductive cooled hot part, wherein the hot part of the Cooling element in the installed state flush with the in the furnace interior completing facing front side of the refractory material.
  • the invention relates a system for cooling a metallurgical furnace, which consists of at least one of these cooling elements, as well as one with such System equipped furnace.
  • Such metallurgical furnaces are used in the production of non-ferrous metals and pig iron.
  • round or rectangular ovens are used, where the required energy over self-baking electrodes from Söderberg type is introduced.
  • the melting process begins by introducing the energy over a free-burning arc, after Formation of a foamed slag is immersed in this.
  • the electrodes in the immerse conductive, liquid slag, the radiated energy is complete by resistance heating of the slag transferred to the metal bath. In in other cases, only part of the energy is by means of resistance heating the slag introduced into the metal bath.
  • Such “waffle coolers” are made of copper with cast-in tubes plate-shaped body, the provided on its hot side with dovetailed grooves and ribs are. In these grooves are used stones of refractory material or refractory masses pulped. The cooling effect of the ribs in the "waffle coolers” causes direct contact of the refractory material with liquid slag forms the desired "freeze line”. While such "waffle coolers” advantageously assume a supporting function, they have a disadvantage as a disadvantage Weight and the resulting high production costs.
  • Fingers, plate coolers as well as the waffle coolers penetrate in new condition not the entire thickness of the refractory furnace wall, but need still masonry in front of her furnace-side front wall. Moreover, they remain without connection to the outer wall of the furnace, the so-called tank, so one Forced by different thermal expansion of the refractory masonry and the tank is avoided.
  • US-A-1724098 discloses a cooling plate for provided with refractory lining Shaft furnaces, consisting of copper with arranged coolant channels and provided with the oven interior pointing cooled by heat conduction copper flat bars.
  • DE-A-2924991 discloses a cooled Oven wall element consisting of several for the coolant flow interconnected Pressure pipes, which at the furnace interior pointing vertex with heat conductors in shape are provided by welded flat iron bars.
  • the cast copper cooling element comprises a water-cooled connection part, on which several massive plate coolers are arranged like a comb, which enters the interior of the oven protrude. Refractory material is placed between the plate coolers.
  • the connecting part is located outside the furnace shell. Thickness and center distance of the plate coolers can be varied. The disadvantage of this solution is that when training with thin plate coolers the load on the hot side becomes very large, associated with the Danger of oxidizing the copper and a loss of thermal conductivity while with a training of thicker plate coolers the material costs rise and an unbalanced one Cooling is the result.
  • the invention is therefore based on the object, a cooling element and a cooling system to provide for a metallurgical furnace, while avoiding the above Disadvantages has a hot side, which immediately forms a freeze-line in the operating state.
  • an oven is to be provided, when equipped with such System has a high mechanical stability.
  • the entire hot part as a - single - plate is formed, and that the plate cold side, i. at its leading from the inside of the oven Side, a separate, provided withméffenzu- and drain - the only - refrigerator is assigned, wherein the cooling part is a tube and the plate with their from the furnace interior pioneering side permanently attached to the pipe parallel to the pipe axis.
  • a cooling element of a single plate formed, to which a separate and independent of other cooling elements cooling part arranged is.
  • a favorable ratio of the area of the hot part to Area of the refrigerator part achieved, combined with favorable cooling properties. therefore forms in the operating state directly on the hot side of the cooling element, i. on the facing towards the furnace interior front side of the refractory material and the Front side of the plate, quickly a protective layer or freeze-line.
  • connection is via a full connection, preferably by welding, to Granted a good heat transfer.
  • the cooling element from a copper plate and a copper tube and parts of standard size, which are available in stock, what the material and especially the processing costs considerably reduced. Overall, in this way a versatile, created cost-effective and reliable cooling element.
  • the components used plate, tube
  • Rolls, extrusions no coarse-grained cast structure identify, but a uniform, fine-grained structure. This requires better thermal conductivity properties and less tendency to crack or spread.
  • the plate is designed to be very thin in the sense of a sheet.
  • the plate thickness includes ranges of 10 to 40 mm, preferably 20 to 40 mm.
  • the plate or slit the sheet perpendicular to the longitudinal axis of the cooling tube Due to the separation in individual independent plate strips and also because of the small thickness a flexible adaptation to expansion movements of the refractory material is achieved. This also has the particular advantage that the formation of insulating air gaps between the refractory material or masonry and the plate is avoided.
  • the slot spacings are preferably introduced uniformly. Recommend it Distances of about 100 to 400 mm with slot widths of 2-5 mm.
  • Type I cooling system with vertically arranged cooling elements, their cooling part or pipe is arranged outside of the furnace shell; Cooling system according to type II with vertically arranged cooling elements, the cooling part or tube inside the furnace shell is arranged; Cooling system according to type III with horizontally arranged Cooling elements, the cooling part or pipe outside the furnace shell is arranged; Type IV cooling system with horizontal cooling elements, whose cooling part or pipe is arranged inside the furnace shell.
  • the cooling systems are designed by choosing the geometry the plates and / or the distance between the hot side and the cooling part and / or the distance of the plates to each other.
  • the plate of the hot part is thin.
  • the distance between Hot side and cooling part, i. the pipe is relatively short.
  • the plate has a rectangular geometry.
  • the vertical or horizontal distance of Cooling elements to their next adjacent cooling element according to or a multiple of the height or width format of refractory bricks measured as refractory material.
  • This has in the horizontal arrangement the advantage that the number of superimposed cooling elements be adapted flexibly to the height of the slag zone or the metal zone can. Cutting work on the refractory bricks is omitted; the installation effort sinks.
  • the cooling elements of a cooling system on the water side series-connected in series the coolant outlet of a Cooling element - if necessary via a rigid connecting pipe or flexible connecting lines - With the coolant inlet of an adjacent cooling element connected is.
  • the number of cooling elements connected in series depends on the available cooling water quality and / or the permissible maximum temperature of the cooling water.
  • the furnace construction in particular the furnace wall, according to the invention to be adapted to the individual cooling systems and their characteristics.
  • a Type III cooling system a round or rectangular melting furnace is proposed, whose furnace armor in the region of the cooling zone in the direction of the furnace interior is pulled in formed and the bulkhead plates to support the now having projecting upper portion of the furnace part.
  • This furnace shell construction achieved that the weakening of its mechanical load capacity due to the necessary for the cooling elements horizontal slits with relative small vertical distance is compensated.
  • the cooling systems of the type I and II are particularly suitable for rotary furnaces.
  • the geometry of the plates, specifically their length, is preferably at the height adapted to the slag zone.
  • Type I which is the plate of the hot part extends through the furnace shell and the cooling part or pipe outside of the furnace shell, one can through the vertical slots in its stability weakened furnace armor to absorb the hoop stresses from the thermal expansion of the refractory material by ribs or rings mechanically reinforced, it being ensured that the vertical slots in the furnace shell a free movement of the integrated into the refractory material Allow cooling elements in particular upwards.
  • Fig. 1 shows a section of a cooling element 1, which is composed of a coolant, for example cooling water, by flowing cooling part 2 in the form of a tube 3 with an inner diameter d i and a wall thickness d w and a cooled only by heat conduction hot part 4.
  • the hot part 4 which is thus not traversed by cooling water, consists of a thin plate 5 made of copper, which is referred to below as copper sheet.
  • the tube 3 is also made of copper and corresponds to a standard copper tube or standard size.
  • the copper sheet is welded with its cold side longitudinal side 6 to the pipe jacket 7 parallel to the tube longitudinal axis and is, starting from the hot side 8, provided with slots 9 which extend in the embodiment shown to the weld 10.
  • the incident on the hot side 8 heat from the furnace interior O i is discharged by means of heat conduction through the copper sheet to the tube 3 and here to the pipe 3 flowing through the coolant.
  • the undisturbed heat transfer enabling full connection between copper sheet and tube 3 - here in the form of the weld 10 - is also clear in Fig. 2.
  • the copper sheet is relatively thin, preferably between 20 to 40 mm thin.
  • copper sheet of a standard size is used. In combination with the slots 9 results in a flexible copper sheet, which allows a high heat transfer and at the same time can participate in thermal expansion of the refractory material.
  • a plurality of cooling elements 101 to a cooling system is shown in Fig. 3.
  • the cooling elements 101 are arranged horizontally, i. as a copper sheet trained hot part 104 is installed in the furnace wall 112 so that the Plate plane extending perpendicular to the longitudinal axis of the furnace.
  • the furnace wall 112 is composed of the furnace shell 113 and refractory material 114, with which the furnace is delivered on its side facing the furnace interior O i side.
  • the furnace shell 113 is lined with refractory bricks 115 of a certain height H F and filled in the transition to the refractory bricks 115 with refractory ramming mass 116.
  • the individual cooling elements 101 are arranged in the cooling zone, that the hot side 108 of the thin copper plate 105 and the copper sheet, ie the exposed directly to the furnace atmosphere end face, when installed flush with the in the oven interior O i facing end face 117 of the refractory bricks 115 concludes, ie there is no refractory material in front of the front side of the copper plates necessary.
  • the cooling elements 101 are each at a distance in this embodiment of two refractory bricks 115 arranged one above the other, wherein the Lining each held by a stone anchor 118 on the furnace tank 113 becomes.
  • the cooling elements are largely self-supporting, what fasteners saves.
  • each copper sheet associated copper pipes 103, the one Forming cooling channel 119 are disposed outside of the furnace shell 113.
  • Fig. 4. Overall, is formed by the favorable ratio of the area of the Hot part 104 to the surface of the cooling part 102 of the individual cooling elements 101st along the hot side of the lining quickly a protective layer or freeze-line 124 (it's just a section of the freeze-line shown) off. To this Way is the residual wall thickness of not attacked by erosion refractory bricks 115 tall.
  • the furnace shell 113 Since the copper tubes 103 of the individual cooling elements 101 are outside the furnace shell 113, 113 corresponding openings 125 and slots are introduced into the furnace shell, which are slightly longer than the copper sheet length and the height H ⁇ may not be too low, so that the copper sheet during movements the refractory bricks 115 in the slot opening 125 is not hindered.
  • the furnace shell 113 is curved inwardly in the region of the cooling zone formed by the cooling system 11, which may correspond approximately to the slag zone (see FIG. Forces acting on the furnace shell 113 of higher-lying parts of the furnace construction 126 are collected via bulkhead plates 127 and forwarded downwards.
  • the metal zone following below the slag zone can also be be be formed with such a cooling system 11 or - as shown here - with a trickle cooling 128 acting externally on the furnace shell 113.
  • the furnace shell 113 is pointing away from the inside of the furnace Enclosed side so that a gap 129 is formed. Cooling water is using a feed tube 130 so introduced into the space 129, it along the outside of the furnace shell 113 trickles down.
  • FIG. 4 clearly shows a horizontal section through the cooling system shown in Fig. 3 11 in the furnace wall 112 of a melting furnace along the line B-B- shows.
  • the Length of the copper tubes 103 corresponds to about the length of the copper sheet.
  • a cooling element system according to type IV (12) is used, which in Fig. 5 and 6 is shown in more detail.
  • Fig. 5 shows a vertical section through a Oven wall 212
  • Fig. 6 is a horizontal section.
  • the copper pipes 203 with the cooling passage 219 of the cooling elements 201 are inside the refractory ramming mass 216 arranged between the furnace shell 213 and the refractory bricks 215 is located.
  • the thin plates 205 and copper plates are between individual refractory bricks 215 arranged.
  • the furnace armor 213 will with openings 225 for the passage of the two pipe sections 220, 221 for the respective coolant inlet 222 and the respective coolant outlet 223 each copper tube 203 provided.
  • bulkheads 227 can to Increasing the stability can be provided (see Fig. 6), located on the cold side of the furnace shell 213 in the furnace vessel 230.
  • FIG. 7 shows - of seen the cold side of the furnace shell - a cooling system of the type IV (12) with inside lying copper tubes 203 arranged one above the other horizontally Cooling elements 201 of a first, second, third and fourth levels.
  • a common feed channel 231 enters cooling water through the inlet pipe sections 220, which protrude through respective openings in the furnace shell, in the copper tubes 203 of the cooling elements 201 of the first and lowest levels, respectively exit through corresponding outlet pipe sections 221 again.
  • the cooling water does not escape immediately, but is overlying - also embedded in the refractory ramming mass - Connecting pipes 232 to the inlet pipe sections 220 of the copper pipe 203 of the cooling elements 201 of the next higher level transported.
  • This cooling water transport will continue until the copper pipes 203 of the cooling elements 201 of the fourth or highest level flows through are and the cooling water through outlet pipe sections 221 and cooling water drains 223 exits into a common return channel to from there into a Cooling water recooling system (not shown) to be performed.
  • Cooling systems of the type III (11) and IV (12) find especially in rectangular ovens Use, while cooling systems according to the type I and II in particular to be used in rotary ovens.
  • a vertical section of cooling elements of a Type I (13) system Fig. 8 shows this type of refrigeration system the cooling elements 301 are arranged in the furnace wall so that the Plane of the plates 305 and the longitudinal axis of the copper tubes 303 parallel to Furnace longitudinal axis runs.
  • the cooling part 302 and the copper tube 303 of each Cooling element 301 is located outside of the furnace shell 313.
  • the copper sheets preferably correspond to the height of the slag zone. With 309 are designated the slots of the copper sheet.
  • For installation of the cooling elements 301 are in the furnace tank 313 narrow, but in the vertical direction long openings 325 or slots introduced.
  • the furnace shell 313 is preferably reinforced by ribs or rings 335a, b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Description

Die Erfindung betrifft ein Kühlelement zur Kühlung eines metallurgischen Ofens, insbesondere der Schlacken- und/oder der Metallzone dieses Ofens, wobei der Ofenpanzer des Ofens an seiner zum Ofeninnenraum weisenden Seite mit Feuerfest-Material zugestellt ist, und das Kühlelement einen mit Kühlmittel durchflossenen Kühlteil, der einen Kühlmittelzulauf- und ablauf aufweist, sowie einen durch Wärmeleitung gekühlten Heißteil umfaßt, wobei der Heißteil des Kühlelementes im eingebauten Zustand bündig mit der in den Ofeninnenraum zeigenden Stirnseite des Feuerfest-Materials abschließt. Zudem betrifft die Erfindung ein System zur Kühlung eines metallurgischen Ofens, welches aus mindestens einem dieser Kühlelemente besteht, sowie einen mit einem solchen System ausgerüsteten Schmelzofen.
Solche metallurgischen Öfen finden Einsatz bei der Herstellung von Nichteisenmetallen und Roheisen. Hierzu werden runde oder rechteckige Öfen eingesetzt, bei denen die erforderliche Energie über selbstbackende Elektroden vom Söderberg-Typ eingebracht wird. In vielen Fällen beginnt der Schmelzvorgang durch Einbringen der Energie über einen frei brennenden Lichtbogen, der nach Bildung einer Schaumschlacke in diese eintaucht. Wenn die Elektroden in die leitfähige, flüssige Schlacke eintauchen, wird die abgestrahlte Energie vollständig durch Widerstandserwärmung der Schlacke an das Metallbad übertragen. In anderen Fällen wird nur ein Teil der Energie mittels der Widerstandserwärmung der Schlacke in das Metallbad eingebracht. Die Energieübertragung wird durch kleine Lichtbögen erreicht, die sich zwischen der Elektrode und der sich umgebenden Möllersäule bilden ("brush arcing"). In beiden Fällen existiert eine heiße, flüssige Schlacke von etwa 1.400 bis 1.700°C, die aufgrund thermischer und magnetischer Effekte im Ofengefäß zirkuliert. Die thermische Zirkulation wird insbesondere durch Auftriebskräfte aufgrund von Dichteänderungen durch Abkühlung an der Ofenwand angeregt.
Durch diese Zirkulation der Schlacke hin zur Ofenwand kommt es an der Ofenwand - und auch aufgrund des chemischen Angriffs durch die Schlacke - zu einem besonders hohen Verschleiß des Feuerfest-Materials, mit dem der Schmelzofen ausgekleidet ist. Dieser Verschleiß kommt erst dann zum Stillstand, wenn bei gegebener Wärmebelastung die Ofenwand aus Feuerfest-Material so gut gekühlt ist, daß sich auf ihrer Heißseite- d.h. der zum Ofeninneren weisenden Seite - eine Kruste aus erstarrter Schlacke bildet. Eine solche Kruste ist unter dem Begriff "freeze line" bekannt. Diese erstarrte Schlackenschicht schützt das Feuerfest-Material vor weiterer Schlackenerosion bzw. - korrosion und ist somit eine erwünschte Schutzschicht. Je höher die Schmelzleistung des Ofens und damit die abzuführenden Wärmeströme sind, desto dünner ist allerdings die verbleibende Restwandstärke des Feuerfest-Materials.
Höhere Schmelzleistungsdichten (kW/m2 Herdfläche) treten insbesondere dann auf, wenn bei existierenden Öfen das Einbringen an elektrischer Leistung erhöht werden soll, um die Produktivität zu steigern, wenn aber aus Kostengründen die Herdfläche nicht entsprechend vergrößert werden soll. Neben dem Nachrüsten von bestehenden Öfen stellt sich das Problem ebenfalls bei neu zu bauenden Öfen, die im Verhältnis zu den bekannten Öfen eine höhere Leistungsdichte aufweisen sollen.
Um diese Schutzschicht (freeze-line) trotz hoher Wärmeströme zu erzeugen bzw. möglichst dick auszubilden, ist aus dem Konferenzbericht "Furnace Cooling Design for Modern High-Intensity Pyrometallurgical Processes", der Copper 99-Cobre 99 International Conference, Vol. V, The Minerals, Metals & Materials Society, 1999 von N.Voermann, F.Ham, J.Merry, R.Veenstra und K.Hutchinson zu entnehmen, gekühlte Kupferkörper in die Feuerfest-Ofenwand einzusetzen. Neben sogenannten "Fingern" und "Plattenkühlern" wird insbesondere der Einsatz sogenannter "waffle coolers" vorgeschlagen. Solche "waffle coolers" sind aus Kupfer mit eingegossenen Rohren hergestellte plattenförmige Körper, die auf ihrer Heißseite mit schwalbenschwanzförmigen Nuten und Rippen versehen sind. In diese Nuten sind Steine aus Feuerfest-Material eingesetzt oder Feuerfest-Massen eingestampft. Die Kühlwirkung der Rippen in den "waffle coolers" bewirkt, daß sich bei Direktkontakt des Feuerfest-Materials mit flüssiger Schlakke die gewünschte "freeze line" bildet. Während derartige "waffle coolers" vorteilhafterweise eine Tragfunktion übernehmen, weisen sie als Nachteil ein hohes Gewicht sowie die daraus resultierenden hohen Herstellungskosten auf.
"Finger" und "Plattenkühler" werden von D. Tisdale, D. Briand, R. Sriram und R. McMeekin, in "Upgrading Falconbridge's No. 2 furnace crucible", veröffentlicht in "Challenges in Process Intensification", Montreal PQ, Canada, Canadian Institute of Mining, Metallurgy and Petroleum, 1996 beschrieben. Unter Fingern werden Kupferrohre mit einem runden Querschnitt verstanden. Es erweist sich aber als schwierig, solche Rohre in die quaderförmigen Feuerfest-Steine einzubringen. Diesen Nachteil weisen die bekannten Plattenkühler nicht auf. Diese müssen jedoch - wie auch die Finger - schwer und massiv ausgeführt werden, da ihre Abmessungen durch den Durchmesser der in ihnen verlaufenden Bohrungen für das Kühlwasser bestimmt sind, was die Herstellung kostenintensiv macht. Finger, Plattenkühler sowie die waffle coolers durchdringen im Neuzustand nicht die gesamte Dicke der Feuerfest-Ofenwand, sondern benötigen noch Mauerwerk vor ihrer ofenseitigen Stirnwand. Zudem bleiben sie ohne Verbindung zur äußeren Wand des Ofens, dem sogenannten Panzer, damit eine Zwängung durch unterschiedliche thermische Ausdehnungen des Feuerfest-Mauerwerks und des Panzers vermieden wird.
Aus E. Granberg, G. Carlsson, "Development of a device for cooling of the safety-zone in the electric arc furnace", vorgetragen und veröffentlicht bei dem 3rd European Electric Steel Congress, 2. - 4. Oktober 1989, Bournemouth, sind Kühlelemente für die Sicherheitszone in Elektroschmelzöfen zur Stahlherstellung bekannt, deren Wirkung auf dem Wärmetransport von der Heißseite im Inneren des Ofens zu einem Kühlmedium außerhalb des Ofenpanzers basiert.
US-A-1724098 offenbart eine Kühlplatte für mit feuerfester Auskleidung versehene Schachtöfen, bestehend aus Kupfer mit angeordneten Kühlmittelkanälen und versehen mit zum Ofeninneren weisenden durch Wärmeleitung gekühlten kupfernen Flachstegen.
DE-A-2924991 offenbart ein gekühltes Ofenwandelement bestehend aus mehreren für den Kühlmitteldurchfluss miteinander verbundenen Druckrohren, die an dem zum Ofeninneren weisenden Scheiteln mit Wärmeleitern in Form von aufgeschweißten Flacheisenstegen versehen sind.
Das Kühlelement aus gegossenem Kupfer umfasst ein wassergekühltes Verbindungsteil, an dem mehrere massive Plattenkühler kammartig angeordnet sind, die in das Ofeninnere ragen. Zwischen den Plattenkühlern ist Feuerfest-Material angeordnet. Das Verbindungsteil ist außerhalb des Ofenpanzers angeordnet. Dicke und Mittenabstand der Plattenkühler können variiert werden. Nachteilig bei dieser Lösung ist, dass bei einer Ausbildung mit dünnen Plattenkühlern die Belastung an der Heißseite sehr groß wird, verbunden mit der Gefahr des Oxidierens des Kupfers und einem Verlust der Wärmeleitfähigkeit, während bei einer Ausbildung von dickeren Plattenkühlern die Materialkosten steigen und eine unsymmetrische Kühlung die Folge ist.
Der Erfindung liegt demnach die Aufgabe zugrunde, ein Kühlelement sowie ein Kühlsystem für einen metallurgische Ofen bereitzustellen, das bei Vermeidung der oben genannten Nachteile eine Heißseite aufweist, die im Betriebszustand sofort eine freeze-line ausbildet. Zudem soll ein Ofen bereitgestellt werden, der bei Ausrüstung mit einem solchen System eine hohe mechanische Stabilität aufweist.
Diese Aufgabe wird durch ein Kühlelement mit den Merkmalen des Anspruchs 1, Kühlsysteme mit den Merkmalen der Ansprüche 8 und 9 sowie einen Ofen mit den Merkmalen nach den Ansprüchen 15 und 16 gelöst. Vorteilhafte Weiterentwicklungen sind in den Unteransprüchen offenbart.
Erfindungsgemäß wird vorgeschlagen, dass der gesamte Heißteil als eine - einzige - Platte ausgebildet ist, und dass der Platte kaltseitig, d.h. an ihrer vom Ofeninneren wegweisenden Seite, ein separater, mit Kühlmittelzu- und ablauf versehener - einziger - Kühlteil zugeordnet ist, wobei der Kühlteil ein Rohr ist und die Platte mit ihrer vom Ofeninneren wegweisenden Seite unlösbar an das Rohr parallel zur Rohrlängsachse angebracht ist.
In Abkehr von den bekannten Lösungen wird ein Kühlelement aus einer einzigen Platte gebildet, an die ein separater und von anderen Kühlelementen unabhängiger Kühlteil angeordnet ist. Auf diese Weise wird ein günstiges Verhältnis der Fläche des Heißteils zur Fläche des Kühlteils erreicht, verbunden mit günstigen Kühleigenschaften. Deswegen bildet sich im Betriebszustand unmittelbar auf der Heißseite des Kühlelementes, d.h. auf der in Richtung Ofeninneres weisenden Stirnseite des Feuerfest-Materials sowie der Stirnseite der Platte, schnell eine Schutzschicht bzw. freeze-line aus.
Die Verbindung wird über einen Vollanschluss, vorzugsweise durch Verschweißen, zur Gewährung eines guten Wärmetransportes erreicht. Vorteilhafterweise besteht das Kühlelement aus einer Kupferplatte und einem Kupferrohr und hierbei aus Teilen von Standardmaß, die lagerhaltig zur Verfügung stehen, was die Material- und vor allem die Bearbeitungskosten erheblich reduziert. Insgesamt wird auf diese Weise ein vielseitig einsetzbares, kostengünstiges und zuverlässiges Kühlelement geschaffen. Von besonderem Vorteil ist auch, dass die verwendeten Bestandteile (Platte, Rohr) aufgrund ihrer Herstellungsart (Walzen, Strangpressen) keine grobkörnige Gussstruktur ausweisen, sondern ein gleichmäßiges, feinkörniges Gefüge. Dies bedingt bessere Wärmeleitfähigkeitseigenschaften sowie eine geringere Neigung zur Rissbildung bzw. -ausbreitung.
Vorzugsweise ist die Platte im Sinne eines Blechs sehr dünn ausgebildet. Die Plattendicke umfasst Bereiche von 10 bis 40 mm, vorzugsweise von 20 bis 40 mm.
Um Verwerfungen der dünnen Platte bzw. des Blechs aufgrund unterschiedlicher thermischer Ausdehnung über die Plattenfläche zu vermeiden, wird vorgeschlagen, die Platte bzw. das Blech senkrecht zur Längsachse des Kühlrohres zu schlitzen. Aufgrund der Auftrennung in einzelne unabhängige Plattenstreifen und zudem wegen der geringen Dicke wird eine flexible Anpassung an Ausdehnungsbewegungen des Feuerfest-Materials erreicht. Dies hat außerdem den besonderen Vorteil, dass die Bildung isolierender Luftspalte zwischen dem Feuerfest-Material bzw. -Mauerwerk und der Platte vermieden wird.
Die Schlitzabstände sind vorzugsweise gleichmäßig eingebracht. Es empfehlen sich Abstände von ca. 100 bis 400 mm bei Schlitzbreiten von 2-5 mm.
Bei den vorgeschlagenen Kühlsystemen können sich folgende Typen ergeben: Kühlsystem nach Typ I mit vertikal angeordneten Kühlelementen, deren Kühlteil bzw. Rohr außerhalb des Ofenpanzers angeordnet ist; Kühlsystem nach Typ II mit vertikal angeordneten Kühlelementen, deren Kühlteil bzw. Rohr innerhalb des Ofenpanzers angeordnet ist; Kühlsystem nach Typ III mit horizontal angeordneten Kühlelementen, deren Kühlteil bzw. Rohr außerhalb des Ofenpanzers angeordnet ist; Kühlsystem nach Typ IV mit horizontal angeordneten Kühlelementen, deren Kühlteil bzw. Rohr innerhalb des Ofenpanzers angeordnet ist.
In Abhängigkeit der Schmelzleistungsdichte und dem Abstand Elektrode zur Ofenwand werden die Kühlsysteme ausgelegt und zwar durch Wahl der Geometrie der Platten und/oder des Abstandes zwischen Heißseite und Kühlteil und/oder des Abstandes der Platten zueinander. Im Verhältnis zu bekannten Plattenkühlern ist die Platte des Heißteils dünn ausgebildet. Der Abstand zwischen Heißseite und Kühlteil, d.h. dem Rohr, ist relativ kurz. Vorzugsweise weist die Platte eine rechteckige Geometrie auf.
Bei derartigen Kühlsystemen wird der vertikale bzw. horizontale Abstand der Kühlelemente zu ihrem nächst benachbarten Kühlelement entsprechend des oder eines Mehrfachen des Höhen- bzw. des Breitenformates von Feuerfest-Steinen als Feuerfest-Material bemessen. Dies hat bei der horizontalen Anordnung den Vorteil, daß die Anzahl der übereinander angeordneten Kühlelemente flexibel der Höhe der Schlackenzone bzw. der Metallzone angepaßt werden kann. Schneidarbeiten an den Feuerfest-Steinen entfallen; der Montageaufwand sinkt.
Vorzugsweise wird vorgeschlagen, die Kühlelemente eines Kühlsystems wasserseitig in Serie hintereinanderzuschalten, wobei der Kühlmittelablauf eines Kühlelementes - ggf. über ein starres Verbindungsrohr oder flexible Verbindungsleitungen - mit dem Kühlmittelzulauf eines benachbarten Kühlelementes verbunden ist. Die Anzahl der Kühlelemente, die in Serie hintereinander geschaltet werden können, richtet sich nach der verfügbaren Kühlwasserqualität und/oder der zulässigen Maximaltemperatur des Kühlwassers.
Die Ofenkonstruktion, insbesondere die Ofenwand, soll erfindungsgemäß an die einzelnen Kühlsysteme und ihre Besonderheiten angepaßt sein. Für ein Kühlsystem des Typs III wird ein runder oder ein rechteckiger Schmelzofen vorgeschlagen, dessen Ofenpanzer im Bereich der Kühlzone in Richtung Ofeninneres eingezogen ausgeformt ist und der Schottbleche zur Stützung des nun vorragenden oberen Bereichs des Ofenteils aufweist. Diese Ofenpanzerkonstruktion erreicht, daß die Schwächung seiner mechanischen Tragfähigkeit aufgrund der für die Kühlelemente notwendigen horizontalen Schlitzungen mit relativ geringem vertikalen Abstand kompensiert wird.
Bei horizontaler Anordnung werden in den Ofenpanzer Schlitze mit einer der horizontalen Ausdehnung des Kühlelementes entsprechenden Länge eingebracht. Die Höhe der Schlitze wird hierbei vorteilhafterweise so gewählt, daß das jeweilige Kühlelement die unvermeidbare thermische Ausdehnung des Feuerfest-Materials mitmachen kann, ohne in dieser Bewegung durch die Schlitzober- bzw. Unterkante behindert zu werden. Es ergibt sich daher eine relativ große Höhe der Schlitze.
Bei dem Kühlsystem nach Typ IV müssen im Verhältnis zu Typ III nur kleinere Öffnungen und somit Schwachstellen in den Ofenpanzer für die Kühlmittelabund -zuläufe des Kühlteils bzw. des Rohres eingebracht werden. Bei dieser Lösung wird die statische Tragfähigkeit des Ofenpanzers nur gering vermindert. Eine Erhöhung der Tragfähigkeit ist aber noch durch die gegeneinander versetzte Anordnung der übereinander angeordneten Kühlelemente möglich.
Die Kühlsysteme des Typs I und II kommen insbesondere für Rundöfen in Frage. Die Geometrie der Platten, konkret ihre Länge, ist vorzugsweise an die Höhe der Schlackenzone angepaßt. Beim Typ I, bei der sich die Platte des Heißteils durch den Ofenpanzer erstreckt und sich das Kühlteil bzw. Rohr außerhalb des Ofenpanzers befindet, kann ein durch die vertikalen Schlitze in seiner Stabilität geschwächter Ofenpanzer zur Aufnahme der Ringspannungen aus der thermischen Ausdehnung des Feuerfest-Materials durch Rippen oder Ringe mechanisch verstärkt werden, wobei gewährleistet ist, daß die vertikalen Schlitze im Ofenpanzer eine freie Bewegung der in das Feuerfest-Material integrierten Kühlelemente insbesondere nach oben zulassen.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus den Unteransprüchen und aus der nachfolgenden Beschreibung, in der die in den Figuren dargestellten Ausführungsformen der Erfindung näher erläutert werden. Dabei sind neben den oben aufgeführten Kombinationen von Merkmalen auch Merkmale alleine oder in anderen Kombinationen erfindungswesentlich. Es zeigen:
Fig. 1
eine Seitenansicht eines Ausschnitts eines erfindungsgemäß vorgeschlagenen Kühlelements, das sich aus einer Platte und einem Rohr zusammensetzt;
Fig. 2
einen Querschnitt des Kühlelementes nach Fig. 1 längs der Linie A-A;
Fig. 3
einen Vertikalschnitt durch eine Ofenwand mit integriertem Kühlsystem des Typs III und eingeformten Ofenpanzer;
Fig. 4
einen Horizontalschnitt B-B durch eine Ofenwand mit einem Kühlsystem nach Fig. 3;
Fig. 5
einen Vertikalschnitt durch eine Ofenwand mit integriertem Kühlsystem des Typs IV;
Fig. 6
einen Horizontalschnitt B-B durch eine Ofenwand mit einem Kühlsystem nach Fig. 5;
Fig. 7
die Darstellung eines Kühlsystems nach dem Typ IV, wobei die übereinander liegenden Kühlelemente versetzt angeordnet sind;
Fig. 8
einen Vertikalschnitt durch eine Ofenwand mit integriertem Kühlsystem nach Typ I.
Fig. 1 zeigt einen Ausschnitt eines Kühlelementes 1, welches sich aus einem mit Kühlmittel, beispielsweise Kühlwasser, durchflossenen Kühlteil 2 in Form eines Rohres 3 mit einem Innendurchmesser di und einer Wandstärke dw sowie einen nur durch Wärmeleitung gekühlten Heißteil 4 zusammensetzt. Der Heißteil 4, der also nicht von Kühlwasser durchflossen wird, besteht aus einer dünnen Platte 5 aus Kupfer, die im nachfolgenden als Kupferblech bezeichnet wird. Das Rohr 3 ist ebenfalls aus Kupfer gefertigt und entspricht einem Kupferrohr-Standardmaß bzw. Normmaß. Das Kupferblech ist mit seiner kaltseitigen Längsseite 6 an den Rohrmantel 7 parallel zur Rohrlängsachse geschweißt und ist, ausgehend von der Heißseite 8, mit Schlitzen 9 versehen, die sich bei der gezeigten Ausführungsform bis zur Schweißnaht 10 erstrecken. Die an der Heißseite 8 auftreffende Wärme vom Ofeninnenraum Oi wird mittels Wärmeleitung durch das Kupferblech an das Rohr 3 und hier an das das Rohr 3 durchfließende Kühlmittel abgegeben. Der einen ungestörten Wärmetransport ermöglichende Vollanschluß zwischen Kupferblech und Rohr 3 - hier in Form der Schweißnaht 10 - wird auch in Fig. 2 deutlich. Das Kupferblech ist relativ dünn ausgebildet, vorzugsweise zwischen 20 bis 40 mm dünn. Vorteilhafterweise kommt ebenfalls Kupferblech eines Normmaßes zur Anwendung. In Kombination mit den Schlitzen 9 ergibt sich ein flexibles Kupferblech, welches einen hohen Wärmetransport ermöglicht und gleichzeitig thermische Ausdehnungen des Feuerfest-Materials mitmachen kann.
Die Anordnung einer Vielzahl von Kühlelementen 101 zu einem Kühlsystem wird in Fig. 3 dargestellt. Bei dem hier gezeigten Kühlsystem des Typs III (11) sind die Kühlelemente 101 horizontal angeordnet, d.h. das als Kupferblech ausgebildete Heißteil 104 wird in die Ofenwand 112 so eingebaut, daß die Plattenebene sich senkrecht zur Längsachse des Ofens erstreckt.
Die Ofenwand 112 setzt sich aus dem Ofenpanzer 113 und Feuerfest-Material 114 zusammen, mit dem der Ofen auf seiner zum Ofeninneren Oi weisenden Seite zugestellt ist. Bei der hier gezeigten Ausführungsform ist der Ofenpanzer 113 mit Feuerfest-Steinen 115 eines bestimmten Höhenmaßes HF ausgemauert und im Übergang zu den Feuerfest-Steinen 115 mit Feuerfest-Stampfmasse 116 ausgefüllt. Die einzelnen Kühlelemente 101 werden so in der Kühlzone angeordnet, daß die Heißseite 108 der dünnen Kupferplatte 105 bzw. des Kupferblechs, d.h. die unmittelbar der Ofenatmosphäre ausgesetzte Stirnseite, im eingebauten Zustand bündig mit der in den Ofeninnenraum Oi zeigenden Stirnseite 117 der Feuerfest-Steine 115 abschließt, d.h. es ist kein Feuerfest-Material vor der Stirnseite der Kupferplatten notwendig.
Die Kühlelemente 101 sind bei dieser Ausführungsform jeweils in einem Abstand von zwei Feuerfest-Steinen 115 übereinander angeordnet, wobei die Ausmauerung jeweils von einem Steinanker 118 am Ofenpanzer 113 gehalten wird. Durch ihre Bauweise und die Anordnung zwischen den Feuerfest-Steinen sind die Kühlelemente weitgehend selbsttragend, was Befestigungselemente einspart.
Die jedem einzelnen Kupferblech zugeordneten Kupferrohre 103, die einen Kühlkanal 119 bilden, sind außerhalb des Ofenpanzers 113 angeordnet. Am Ende eines jeden Rohres 103 sind Rohrabschnitte 120, 121 bzw. Übergänge zu Kühlmittelzuläufen 122 bzw. Kühlmittelabläufen 123 vorgesehen, vgl. hierzu auch Fig. 4. Insgesamt bildet sich durch das günstige Verhältnis der Fläche des Heißteils 104 zur Fläche des Kühlteils 102 der einzelnen Kühlelemente 101 entlang der Heißseite der Ausmauerung schnell eine Schutzschicht bzw. freeze-line 124 (es ist nur ein Abschnitt der freeze-line dargestellt) aus. Auf diese Weise ist die Restwandstärke der nicht durch Erosion angegriffenen Feuerfest-Steine 115 groß.
Da die Kupferrohre 103 der einzelnen Kühlelemente 101 außerhalb des Ofenpanzers 113 liegen, sind in den Ofenpanzer 113 entsprechende Öffnungen 125 bzw. Schlitze eingebracht, die etwas länger als die Kupferblechlänge sind und deren Höhe HÖ nicht zu niedrig sein darf, damit das Kupferblech bei Bewegungen der Feuerfest-Steine 115 in der Schlitzöffnung 125 nicht behindert wird. Um die Schwächung des Ofenpanzers 113 aufgrund der Öffnung zu kompensieren, ist der Ofenpanzer 113 im Bereich der durch das Kühlsystem 11 gebildeten Kühlzone, die in etwa der Schlackenzone entsprechen kann, nach innen gewölbt ausgebildet (vgl. Fig. 3). Auf den Ofenpanzer 113 wirkende Kräfte von höher liegenden Teilen der Ofenkonstruktion 126 werden über Schottbleche 127 aufgefangen bzw. nach unten weitergeleitet.
Die sich unterhalb der Schlackenzone anschließende Metallzone kann ebenfalls mit einem derartigen Kühlsystem 11 ausgebildet sein oder - wie hier gezeigt - mit einer von außen auf den Ofenpanzer 113 wirkenden Rieselkühlung 128 . Hierzu wird der Ofenpanzer 113 auf seiner vom Ofeninneren wegweisenden Seite so ummantelt, daß ein Zwischenraum 129 entsteht. Kühlwasser wird mittels eines Einspeiserohrs 130 so in den Zwischenraum 129 eingebracht, das es entlang der Außenseite des Ofenpanzers 113 herabrieselt.
Die Anordnung der oben erwähnten Schottbleche 127 wird insbesondere in Fig. 4 deutlich, die einen Horizontalschnitt durch das in Fig. 3 gezeigte Kühlsystem 11 in der Ofenwand 112 eines Schmelzofens längs der Linie B-B- zeigt. Die Länge der Kupferrohre 103, die Werte zwischen einem Meter und mehreren Metern annehmen kann, oder auch unterhalb von einem Meter, entspricht in etwa der Länge des Kupferblechs.
Der oben beschriebene Kühlsystemtyp III (11) mit außerhalb des Ofenpanzers liegenden Kupferrohren kommt insbesondere bei Schmelzöfen zum Einsatz, die mit Feuerfest-Material zugestellt sind, welches bei hohen Temperaturen mit Wasser reagiert, wie zum Beispiel Magnesiumoxid. Sofern eine Anordnung von kühlwasserleitenden Rohren innerhalb des Ofenpanzers akzeptiert werden kann, kommt ein Kühlelementsystem nach Typ IV (12) zum Einsatz, welches in Fig. 5 und 6 näher dargestellt ist. Fig. 5 zeigt einen Vertikalschnitt durch eine Ofenwand 212, während Fig. 6 einen Horizontalschnitt darstellt.
Die Kupferrohre 203 mit dem Kühlkanal 219 der Kühlelemente 201 sind innerhalb der Feuerfest-Stampfmasse 216 angeordnet, die sich zwischen dem Ofenpanzer 213 und den Feuerfest-Steinen 215 befindet. Ebenso wie bei dem Kühlsystem nach Typ III (11) sind die dünnen Platten 205 bzw. Kupferbleche zwischen einzelnen Feuerfest-Steinen 215 angeordnet. Der Ofenpanzer 213 wird mit Öffnungen 225 für den Durchtritt der beiden Rohrabschnitte 220, 221 für den jeweiligen Kühlmittelzulauf 222 uhd den jeweiligen Kühlmittelablauf 223 eines jeden Kupferrohres 203 versehen. Obwohl bei diesem Kühlsystem 12 der Ofenpanzer 213 weit weniger geschwächt wird, können Schottbleche 227 zur Erhöhung der Stabilität vorgesehen werden (vgl. Fig. 6), die sich auf der Kaltseite des Ofenpanzers 213 im Ofengefäß 230 erstrecken.
Eine Erhöhung der Stabilität wird bei einem Kühlsystem des Typs IV (12) zudem durch eine versetzte Anordnung der übereinander angeordneten Lagen von Kühlelementen 201 erreicht, was mit Fig. 7 gezeigt wird. Fig. 7 zeigt - von der Kaltseite des Ofenpanzers gesehen - ein Kühlsystem des Typs IV (12) mit innen liegenden Kupferrohren 203 von übereinander horizontal angeordneten Kühlelementen 201 eines ersten, zweiten, dritten und vierten Niveaus. Über einen gemeinsamen Speisekanal 231 tritt Kühlwasser durch die Eintrittsrohrabschnitte 220, die durch jeweilige Öffnungen im Ofenpanzer ragen, in die Kupferrohre 203 der Kühlelemente 201 des ersten bzw. untersten Niveaus ein, um durch entsprechende Austrittsrohrabschnitte 221 wieder auszutreten. Bei der hier gezeigten Ausführungsform tritt das Kühlwasser aber nicht sofort aus, sondern wird über innen liegende - ebenfalls in die Feuerfest-Stampfmasse eingebettete - Verbindungsrohre 232 zu den Eintrittsrohrabschnitten 220 des Kupferrohres 203 der Kühlelemente 201 des nächst höheren Niveaus transportiert. Dieser Kühlwassertransport wird solange weitergeführt, bis auch die Kupferrohre 203 der Kühlelemente 201 des vierten bzw. obersten Niveaus durchflossen sind und das Kühlwasser durch Austrittsrohrabschnitte 221 und Kühlwasserabläufe 223 in einen gemeinsamen Rücklaufkanal austritt, um von dort in ein Kühlwasser-Rückkühlsystem (nicht gezeigt) geführt zu werden.
Kühlsysteme nach dem Typ III (11) und IV (12) finden insbesondere bei Rechtecköfen Verwendung, während Kühlsysteme nach dem Typ I und II insbesondere bei Rundöfen Verwendung finden. Einen Vertikalschnitt von Kühlelementen eines Systems nach Typ I (13) zeigt Fig. 8. Bei diesem Typ eines Kühlsystems werden die Kühlelemente 301 so in der Ofenwand angeordnet, daß die Ebene der Platten 305 bzw. die Längsachse der Kupferrohre 303 parallel zur Ofenlängsachse verläuft. Der Kühlteil 302 bzw. das Kupferrohr 303 eines jeden Kühlelementes 301 befindet sich außerhalb des Ofenpanzers 313. Die Länge der Kupferbleche entspricht vorzugsweise der Höhe der Schlackenzone. Mit 309 sind die Schlitze des Kupferblechs bezeichnet. Zum Einbau der Kühlelemente 301 werden in den Ofenpanzer 313 schmale, aber in vertikaler Richtung lange Öffnungen 325 bzw. Schlitze eingebracht. Der Ofenpanzer 313 wird vorzugsweise durch Rippen oder Ringe 335a,b verstärkt.

Claims (17)

  1. Kühlelement zur Kühlung eines metallurgischen Ofens,
    wobei der Ofenpanzer (113, 213, 313) des Ofens an seiner zum Ofeninnenraum (Oi) hinweisenden Seite mit Feuerfest-Material (114, 214, 314) zugestellt ist,
    umfassend
    einen mit Kühlmittel durchflossenen Kühlteil (2, 102, 202, 302), der einen Kühlmittelzulauf (122, 222, 322) und einen Kühlmittelablauf (123, 223, 323) aufweist,
    sowie einen durch Wärmeleitung gekühlten Heißteil (4, 104, 204, 304),
    wobei der Heißteil des Kühlelementes im eingebauten Zustand bündig mit der in den Ofeninnenraum (Oi) zeigenden Stirnseite (117) des Feuerfest-Materials (114, 214, 314) abschließt,
    dadurch gekennzeichnet, dass der gesamte Heißteil als eine Platte (5, 105, 205, 305) ausgebildet ist, und dass dieser Platte (5, 105, 205, 305) kaltseitig ein separater Kühlteil (2, 102, 202, 302) zugeordnet ist,
    wobei der Kühlteil ein Rohr (3, 103, 203, 303) ist und die Platte (5, 105, 205, 305) mit ihrer vom Ofeninneren (Oi) wegweisenden Seite unlösbar an das Rohr (3, 103, 203, 303) parallel zur Rohrlängsachse angebracht ist.
  2. Kühlelement nach Anspruch 1,
    dadurch gekennzeichnet, dass die Platte (5, 105, 205, 305) an das Rohr (3, 103, 203, 303) mit einem Vollanschluss angebracht ist.
  3. Kühlelement nach einem der Ansprüche 1 oder 2
    dadurch gekennzeichnet, dass die Platte (5, 105, 205, 305) eine Dicke von 10 bis 40 mm, vorzugsweise 20 bis 40 mm, aufweist.
  4. Kühlelement nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass die Platte (5, 105, 205, 305) senkrecht zur Längsachse des Rohres (3, 103, 203, 303) verlaufende Schlitze (9, 309) aufweist, die, ausgehend von der nicht mit dem Rohr verbundenen Plattenseite, in Richtung Rohr in die Platte eingebracht sind.
  5. Kühlelement nach Anspruch 4,
    dadurch gekennzeichnet, dass die Abstände der Schlitze (9, 309) gleichmäßig sind und die Schlitze (9, 309) sich bis zum Rohr (3, 103, 203, 303) erstrecken.
  6. Kühlelement nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, daß das Rohr (3, 103, 203, 303) eine Länge von einem Meter bis zu mehreren Metern aufweist.
  7. Kühlelement nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass sowohl die den Heißteil bildende Platte (5, 105, 205, 305) als auch das den Kühlteil bildende Rohr (3, 103, 203, 303) aus Kupfer oder einem anderen wärmeleitendem Material gefertigt sind.
  8. System zur Kühlung eines metallurgischen Ofens mit mindestens einem Kühlelement nach einem der Ansprüche 1 bis 7,
    wobei der Ofenpanzer (113, 213) des Ofens an seiner zum Ofeninnenraum (Oi) hinweisenden Seite mit Feuerfest-Material (114, 214) zugestellt ist, und wobei das jeweilige Kühlelement einen mit Kühlmittel durchflossenen Kühlteil (102, 202), der einen Kühlmittelzulauf (122, 222) und einen Kühlmittelablauf (123, 223) aufweist, sowie einen durch Wärmeleitung gekühlten Heißteil (104, 204) umfasst und wobei der Heißteil des Kühlelementes im eingebauten Zustand bündig mit der in den Ofeninnenraum zeigenden Stirnseite (117) des Feuerfest-Materials (114, 214) abschließt,
    dadurch gekennzeichnet, dass das als eine einzige Platte (105, 205) ausgebildete Heißteil in die aus Ofenpanzer (113, 213) und Feuerfest-Material (114, 214) gebildete Ofenwand (112) so eingebaut wird, dass die Plattenebene sich senkrecht zur Längsachse des Ofens erstreckt (horizontale Anordnung).
  9. System zur Kühlung eines metallurgischen Ofens mit mindestens einem Kühlelement nach einem der Ansprüche 1 bis 7,
    wobei der Ofenpanzer (313) des Ofens an seiner zum Ofeninnenraum (Oi) hinweisenden Seite mit Feuerfest-Material (314) zugestellt ist, und wobei das jeweilige Kühlelement einen mit Kühlmittel durchflossenen Kühlteil (302), der einen Kühlmittelzulauf (322) und einen Kühlmittelablauf (323) aufweist, sowie einen durch Wärmeleitung gekühlten Heißteil (304) umfaßt und wobei der Heißteil des Kühlelementes im eingebauten Zustand bündig mit der in den Ofeninnenraum zeigenden Stirnseite des Feuerfest-Materials abschließt,
    dadurch gekennzeichnet, dass das als eine einzige Platte (305) ausgebildete Heißteil in die aus Ofenpanzer (314) und Feuerfest-Material (314) gebildete Ofenwand so eingebaut wird, dass die Plattenebene sich parallel zur Längsachse des Ofens erstreckt (vertikale Anordnung).
  10. System nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, dass der mit Kühlmittel durchflossene Kühlteil (202) des jeweiligen Kühlelementes (201) an der zum Ofeninneren (Oi) hinweisenden Seite des Ofenpanzers (213) angeordnet ist.
  11. System nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, dass der mit Kühlmittel durchflossene Kühlteil (102, 302) an der vom Ofeninneren (Oi) wegweisenden Seite des Ofenpanzers (113, 313) angeordnet ist.
  12. System nach einem der Ansprüche 8 bis 11,
    dadurch gekennzeichnet, dass die Geometrie der Platten (105, 205, 305) und/oder der Abstand zwischen Heißseite (108) und Kühlteil (102) und/oder der Abstand der Platten (105, 205, 305) zueinander der Kühlelemente entsprechend der Schmelzleistungsdichte ausgelegt sind.
  13. System nach einem der Ansprüche 8 bis 12,
    dadurch gekennzeichnet, dass der Abstand der Platten (105, 205, 305) von benachbarten Kühlelementen (101, 201, 301) entsprechend des oder eines Mehrfachen des Höhen- (HF) bzw. des Breitenformates von Feuerfest-Steinen (115, 215) als Feuerfest-Material bemessen ist.
  14. System nach einem der Ansprüche 8 bis 13,
    dadurch gekennzeichnet, dass der Kühlmittelablauf eines Kühlelementes mit dem Kühlmittelzulauf eines benachbarten Kühlelementes (201) verbunden ist.
  15. Schmelzofen mit einem System nach den Ansprüchen 8 und 11 zur Kühlung der Schlacken- und/oder Metallzone mit mindestens einem Kühlelement nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass bei horizontaler Anordnung mehrerer Lagen von Kühlelementen (101), die eine Kühlzone bilden, und bei einer Anordnung des mit Kühlmittel durchflossenen Kühlteils (102) an der vom Ofeninneren (Oi) wegweisenden Seite des Ofenpanzers (113)
    der Ofenpanzer (113) im Bereich dieser Kühlzone in Richtung Ofeninnenraum (Oi) eingezogen ausgeformt ist und
    dass er mittels einer Blechkonstruktion, insbesondere mittels Schottblechen (127), zur Weiterleitung von Vertikalkräften oberhalb der Kühlzone gestützt ist.
  16. Schmelzofen mit einem System nach den Ansprüche 9 und 11 zur Kühlung der Schlacken- und/oder Metallzone mit mindestens einem Kühlelement nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass bei vertikaler Anordnung mehrerer Kühlelemente (301), die eine Kühlzone bilden,
    und bei einer Anordnung des mit Kühlmittel durchflossenen Kühlteils (302) an der vom Ofeninneren (Oi) wegweisenden Seite des Ofenpanzers (313) der Ofenpanzer (313) durch Rippen (335a, b) oder Ringe verstärkt ist.
  17. Schmelzofen nach Anspruch 15 oder 16,
    gekennzeichnet durch
    einen Rundofen (OR) oder Rechteckofen (ORe) zur Herstellung von Nichteisenmetallen oder von Roheisen oder durch einen Lichtbogenofen zur Herstellung von Stahl.
EP02724254A 2001-04-18 2002-03-22 Kühlelement zur kühlung eines metallurgischen ofens Expired - Lifetime EP1381817B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10119034A DE10119034A1 (de) 2001-04-18 2001-04-18 Kühlelement zur Kühlung eines metallurgischen Ofens
DE10119034 2001-04-18
PCT/EP2002/003209 WO2002084192A1 (de) 2001-04-18 2002-03-22 Kühlelement zur kühlung eines metallurgischen ofens

Publications (2)

Publication Number Publication Date
EP1381817A1 EP1381817A1 (de) 2004-01-21
EP1381817B1 true EP1381817B1 (de) 2005-05-11

Family

ID=7681872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02724254A Expired - Lifetime EP1381817B1 (de) 2001-04-18 2002-03-22 Kühlelement zur kühlung eines metallurgischen ofens

Country Status (9)

Country Link
EP (1) EP1381817B1 (de)
CN (1) CN100342194C (de)
AT (1) ATE295521T1 (de)
DE (2) DE10119034A1 (de)
ES (1) ES2242855T3 (de)
PT (1) PT1381817E (de)
RU (1) RU2281974C2 (de)
WO (1) WO2002084192A1 (de)
ZA (1) ZA200308040B (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91455B1 (en) * 2008-06-06 2009-12-07 Wurth Paul Sa Gap-filler insert for use with cooling plates for a metallurgical furnace
LU91454B1 (en) * 2008-06-06 2009-12-07 Wurth Paul Sa Cooling plate for a metallurgical furnace
WO2010076368A1 (en) * 2008-12-29 2010-07-08 Luvata Espoo Oy Method for producing a cooling element for pyrometallurgical reactor and the cooling element
AT508292B1 (de) * 2009-05-28 2011-03-15 Mettop Gmbh Verfahren zur kühlung eines metallurgischen ofens sowie kühlkreislaufsystem für metallurgischeöfen
CN102252782B (zh) * 2011-05-10 2012-09-05 上海量值测控仪器科技有限公司 卧式热电偶检定炉专用降温加速器
DE102012214147A1 (de) 2012-05-11 2013-11-14 Sms Siemag Ag Seitenwandkühlung für Schmelzöfen
RU2555697C2 (ru) * 2013-10-15 2015-07-10 Общество С Ограниченной Ответственностью "Медногорский Медно-Серный Комбинат" Футеровка стенки металлургической печи
FI20146035A (fi) * 2014-11-25 2016-05-26 Outotec Finland Oy Menetelmä metallurgisen uunin rakentamiseksi, metallurginen uuni, ja pystysuuntainen jäähdytyselementti
CN105716429B (zh) * 2016-03-21 2017-12-22 中国恩菲工程技术有限公司 冷却系统
CN107606961B (zh) * 2017-10-17 2023-11-24 山东泓奥电力科技有限公司 液态炉渣余热回收装置
CN111607674A (zh) * 2020-06-29 2020-09-01 盐城市联鑫钢铁有限公司 一种促使高炉炉缸快速升温的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1724098A (en) * 1927-04-02 1929-08-13 American Smelting Refining Furnace-roof construction
DE2924991C2 (de) * 1979-06-21 1982-12-23 Ferdinand Lentjes, Dampfkessel- und Maschinenbau, 4000 Düsseldorf Wassergekühltes Ofenwandelement
SE8804202L (sv) * 1988-11-21 1990-05-22 Stiftelsen Metallurg Forsk Kylpanel
AUPM393094A0 (en) * 1994-02-16 1994-03-10 University Of Melbourne, The Internal refractory cooler

Also Published As

Publication number Publication date
RU2003133461A (ru) 2005-05-10
DE10119034A1 (de) 2002-10-24
ZA200308040B (en) 2004-06-07
WO2002084192A1 (de) 2002-10-24
CN100342194C (zh) 2007-10-10
DE50203089D1 (de) 2005-06-16
ES2242855T3 (es) 2005-11-16
CN1518657A (zh) 2004-08-04
RU2281974C2 (ru) 2006-08-20
EP1381817A1 (de) 2004-01-21
PT1381817E (pt) 2005-08-31
ATE295521T1 (de) 2005-05-15

Similar Documents

Publication Publication Date Title
DE2745622C2 (de) Gefäß für einen Metallschmelzofen, insbesondere Lichtbogenofen
EP1381817B1 (de) Kühlelement zur kühlung eines metallurgischen ofens
DE2736793C2 (de) Warmhalteofen zum Raffinieren von schmelzflüssigem Metall
DE19503912C2 (de) Kühlplatte für Schachtöfen, insbesondere Hochöfen
DE7837246U1 (de) Gekuehlter lichtbogenofenmantel
EP0705906B1 (de) Kühlplatte für Schachtöfen
DE19727008C1 (de) Kühlplatten für Schachtöfen
DE3603783C2 (de)
DE2354570A1 (de) Schmelzofen
EP0541044B1 (de) Gleichstrom-Lichtbogenofen
DE19545984B4 (de) Kühlplatte für Schmelzöfen
EP0085461B1 (de) Flüssigkeitsgekühlte Gefässwände für Lichtbogenöfen
DE2659827B1 (de) Lichtbogenschmelzofen
DE1558726C3 (de)
EP1047796B1 (de) Abstichrinne für eine eisenschmelze
EP1036848B1 (de) Abstichrinne für einen Schachtofen
DE3048025C2 (de) Kühler für Lichtbogenöfen
DE898817C (de) Ofen fuer direkte Schmelzflusselektrolyse von Aluminium
EP2847531B1 (de) Seitenwandkühlungsvorrichtung für schmelzöfen
DE4223109C1 (de)
DE102008032523A1 (de) Halterung für einen Injektor und Verfahren zu seinem Betrieb
DE2639378B2 (de) Wassergekühlter Deckel eines Lichtbogenofens
DE10009193A1 (de) Abstichrinne für einen Schachtofen
EP1088112A1 (de) Mit einer wasserkühlung versehenes gefäss für die vakuumbehandlung von flüssigem stahl
EP2733225A1 (de) Kühlelementanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040826

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050401623

Country of ref document: GR

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50203089

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050811

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20050623

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2242855

Country of ref document: ES

Kind code of ref document: T3

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050511

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PAUL WURTH S.A.

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: PAUL WURTH S.A.

Effective date: 20060104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

26N No opposition filed

Effective date: 20060214

BERE Be: lapsed

Owner name: SMS DEMAG A.G.

Effective date: 20060331

NLS Nl: assignments of ep-patents

Owner name: PAUL WURTH S.A.

Effective date: 20080508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20120314

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20130328

Year of fee payment: 12

Ref country code: SE

Payment date: 20130321

Year of fee payment: 12

Ref country code: CH

Payment date: 20130322

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20130314

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20130318

Year of fee payment: 12

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20050401623

Country of ref document: GR

Effective date: 20141002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141002

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50203089

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50203089

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AKTIENGESELLSCHAFT, 40237 DUESSELDORF, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140322

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20180328

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180313

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180417

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190321

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190322

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190322

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190323

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 295521

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210319

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50203089

Country of ref document: DE