EP1379328A1 - Mikrokapseln - Google Patents

Mikrokapseln

Info

Publication number
EP1379328A1
EP1379328A1 EP02712964A EP02712964A EP1379328A1 EP 1379328 A1 EP1379328 A1 EP 1379328A1 EP 02712964 A EP02712964 A EP 02712964A EP 02712964 A EP02712964 A EP 02712964A EP 1379328 A1 EP1379328 A1 EP 1379328A1
Authority
EP
European Patent Office
Prior art keywords
microcapsules
microcapsules according
active substances
anspmch
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02712964A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Podszun
Joachim Krüger
Joachim Probst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Publication of EP1379328A1 publication Critical patent/EP1379328A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N51/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds having the sequences of atoms O—N—S, X—O—S, N—N—S, O—N—N or O-halogen, regardless of the number of bonds each atom has and with no atom of these sequences forming part of a heterocyclic ring

Definitions

  • the present invention relates to new microcapsules which contain solid active substances as the core, to a process for the preparation of these microcapsules and to their use for applying the active substances contained.
  • Microcapsules are understood to mean particles with a particle size of approximately 1 to 200 ⁇ m and a core-shell structure, the core representing or containing an active substance.
  • Active substances include, for example, pharmaceutical active ingredients, agrochemical active ingredients, flavors, additives,
  • the shell material can be a natural polymer, such as. B. gelatin or gum arabic or a synthetic polymer. Further details of the microencapsulation are described in Kirk-Othmer, "Encyclopedia of Chemical Technology", Fourth Edition, Volume 16, pages 628-651.
  • Microcapsules are already known, the shell of which is preferably made of polyurea and the inside of which is filled with a suspension of solid, biologically active compounds in a non-aqueous liquid (cf.
  • the liquid can cause an undesired effect when used, eg contamination of the treated surfaces with the liquids in agrochemical applications. • The mechanical stability of the microcapsules is reduced by the liquid.
  • a shell made of polyurethane and / or polyurea and a core of at least one solid active substance
  • microcapsules according to the invention can be produced by suspending at least one solid active substance in water
  • microcapsules according to the invention are very suitable for the application of the solid active substances contained for the particular application.
  • microcapsules according to the invention are better suited for applying the solids contained than the constitutionally most similar, known preparations. Above all, it is unexpected that the microcapsules according to the invention, which consist practically only of solid, release the core materials in the manner desired in each case.
  • the microcapsules according to the invention are notable for a number of advantages. They contain a very high proportion of active substances and are mechanically stable. In addition, if these microcapsules are used in agriculture, there is no fear of contamination of the treated areas with undesirable liquids.
  • the shells of the microcapsules according to the invention consist of polyurethane and / or polyurea. These shell materials are derived from water-dispersible polyisocyanates which react with polyol and / or polyamine components. Monomers and. Suitable for producing these shell materials
  • Solid active substances which are contained in the microcapsules according to the invention as core materials are pharmaceutical active substances, agrochemical active substances, flavors, additives, adhesives, leuco dyes and flame retardants which are solid at room temperature.
  • agrochemical substances are understood to mean all substances customary for plant treatment, the melting point of which is above 20 ° C.
  • Fungicides, bactericides, insecticides, acaricides, nematicides, molluscicides, herbicides, plant growth regulators, plant nutrients and repellents are preferably mentioned.
  • fungicides are:
  • Difenoconazole dimethirimol, dimethomo ⁇ h, diniconazole, dinocap, diphenylamine, dipyrithione, ditalimfos, dithianon, dodine, drazoxolone,
  • Fluquinconazole Fluquinconazole, flusilazole, flusulfamide, flutolanil, flutriafol, folpet, fosetyl aluminum, fthalides, fuberidazole, furalaxyl, furmecyclox, fenhexamide,
  • Iprovalicarb Iprovalicarb, Kasugamycin, copper preparations such as: copper hydroxide, copper naphthenate,
  • Mancopper Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol,
  • Nickel dimethyldithiocarbamate Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,
  • PCNB Quintozen
  • quinoxyfen quinoxyfen
  • sulfur and sulfur preparations Tebuconazole, tecloftalam, tecnazene, tetraconazole, thiabendazole, Thicyofen, thio Phanat-methyl, thiram, Tolclophos-methyl, tolylfluanid, triadimefon, triadimenol, triazoxide, Trichlamid, tricyclazole, Tridemo ⁇ h, triflumizole, triforine, triticonazole, trifloxystrobin validamycin A, vinclozolin,
  • bactericides are:
  • insecticides examples include acaricides and nematicides.
  • Fenamiphos Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate,
  • Fipronil fluazuron, flucycloxuron, flucythrinate, flufenoxuron, flufenprox,
  • Imidacloprid Iprobefos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin, Lambda-cyhalothrin, Lufenuron,
  • Mecarbam Mevinphos, Mesulfenphos, Metaldehyde, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Monocrotophos, Moxidectin,
  • Parathion A Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenophos, Promecarb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetrozin, Pyrach
  • Tebufenozide Tebufenpyrad
  • Tebupirimiphos Teflubenzuron
  • Tefluthrin Temefos
  • Terbam Terbufos
  • Tetrachlorvinphos Thiacloprid, Thiafenox, Thiamethoxam
  • Thiodicarb Thiofanox, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Transfluthrin, Triarathen, Triazophos, Triazuron, Trichlorfon, Triflumuron,
  • molluscicides are metaldehyde and methiocarb.
  • herbicides are:
  • Anilides e.g. Diflufenican and Propanil
  • Aryl carboxylic acids e.g. Dichloropicolinic acid, dicamba and picloram
  • Aryloxyalkanoic acids e.g. 2,4-D, 2,4-DB, 2,4-DP, fluroxypyr, MCPA, MCPP and triclopyr
  • Aryloxy-phenoxy-alkanoic acid esters e.g. Diclofop-methyl, fenoxaprop-ethyl, fluazifop-butyl, haloxyfop-methyl and quizalofop-ethyl
  • Azinones e.g.
  • Chloridazon and norflurazon Carbamates, e.g. Chlo ⁇ ropham, Desmedipham, Phenmedipham and Propham; Chloroacetanilides, e.g. Alachlor, acetochlor, butachlor, metazachlor, metolochlor, pretilachlor and propachlor; Dinitroanilines, e.g. Oryzalin, pendimethalin and trifluralin; Diphenyl ethers, e.g. Acifluorfen, bifenox, fluoroglycofen,
  • Fomesafen, halosafen, lactofen and oxyfluorfen Ureas, e.g. Chlorotoluron, diuron, fluometuron, isoproturon, linuron and methabenzthiazuron; Hydroxylamines, e.g. Alloxydim, clethodim, cycloxydim, sethoxydim and tralkoxydim; Imidazolinones, e.g. Imazethapyr, imazamethabenz, imazapyr and imazaquin; Nitriles, e.g. Bromoxynil, dichlobenil and ioxynil; Oxyacetamides, e.g.
  • Sulfonylureas e.g. Amidosulfuron, bensulfuron-methyl, chlorimuron-ethyl, chlorosulfuron, cinosulfuron, metsulfuron-methyl, nicosulfuron, primisulfuron, pyrazosulfuron-ethyl, thifensulfuron-methyl, triasulfuron and tri-benuron-methyl
  • Thiol carbamates e.g. Butylates, cycloates, dialallates, EPTC, esprocarb, molinates, prosulfocarb, thiobencarb and triallates
  • Triazines e.g.
  • Atrazin cyanazin, simazin, simetryne, terbutryne and terbutylazin; Triazinones, e.g. Hexazinone, metametron and metribuzin; Others, such as Aminotriazole, Benfuresate, Bentazone, Cinmethylin, Clomazone, Clopyralid, Difenzoquat, Dithiopyr, Ethofumesate, Fluorochloridone, Glufosinate, Glyphosate, Isoxaben, Pyridate, Quinchlorac, Quinmerac, Sulphosate and Tridiphane. Furthermore, 4-
  • Chlorcholine chloride and ethephon are examples of plant growth regulators.
  • Examples of plant nutrients are customary inorganic or organic fertilizers for supplying plants with macro and / or micronutrients.
  • repellents are diethyl tolylamide, ethylhexanediol and butopyronoxyl.
  • flame retardants are understood to mean substances with a melting point above 20 ° C. which can be incorporated into plastics and reduce their flammability. Examples include halogen compounds which are solid at temperatures up to 40 ° C. and phosphorus in the red modification.
  • polyisocyanates and polyol and / or polyamine components which are dispersible in water are required as starting materials for producing the shell materials.
  • water-dispersible polyisocyanates are organic polyisocyanates with aliphatic, cycloaliphatic and / or aromatically bound free isocyanate groups which are liquid at room temperature.
  • Polyisocyanates with an (average) NCO functionality of 2 to 5 are preferred. Examples include: m-phenylene diisocyanate, p-phenylene diisocyanate, 2,4-tolylene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 4. 4'-methylene bis (2-methylphenyl isocyanate), hexamethylene diisocyanate, trimethyl hexamethylene diisocyanate, 4,4'-methylene bis (cyclohexyl isocyanate).
  • hydrophilized polyisocyanates which can be obtained from the above-mentioned polyisocyanates by partial reaction of the NCO groups with ionic or nonionic compounds, for example by reaction with polyethylene oxide.
  • Particularly useful hydrophilic polyisocyanates are disclosed in EP-A 0 959 087. Such hydrophilic
  • Non-hydrophilized polyisocyanates can be emulsified with the aid of polyol components, which are also required as starting materials, or with other surface-active agents.
  • suitable polyol components are polymers which have hydroxyl groups and also carboxylate and / or sulfonate groups. These include, for example, polymers of olefinically unsaturated compounds which contain hydroxyl groups.
  • Polymers containing hydroxyl groups are preferred which have a molecular weight M n (number average) of 500 to 50,000, preferably 1000 to 10,000 and a hydroxyl number of 16.5 to 264, preferably 33 to 165 mg KOH / g polymer, which can be determined by gel permeation chromatography exhibit.
  • M n number average
  • the polyol component also contains carboxylate and / or sulfonate groups, the proportion of these groups being 5 to 500, preferably 25 to 250 milliequivalents / 100 g of polymer.
  • the carboxylate and / or sulfonate groups increase the water solubility or the dispersibility of the polymers.
  • the hydroxyl-containing polymers can be copolymerized with
  • hydroxyl-containing monomers and monomers which contain carboxylic acid groups and / or sulfonic acid groups, the carboxylic acid groups and / or sulfonic acid groups being at least partially neutralized after the polymerization.
  • Preferred monomers containing hydroxyl groups are, for example, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate and hydroxypropyl methacrylate.
  • monomers with carbon Acid groups are acrylic acid, methacrylic acid, maleic acid and itaconic acid.
  • a suitable monomer with a sulfonic acid group is 2-acrylamido-2-methylpropane sulfonic acid.
  • monomers which can be used in the preparation of the hydroxyl-containing polymers are monomers without functional groups, such as, for example, methyl methacrylate, methyl acrylate, ethyl acrylate, ethyl methacrylate, isopropyl methacrylate,
  • polyamines can be used instead of or preferably in addition to the polyols.
  • Such polyamines are preferably diethylenetriamine or triethylenetetramine.
  • finely divided means that the particles have an average particle size between 1 and 200 ⁇ m, preferably between 2 and 100 ⁇ m.
  • the temperatures can be varied within a certain range when carrying out the method according to the invention.
  • the capsule shell reaction is carried out at room temperature. But it is also possible to work at temperatures between 20 ° C and 100 ° C.
  • a catalyst can also be added to the reaction mixture.
  • suitable catalysts are organic tin compounds, such as dibutyltin dilaurate, or else tertiary amines, such as triethylamine.
  • concentration of catalyst can be varied within a certain range. In general, catalyst is used in amounts between 0.01 and
  • the implementation of the reaction according to the invention generally takes a few hours. It is possible to control the course of the reaction by IR spectroscopic detection of the NCO content.
  • the ratio of polyisocyanate to polyol and / or polyamine component can be varied within a certain range.
  • polyisocyanate and polyol and or polyamine components are used in such amounts that an NCO / OH
  • the total amount of polyisocyanate and polyol and / or polyamine component can also be varied within a certain range in relation to the solid active substance.
  • polyisocyanate and polyol and / or polyamine component are used in such a total amount that the Weight ratio of the components used to form the capsule shells to active substance is between 1: 0.001 and 1: 1, preferably between 1: 0.01 and 1: 0.25.
  • the particle size of the microcapsules according to the invention can be varied within a relatively wide range, depending on the particle size of the active substances used. Accordingly, the particle size of the microcapsules is generally between 1 and 200 ⁇ m, preferably between 2 and 100 ⁇ m. Microcapsules containing agrochemicals as active substances particularly preferably have an average particle size between 2 and 30 ⁇ m.
  • microcapsules according to the invention are obtained as solid particles in aqueous suspension when the method according to the invention is carried out. If it is desired to separate the microcapsules, the capsules can be isolated, for example by filtering or decanting, and, if appropriate, dried after washing.
  • microcapsules according to the invention contain agrochemical active substances, they are eminently suitable for applying these active substances to plants and / or their habitat.
  • the microcapsules according to the invention can be used as such either in solid form or as suspensions, if appropriate after prior dilution with water and, if appropriate, after the addition of formulation auxiliaries.
  • the application is carried out according to customary methods, for example by pouring, spraying, spraying or scattering.
  • microcapsules according to the invention which contain agrochemical active ingredients can be varied within a relatively wide range. It depends on the respective agrochemical active ingredients and their content in the microcapsules.
  • the microcapsules according to the invention, which contain agrochemical active substances, ensure the release of the active components in the desired amount over a longer period of time.
  • Microcapsules according to the invention which contain flame retardants, are easier to incorporate into plastics than non-encapsulated flame retardants.
  • microencapsulated flame retardants according to the invention into plastics, an undesirable influence on the properties of the plastics, for example on a reduction in the mechanical strength, can be largely avoided.
  • the allophanatization reaction is started by adding 0.01 g of zinc (II) -2-ethyl-1-hexanoate.
  • the temperature of the reaction mixture rises to 109 ° C. due to the heat of reaction released.
  • the reaction was carried out by adding 0.01 g
  • a polyacrylate in the form of a secondary dispersion was prepared by reacting the comonomers methacrylic acid 2-hydroxyethyl ester, acrylic acid, methacrylic acid methyl ester and acrylic acid 2-butyl ester according to the process given in EP-B 0 358 979.
  • the dispersion has a solids content of 46%, an OH content of 3.3% with respect to solid resin, an acid number of approx. 21 mg KOH / g solid resin, a pH of 8.0 and a viscosity of approx. 800 mPa- s
  • N-dimethylaminoethanol acts as a neutralizing agent.
  • Example 3 The reaction described in Example 3 was repeated in such a way that no catalyst was added. The reaction time at 50 ° C was 42 hours. After drying, 30.8 g of microencapsulated product which had no phosphine odor was obtained.
  • a slurry of 40 g of thiacloprid in 337 g of deionized water was successively mixed with 17.4 g of the polyol component described in Example 2, 5.4 g of the polyisocyanate described in Example 1 and 8 mg of the catalyst mentioned in Example 3.
  • After setting a stirring speed of 300 RPM the reaction mixture was stirred at room temperature for 18 hours.
  • the microencapsulated product was then isolated by centrifugation, washed thoroughly with water, centrifuged again and then dried at 60 ° C. to constant weight. 35.5 g of powdery, microencapsulated product were obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Fireproofing Substances (AREA)

Abstract

Neue Mikrokapseln, die eine Hülle aus Polyurethan und/oder Polyharnstoff und einen Kern aus mindestens einer festen Aktivsubstanz enthalten, wobei im Kern keine Flüssigkeit vorhanden ist, ein Verfahren zur Herstellung dieser neuen Mikrokapseln und deren Verwendung zur Applikation der enthaltenen Aktivsubstanzen.

Description

Mikrokapseln
Die vorliegende Erfindung betrifft neue Mikrokapseln, die feste Aktivsubstanzen als Kern enthalten, ein Verfahren zur Herstellung dieser Mikrokapseln und deren Verwendung zur Applikation der enthaltenen Aktivsubstanzen.
Unter Mikrokapseln werden Partikel mit einer Teilchengröße von ca. 1 bis 200 μm und einer Kem-Hüllen-Struktur verstanden, wobei der Kern eine aktive Substanz darstellt oder enthält. Als aktive Substanzen kommen dabei beispielsweise pharmazeutische Wirkstoffe, agrochemische Wirkstoffe, Aromen, Additive,
Adhäsive, Farbstoffe, Leukofarbstoffe und Flammschutzmittel in Frage. Das Hüllmaterial kann ein natürliches Polymer, wie z. B. Gelatine oder Gummi arabicum oder ein synthetisches Polymer sein. Nähere Einzelheiten der Mikroverkapselung werden in Kirk-Othmer, "Encyclopedia of Chemical Technology", Fourth Edition, Volume 16, Seiten 628 - 651 beschrieben.
Besonders gut geeignete Hüllenmaterialien von Mikrokapseln sind Polyurethane und Polyharnstoffe. So sind bereits Mikrokapseln bekannt, deren Hülle vorzugsweise aus Polyhamstoff besteht und deren Inneres ausgefüllt ist mit einer Suspension von festen, biologisch aktiven Verbindungen in einer nicht-wässrigen Flüssigkeit (vgl.
WO 95-13 698). Die Anwesenheit einer nicht-wässrigen Flüssigkeit im Kern ist im Falle dieser Mikrokapseln einerseits zwingend, da sonst keine Hüllenbildung durch Phasengrenzflächenreaktion möglich ist. Andererseits ist die Anwesenheit von nicht- wässrigen Flüssigkeiten in den Mikrokapseln im Hinblick auf deren Anwendung aus folgenden Gründen ungünstig:
• Der Gehalt an aktiven Verbindungen in den Mikrokapseln wird durch den Flüssigkeitsanteil herabgesetzt.
• Die Flüssigkeit kann bei der Anwendung einen ungewünschten Effekt verursachen, z.B. bei agrochemischen Anwendungen eine Kontamination der behandelten Flächen mit den Flüssigkeiten. • Die mechanische Stabilität der Mikrokapseln wird durch die Flüssigkeit herabgesetzt.
Es wurden nun neue Mikrokapseln gefunden, die
eine Hülle aus Polyurethan und/oder Polyhamstoff und einen Kern aus mindestens einer festen Aktivsubstanz
enthalten, wobei im Kern keine Flüssigkeit vorhanden ist.
Weiterhin wurde gefunden, dass sich erfindungsgemäße Mikrokapseln herstellen lassen, indem man eine Suspension von mindestens einer festen Aktivsubstanz in Wasser
a) mit mindestens einem in Wasser dispergierten Polyisocyanat und
b) mindestens einer Polyol- und/oder Polyamin-Komponente
in Kontakt bringt.
Schließlich wurde gefunden, dass sich die erfindungsgemäßen Mikrokapseln sehr gut zur Applikation der enthaltenen, festen Aktivsubstanzen für den jeweiligen Anwendungszweck eignen.
Es ist als äußerst überraschend zu bezeichnen, dass die erfindungsgemäßen Mikrokapseln besser zur Applikation der enthaltenen Feststoffe geeignet sind als die konstitutionell ähnlichsten, vorbekannten Zubereitungen. Unerwartet ist vor allem, dass die praktisch nur aus Feststoff bestehenden, erfindungsgemäßen Mikrokapseln die Kernmaterialien in der jeweils gewünschten Weise freisetzen. Die erfindungsgemäßen Mikrokapseln zeichnen sich durch eine Reihe von Vorteilen aus. So enthalten sie einen sehr hohen Anteil an Aktivsubstanzen und sind mechanisch stabil. Außerdem ist zum Beispiel bei einer Verwendung dieser Mikrokapseln in der Landwirtschaft eine Kontamination der behandelten Flächen mit unerwünsch- ten Flüssigkeiten nicht zu befürchten.
Wie bereits erwähnt, bestehen die Hüllen der erfindungsgemäßen Mikrokapseln aus Polyurethan und/oder Polyhamstoff. Diese Hüllmaterialien leiten sich ab von in Wasser dispergierbaren Polyisocyanaten, die mit Polyol- und/oder Polyamin-Kom- ponenten reagieren. Zur Erzeugung dieser Hüllmaterialien geeignete Monomere und
Polymere werden im Zusammenhang mit der Beschreibung des erfindungsgemäßen Verfahrens genannt.
Als feste Aktivsubstanzen, die in den erfindungsgemäßen Mikrokapseln als Kern- materialien enthalten sind, kommen jeweils bei Raumtemperatur feste pharmazeutische Wirkstoffe, agrochemische Wirkstoffe, Aromen, Additive, Adhäsive, Leukofarbstoffe und Flammschutzmittel infrage.
Unter agrochemischen Substanzen sind im vorliegenden Zusammenhang alle zur Pflanzenbehandlung üblichen Substanzen zu verstehen, deren Schmelzpunkt oberhalb von 20°C liegt. Vorzugsweise genannt seien Fungizide, Bakterizide, Insektizide, Akarizide, Nematizide, Molluskizide, Herbizide, Pflanzenwuchsregulatoren, Pflanzennährstofe und Repellents.
Als Beispiele für Fungizide seien genannt:
2-Anilino-4-methyl-6-cyclopropyl-pyrimidin; 2',6,-Dibromo-2-methyl-4,-trifluoro- methoxy-4'-trifluoromethyl-l,3-thiazol-5-carboxanilid; 2,6-Dichloro-N-(4-trifluoro- methy_benzyl)-benzamid; (E)-2-Methoximino-N-methyl-2-(2-phenoxyphenyl)-acet- amid; 8-Hydroxychinolinsulfat; Methyl-(E)-2- {2-[6-(2-cyanophenoxy)-pyrimidin-4- yloxy]-phenyl} -3-methoxyacrylat; Methyl-(E)-methoxi_nino[alpha-(o-tolyloxy)-o- tolylj-acetat; 2-Phenylphenol (OPP), Aldimorph, Ampropylfos, Anilazin, Azaco- nazol,
Benalaxyl, Benodanil, Benomyl, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S,
Bromuconazole, Bupirimate, Buthiobate, Calciumpolysulfid, Captafol, Captan, Carbendazim, Carboxin, Chinomethionat
(Quinomethionat), Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Cufraneb,
Cymoxanil, Cyproconazole, Cyprofuram, Carpropamid,
Dichlorophen, Diclobutrazol, Dichlofluanid, Diclomezin, Dicloran, Diethofencarb,
Difenoconazol, Dimethirimol, Dimethomoφh, Diniconazol, Dinocap, Diphenylamin, Dipyrithion, Ditalimfos, Dithianon, Dodine, Drazoxolon,
Edifenphos, Epoxyconazole, Ethirimol, Etridiazol,
Fenarimol, Fenbuconazole, Fenfuram, Fenitropan, Fenpiclonil, Fentinacetat,
Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam, Fludioxonil, Fluoromide,
Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil, Flutriafol, Folpet, Fosetyl- Aluminium, Fthalide, Fuberidazol, Furalaxyl, Furmecyclox, Fenhexamid,
Guazatine,
Hexachlorobenzol, Hexaconazol, Hymexazol,
Imazalil, Imibenconazol, Iminoctadin, Iprobenfos (IBP), Iprodion, Isoprothiolan,
Iprovalicarb, Kasugamycin, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat,
Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,
Mancopper, Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol,
Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil,
Nickeldimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,
Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin,
Probenazol, Prochloraz, Procymidon, Propamocarb, Propiconazole, Propineb,
Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon,
Quintozen (PCNB), Quinoxyfen, Schwefel und Schwefel-Zubereitungen, Tebuconazol, Tecloftalam, Tecnazen, Tetraconazol, Thiabendazol, Thicyofen, Thio- phanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemoφh, Triflumizol, Triforin, Triticonazol, Trifloxystrobin Validamycin A, Vinclozolin,
Zineb, Zira ,
2-[2-(l-Chlor-cyclopropyl)-3-(2-chloφhenyl)-2-hydroxypropyl]-2,4-dihydro-[l,2,4]- triazol-3-thion und
1 -(3,5-Dimethyl-isoxazol-4-sulfonyl)-2-chlor-6,6-difluor-[ 1 ,3]-dioxolo-[4,5-f]- benzimidazol.
Als Beispiele für Bakterizide seien genannt:
Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Teclofta- lam, Kupfersulfat und andere Kupfer-Zubereitungen.
Als Beispiele für Insektizide, Akarizide und Nematizide seien genannt:
Abamectin, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz,
Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin, Bacillus thuringiensis, 4-Bromo-2-(4-chlθφhenyl)-l-(ethoxymethyl)-5-(trifluorome- thyl)-lH-pyrrole-3-carbonitrile, Bendiocarb, Benfuracarb, Bensultap, Betacyfluthrin, Bifenthrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarb- oxin, Butylpyridaben, Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloetho- carb, Chloretoxyfos, Chlorfenvinphos, Chlorfluazuron, Chlormephos, N-[(6-Chloro~
3-pyridinyl)-methyl]-N'-cyano-N-methyl-ethanimidamide, Chloφyrifos, Chloφyri- fos M, Cis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyflu- thrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin, Deltamethrin, Demeton-M, Demeton-S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflu- benzuron, Dimethoat, Dimethylvinphos, Dioxathion, Disulfoton,
Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Ethoprophos,
Etrimphos,
Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate,
Fipronil, Fluazuron, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox,
Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb,
HCH, Heptenophos, Hexaflumuron, Hexythiazox,
Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin, Lambda-cyhalothrin, Lufenuron,
Malathion, Mecarbam, Mevinphos, Mesulfenphos, Metaldehyd, Methacrifos, Metha- midophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Mono- crotophos, Moxidectin,
Naled, NC 184, Nitenpyram, Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,
Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phos- phamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenophos, Pro- mecarb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetrozin, Pyrachlophos,
Pyridaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,
Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos,
Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Teme- phos, Terbam, Terbufos, Tetrachlorvinphos, Thiacloprid, Thiafenox, Thiamethoxam,
Thiodicarb, Thiofanox, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Transfluthrin, Triarathen, Triazophos, Triazuron, Trichlorfon, Triflumuron,
Trimethacarb,
Vamidothion, XMC, Xylylcarb, Zetamethrin.
Als Beispiele für Molluskizide seien Metaldehyd und Methiocarb genannt. Als Beispiele für Herbizide seien genannt:
Anilide, wie z.B. Diflufenican und Propanil; Arylcarbonsäuren, wie z.B. Dichlor- picolinsäure, Dicamba und Picloram; Aryloxyalkansäuren, wie z.B. 2,4-D, 2,4-DB, 2,4-DP, Fluroxypyr, MCPA, MCPP und Triclopyr; Aryloxy-phenoxy-alkan- säureester, wie z.B. Diclofop-methyl, Fenoxaprop-ethyl, Fluazifop-butyl, Haloxyfop- methyl und Quizalofop-ethyl; Azinone, wie z.B. Chloridazon und Norflurazon; Carbamate, wie z.B. Chloφropham, Desmedipham, Phenmedipham und Propham; Chloracetanilide, wie z.B. Alachlor, Acetochlor, Butachlor, Metazachlor, Metola- chlor, Pretilachlor und Propachlor; Dinitroaniline, wie z.B. Oryzalin, Pendimethalin und Trifluralin; Diphenylether, wie z.B. Acifluorfen, Bifenox, Fluoroglycofen,
Fomesafen, Halosafen, Lactofen und Oxyfluorfen; Harnstoffe, wie z.B. Chlortoluron, Diuron, Fluometuron, Isoproturon, Linuron und Methabenzthiazuron; Hydroxyl- amine, wie z.B. Alloxydim, Clethodim, Cycloxydim, Sethoxydim und Tralkoxydim; Imidazolinone, wie z.B. Imazethapyr, Imazamethabenz, Imazapyr imd Imazaquin; Nitrile, wie z.B. Bromoxynil, Dichlobenil und Ioxynil; Oxyacetamide, wie z.B.
Mefenacet; Sulfonylharnstoffe, wie z.B. Amidosulfuron, Bensulfuron-methyl, Chlorimuron-ethyl, Chlorsulfuron, Cinosulfuron, Metsulfuron-methyl, Nicosulfuron, Primisulfuron, Pyrazosulfuron-ethyl, Thifensulfuron-methyl, Triasulfuron und Tri- benuron-methyl; Thiolcarbamate, wie z.B. Butylate, Cycloate, Diallate, EPTC, Esprocarb, Molinate, Prosulfocarb, Thiobencarb und Triallate; Triazine, wie z.B.
Atrazin, Cyanazin, Simazin, Simetryne, Terbutryne und Terbutylazin; Triazinone, wie z.B. Hexazinon, Metami tron und Metribuzin; Sonstige, wie z.B. Aminotriazol, Benfuresate, Bentazone, Cinmethylin, Clomazone, Clopyralid, Difenzoquat, Dithiopyr, Ethofumesate, Fluorochloridone, Glufosinate, Glyphosate, Isoxaben, Pyri- date, Quinchlorac, Quinmerac, Sulphosate und Tridiphane. Desweiteren seien 4-
Amino-N-(l,l-dimethylethyl)-4,5-dihydro-3-(l-metylethyl)-5-oxo-lH-l,2,4-triazole- 1-carboxamide und Benzoesäure,2-((((4,5-dihdydro-4-methyl-5-oxo-3-propoxy-lH- 1 ,2,4-triazol- 1 -yl)carbonyl)amino)sulfonyl)-,methylester genannt.
Als Beispiele für Pflanzenwuchsregulatoren seien Chlorcholinchlorid und Ethephon genannt. Als Beispiele für Pflanzennährstoffe seien übliche anorganische oder organische Dünger zur Versorgung von Pflanzen mit Makro- und/oder Mikronährstoffen genannt.
Als Beispiele für Repellents seien Diethyl-tolylamid, Ethylhexandiol und Buto- pyronoxyl genannt.
Unter Flammschutzmitteln werden im vorliegenden Zusammenhang Substanzen mit einem Schmelzpunkt oberhalb von 20°C verstanden, die in Kunststoffe eingearbeitet werden können und deren Entflammbarkeit verringern. Als Beispiele genannt seien bei Temperaturen bis zu 40°C feste Halogenverbindungen und Phosphor in der roten Modifikation.
Bei der Herstellung der erfindungsgemäßen Mikrokapseln werden als Ausgangsstoffe zur Erzeugung der Hüllenmaterialien in Wasser dispergierbare Polyisocyanate sowie Polyol- und/oder Polyamin-Komponenten benötigt.
Unter in Wasser dispergierbaren Polyisocyanaten sind im vorliegenden Fall organi- sehe Polyisocyanate mit aliphatisch, cycloaliphatisch und/oder aromatisch gebundenen, freien Isocyanatgruppen zu verstehen, die bei Raumtemperatur flüssig sind.
Bevorzugt sind Polyisocyanate mit einer (mittleren) NCO-Funktionalität von 2 bis 5. Beispielhaft genannt seien: m-Phenylendiisocyanat, p-Phenylendiisocyanat, 2,4- Toluylendiisocyanat, 3,3'-Dimethyl-4,4'-biphenylendiisocyanat, 4,4'-Methylenbis(2- methylphenylisocyanat), Hexamethylendiisocyanat, Trimetylhexamethylendiiso- cyanat, 4,4'-Methylenbis(cyclohexylisocyanat). Gut geeignet sind auch Derivate von Diisocyanaten mit Biuret-, Urethan-, Uretdion- und/oder Isocyanuratgruppen; beispielsweise das trimere Hexamethylendiisocyanat mit Isocyan-uratstruktur, welches gemäß US-PS 4 324 879 erhalten werden kann. Weiterhin in Betracht kommen hydrophilierte Polyisocyanate, die aus den oben erwähnten Polyisocyanaten durch partielle Umsetzung der NCO-Gruppen mit ionischen oder nichtionischen Verbindungen, beispielsweise durch Umsetzung mit Polyethylenoxid erhalten werden können. Besonders gut verwendbare hydrophile Polyisocyanate werden in der EP-A 0 959 087 offenbart. Derartige hydrophile
Polyisocyanate haben den Vorteil, dass sie selbstdispergierend sind. Allerdings ist das erfindungsgemäße Verfahren nicht auf den Einsatz dieser Polyisocyanat-Typen beschränkt. Nicht hydrophilierte Polyisocyanate können mit Hilfe von ebenfalls als Ausgangsstoffe benötigten Polyol-Komponenten oder mit anderen oberflächen- aktiven Mitteln emulgiert werden.
Als Polyol-Komponenten kommen bei der Durchführung des erfindungsgemäßen Verfahrens Polymerisate infrage, die Hydroxyl-Gruppen sowie auch Carboxylat- und/oder Sulfonat-Gruppen aufweisen. Hierzu gehören beispielsweise Polymerisate von olefinisch ungesättigten Verbindungen, die Hydroxyl-Gruppen enthalten.
Bevorzugt sind hydroxylgruppenhaltige Polymerisate, die ein nach der Gelpermea- tionschromatographie bestimmbares Molekulargewicht Mn (Zahlenmittel) von 500 bis 50 000, vorzugsweise 1000 bis 10 000 und eine Hydroxylzahl von 16,5 bis 264, vorzugsweise von 33 bis 165 mg KOH/g Polymerisat aufweisen. Die Polyolkompo- nente enthält neben Hydroxylgruppen auch Carboxylat- und/oder Sulfonatgruppen, wobei der Anteil an diesen Gruppen 5 bis 500, vorzugsweise 25 bis 250 Milliäqui- valent/lOOg Polymerisat beträgt. Durch die Carboxylat- und/oder Sulfonatgruppen wird die Wasserlöslichkeit bzw. die Dispergierbarkeit der Polymerisate erhöht.
Die hydroxylgruppenhaltigen Polymerisate lassen sich durch Copolymerisation unter
Verwendung von hydroxylgruppenhaltigen Monomeren und Monomeren, die Carbonsäuregruppen und/oder Sulfonsäuregruppen enthalten, herstellen, wobei die Carbonsäuregruppen und/oder Sulfonsäuregruppen nach erfolgter Polymerisation zumindest teilweise neutralisiert werden. Bevorzugte hydroxylgruppenhaltige Monomere sind z.B. 2-Hydroxyethylmethacrylat, 2-Hydroxyethylacrylat, Hydroxy- propylacrylat und Hydroxypropylmethacrylat. Beispiele für Monomere mit Carbon- säuregruppen sind Acrylsäure, Methacrylsäure, Maleinsäure und Itakonsäure. Ein geeignetes Monomer mit Sulfonsäuregruppe ist 2-Acrylamido-2-methylpropan- sulfonsäure. Als weitere Monomere können bei der Herstellung der hydroxylgruppenhaltigen Polymerisate Monomere ohne fun jtionelle Gruppen, wie z.B. Methyl- methacrylat, Methylacrylat, Ethylacrylat, Ethylmethacrylat, Isopropylmethacrylat,
Isopropylacrylat, n-Propylacrylat, n-Butylmethacrylat, n-Butylacrylat, 2-Ethyl- hexylacrylat, 2-Ethylhexylmethacrylat, Stearylmethacrylat, Styrol, Acrylnitril, Methacrylnitril, Vinylacetat und Vinylpropionat eingesetzt werden. Die Mengen an hydroxylgruppenhaltigen Monomeren und Monomeren mit Carbonsäuregruppen und/oder Sulfonsäuregruppen werden im Allgemeinen so gewählt, dass die oben angegebenen Kennzahlen erreicht werden. Weitere Einzelheiten zur Herstellung von hydroxylgruppenhaltigen Polymerisaten, die bei der Durchführung des erfϊndungs- gemäßen Verfahrens als Ausgangsstoffe infrage kommen, gehen aus der EP-A 0 358 979 hervor.
Bei der Durchführung des erfϊndungsgemäßen Verfahrens können anstelle der Polyole oder vorzugsweise zusätzlich zu den Polyolen auch Polyamine eingesetzt werden. Als derartige Polyamine kommen bevorzugt Diethylentriamin oder Triethy- lentetramin infrage.
Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man eine feinteilige Suspension von einer oder mehreren Aktivsubstanzen in Wasser ein. Feinteilig heißt in diesem Zusammenhang, dass die Partikel eine mittlere Teilchengröße zwischen 1 und 200 μm, vorzugsweise zwischen 2 und 100 μm aufweisen. Die Herstellung dieser Suspensionen kann dadurch erfolgen, dass man die festen Aktivsubstanzen mit
Hilfe von üblichen Mahlaggregaten, wie Perlmühlen oder Kugelmühlen, zerkleinert und dann in Wasser suspendiert. Dabei ist es vorteilhaft, die feste Aktivsubstanz in Wasser zu suspendieren, das bereits das Polyisocyanat oder die Polyol- und/oder Polyamin-Komponente enthält. Besonders bevorzugt erfolgt die Dispergierung in Anwesenheit der Polyol-Komponente. Das Polyisocyanat wird danach zugesetzt, wenn die gewünschte Feinteiligkeit der Suspension erreicht worden ist. Die Durchfühmng der erfindungsgemäßen Mikroverkapselung erfolgt unter Rühren in üblichen Mischgeräten.
Die Temperaturen können bei der Durchfühmng des erfindungsgemäßen Verfahrens innerhalb eines bestimmten Bereiches variiert werden. Im Allgemeinen führt man die Reaktion zur Bildung der Kapselhüllen bei Raumtemperatur durch. Es ist aber auch möglich, bei Temperaturen zwischen 20°C und 100°C zu arbeiten.
Um bei der Durchfuhrung des erfindungsgemäßen Verfahrens die Kapselbildung zu beschleunigen, kann dem Reaktionsgemisch auch ein Katalysator zugesetzt werden. Als Katalysatoren kommen dabei beispielsweise organische Zinnverbindungen, wie Dibutyl-Zinndilaurat, oder auch tertiäre Amine, wie Triethylamin, in Betracht. Die Konzentration an Katalysator kann innerhalb eines bestimmten Bereiches variiert werden. Im Allgemeinen verwendet man Katalysator in Mengen zwischen 0,01 und
0,5 Gew.-% bezogen auf das Polyisocyanat.
Die Durchführung der erfindungsgemäßen Umsetzung dauert im Allgemeinen einige Stunden. Dabei ist es möglich, den Reaktionsverlauf durch IR-spektroskopische Detektion das NCO-Gehaltes zu kontrollieren.
Bei der Durchführung des erfindungsgemäßen Verfahrens kann das Verhältnis von Polyisocyanat zu Polyol- und/oder Polyamin-Komponente innerhalb eines bestimmten Bereiches variiert werden. Im Allgemeinen verwendet man Polyisocyanat und Polyol- und oder Polyamin-Komponente in solchen Mengen, dass ein NCO/OH
(NH)-Äquivalenzverhältnis zwischen 0,5:1 und 3:1 resultiert.
Die Gesamtmenge an Polyisocyanat und Polyol- und/oder Polyamin-Komponente kann im Verhältnis zur festen Aktivsubstanz ebenfalls innerhalb eines bestimmten Bereiches variiert werden. Im Allgemeinen setzt man Polyisocyanat und Polyol- und/oder Polyamin-Komponente in einer solchen Gesamtmenge ein, dass das Gewichtsverhältnis der Komponenten, die zur Bildung der Kapselhüllen dienen, zu Aktivsubstanz zwischen 1:0,001 und 1:1, vorzugsweise zwischen 1:0,01 und 1:0,25, liegt.
Die Teilchengröße der erfindungsgemäßen Mikrokapseln kann in Abhängigkeit von der Partikelgröße der eingesetzten Aktivsubstanzen innerhalb eines größeren Bereiches variiert werden. Demgemäß liegt die Teilchengröße der Mikrokapseln im Allgemeinen zwischen 1 und 200 μm, vorzugsweise zwischen 2 und 100 μm. Mikrokapseln, die agrochemische Stoffe als Aktivsubstanzen enthalten, weisen besonders bevorzugt eine mittlere Teilchengröße zwischen 2 und 30 μm auf.
Die erfindungsgemäßen Mikrokapseln werden bei der Durchführung des erfindungsgemäßen Verfahrens als feste Partikel in wässriger Suspension erhalten. Ist die Abtrennung der Mikrokapseln erwünscht, so können die Kapseln zum Beispiel durch Filtrieren oder Dekantieren isoliert und gegebenenfalls nach dem Waschen getrocknet werden.
Enthalten die erfindungsgemäßen Mikrokapseln agrochemische Wirkstoffe, so eignen sie sich hervorragend zur Applikation dieser Wirkstoffe auf Pflanzen und/oder deren Lebensraum. Dabei können die erfindungsgemäßen Mikrokapseln als solche entweder in fester Form oder als Suspensionen, gegebenenfalls nach vorherigem Verdünnen mit Wasser sowie gegebenenfalls nach Zusatz von Formulierhilfsmitteln, in der Praxis eingesetzt werden. Die Anwendung erfolgt dabei nach üblichen Methoden, also zum Beispiel durch Gießen, Verspritzen, Versprühen oder Verstreuen.
Die Aufwandmenge an erfindungsgemäßen Mikrokapseln, die agrochemische Wirkstoffe enthalten, kann innerhalb eines größeren Bereiches variiert werden. Sie richtet sich nach den jeweiligen agrochemischen Wirkstoffen und nach deren Gehalt in den Mirkokapseln. Die erfindungsgemäßen Mikrokapseln, die agrochemische Wirkstoffe enthalten, gewährleisten die Freisetzung der aktiven Komponenten in der jeweils gewünschten Menge über einen längeren Zeitraum.
Erfindungsgemäße Mikrokapseln, die Flammschutzmittel enthalten, lassen sich einfacher als nicht-verkapselte Flammschutzmitel in Kunststoffe einarbeiten. Außerdem kann durch das Einarbeiten von erfindungsgemäß mikroverkapselten Flammschutzmitteln in Kunststoffe ein unerwünschter Einfluss auf die Eigenschaften der Kunststoffe, zum Beispiel auf eine Verringerung der mechanischen Festigkeit, weit- gehend vermieden werden.
Die Erfindung wird durch die folgenden Beispiele veranschaulicht.
Herstellungsbeispiele
Beispiel 1
Herstellung eines hydrophilierten Polyisocyanats
870 g (4,88 val) eines isocyanuratgrupen-haltigen Polyisocyanates auf Basis von 1,6- Diisocyanatohexan mit einem NCO-Gehalt von 23,2 %, einer mittleren NCO-Funk- tionalität von 3,2 (nach GPC), einem Gehalt an monomerem 1,6-Diisocyanatohexan von 0,2 % und einer Viskosität von 1200 mPas (23 °C) werden bei 100°C unter trockenem Stickstoff und Rühren vorgelegt, innerhalb von 30 min mit 130 g (0,26 val) eines auf Methanol gestarteten, monofunktionellen Polyethylenoxid- polyethers eines mittleren Molekulargewichtes von 500, entsprechend einem NCO/OH-Äquivalentverhältnis von 18,5:1, versetzt und anschließend bei dieser Temperatur weitergerührt, bis der NCO-Gehalt der Mischung nach etwa 2 h auf den einer vollständigen Urethanisierung entsprechenden Wert von 19,1 % gefallen ist. Durch Zugabe von 0,01 g Zink-(II)-2-ethyl-l-hexanoat wird die Allophanatisierungs- reaktion gestartet. Dabei steigt die Temperatur des Reaktionsgemisches aufgrund der freiwerdenden Reaktionswärme bis auf 109°C an. Nach Abklingen der Exothermie, etwa 20 min nach Katalysatorzugabe, wird die Reaktion durch Zugabe von 0,01 g
Benzoylchlorid abgebrochen und das Reaktionsgemisch auf Raumtemperatur abgekühlt. Man erhält ein hydrophiliertes Polyisocyanat mit einem Feststoffgehalt von 100 %. Der Isocyanatgehalt beträgt 18,1 %, die Funktionalität liegt bei 3,8, das NCO-Äquivalentgewicht bei 232 g und die Viskosität bei einem Schergefälle von D = 40 s-1, bei 4 000 mPa-s. Beispiel 2
Herstellung einer Polyol-Komponente
Durch Umsetzung der Comonomeren Methacrylsäure-2-hydroxyethylester, Acryl- säure, Methacrylsäuremethylester und Acrylsäure-2-butyl-ester nach dem in der EP-B 0 358 979 angegebenen Verfahren wurde ein Polyacrylat in Form einer Sekundärdispersion hergestellt. Die Dispersion weist einen Feststoffgehalt von 46 %, einen OH-Gehalt von 3,3 % bezüglich Festharz, eine Säurezahl von ca. 21 mg KOH/g Festharz, einen pH- Wert von 8,0 und eine Viskosität von ca. 800 mPa-s
(23°C, D = 40 s"1) auf. Als Neutralisationsmittel fungiert N-Dimethylaminoethanol.
Beispiel 3
Mikroverkapselung von rotem Phosphor
40 g roter Phosphor mit einer mittleren Teilchengöße von 35 μm wurden in 337g entionisiertem Wasser, das 17,4g an der im Beispiel 2 beschriebenen Polyol-Komponente enthielt, aufgeschlämmt. Anschließend wurden unter Rühren bei Raum- temperatur 5,4 g des im Beispiel 1 genannten Polyisocyanats und 8 mg Dibutylzinn- bis-(l-thioglycerin) = (Fascat 4224; Firma: Elf Atochem Inc., Industrial Specialties) als Katalysator hinzugefügt. Nach Einstellung einer Rührgeschwindigkeit von 300 UpM wurde das Reaktionsgemisch 18 Stunden lang auf 50°C erwärmt. Nach dem Abkühlen des Reaktionsgemisches auf Raumtemperatur wurde das mikro- verkapselte Produkt durch Filtration isoliert, mit 250 ml Wasser nachgewaschen und dann bei 60°C bis zur Gewichtskonstanz getrocknet. Man erhielt 29,9 g an mikro- verkapseltem Produkt, das keinen Geruch nach Phosphin aufwies. Beispiel 4
Mikroverkapselung von rotem Phosphor
Die im Beispiel 3 beschriebene Umsetzung wurde in der Weise wiederholt, dass auf einen Zusatz von Katalysator verzichtet wurde. Die Reaktionszeit bei 50°C betrug 42 Stunden. Nach dem Trocknen erhielt man 30,8 g an mikroverkapseltem Produkt, das keinen Geruch nach Phosphin aufwies.
Beispiel 5
Mikroverkapselung von rotem Phosphor
40 g roter Phosphor mit einer mittleren Teilchengöße von 35 μm wurden in 350 g entionisiertem Wasser aufgeschlämmt. Anschließend wurden 8,72 g des im Beispiel 1 beschriebenen Polyisocyanats hinzugefügt. Nach Einstellung einer Rührgeschwindigkeit von 300 UpM wurden 1,29 g Diethylentriamin zugetropft. Danach wurde das Reaktionsgemisch unter Rühren 18 Stunden lang auf 50°C erwärmt. Nach dem Abkühlen des Reaktionsgemisches auf Raumtemperatur wurde das mikro- verkapselte Produkt durch Filtration isoliert, zweimal mit 200 ml Wasser nachgewaschen und dann bei 60°C bis zur Gewichtskonstanz getrocknet. Man erhielt 44,1 g an mikroverkapseltem Produkt, das keinen Gemch nach Phosphin aufwies.
Beispiel 6
Mikroverkapselung von Thiacloprid
Eine Aufschlämmung von 40 g Thiacloprid in 337 g entionisiertem Wasser wurde nacheinander mit 17,4 g der im Beispiel 2 beschriebenen Polyol-Komponente, 5,4 g des im Beispiel 1 beschriebenen Polyisocyanats und 8 mg des im Beispiel 3 genannten Katalysators versetzt. Nach Einstellung einer Rührgeschwindigkeit von 300 UpM wurde das Reaktionsgemisch 18 Stunden lang bei Raumtemperatur gerührt. Anschließend wurde das mikroverkapselte Produkt durch Zentrifugieren isoliert, gründlich mit Wasser gewaschen, erneut zentrifugiert und dann bei 60°C bis zur Gewichtskonstanz getrocknet. Man erhielt 35,5 g an pulvrigem, mikroverkapselten Produkt.
Beispiel 7
Mikroverkapselung von Imidacloprid
40 g Imidacloprid wurden unter den im Beispiel 6 angegebenen Bedingungen mikro- verkapselt. Man erhielt 37,6 g an pulverigem, mikroverkapselten Produkt.
Beispiel 8
Mikroverkapselung von Thiacloprid
In einem Gemisch aus 169 g entionisiertem Wasser und 17,4 g der im Beispiel 2 beschriebenen Polyolkomponente wurden 20 g Imidacloprid aufgeschlämmt. Zu der erhaltenen Suspension wurden 5,4 g des im Beispiel 1 beschriebenen Polyiso- cyanates und 8 mg des im Beispiel 3 genannten Katalysators hinzugefügt. Nach Einstellung einer Rührgeschwindigkeit von 300 UpM wurde das Reaktionsgemisch 24 Stunden lang bei Raumtemperatur gerührt. Anschließend wurde das mikroverkapselte Produkt durch Zentrifugieren isoliert, gründlich mit Wasser gewaschen, erneut zentrifugiert und dann bei 60°C bis zur Gewichtskonstanz getrocknet. Man erhielt 19,8 g an pulvrigem, mikroverkapselten Produkt. Verwendungsbeispiel A
Stabilitätstest
Zur Übeφriifung der thermischen Stabilität erfindungsgemäßer Mikrokapseln wurden jeweils 100 mg-Proben von den in den Beispielen 3 bis 5 beschriebenen Produkten in einer geschlossenen Apparatur 10 Minuten lang auf 250°C erhitzt. Dabei wurde die Menge an entstandenem Phosphin bestimmt. Zum Vergleich wurde auch unverkapseltes Ausgangsmaterial (roter Phosphor) untersucht.
Die Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle A

Claims

Patentansprüche
1. Mikrokapseln, die
- eine Hülle aus Polyurethan und/oder Polyhamstoff und einen Kern aus mindestens einer festen Aktivsubstanz
enthalten, wobei im Kern keine Flüssigkeit vorhanden ist.
2. Mikrokapseln gemäß Anspmch 1, dadurch gekennzeichnet, dass als Aktivsubstanzen pharmazeutische Wirkstoffe, agrochemische Wirkstoffe, Aromen, Additive, Adhäsive, Leukofarbstoffe oder Flammschutzmittel enthalten sind, die einen Schmelzpunkt oberhalb von 20°C aufweisen.
3. Mikrokapseln gemäß Anspmch 1, dadurch gekennzeichnet, dass als Aktivsubstanzen Fungizide, Bakterizide, Insektizide, Akarizide, Nematizide, MoUuskizide, Herbizide, Pflanzenwuchsregulatoren, Pflanzennährstoffe und/oder Repellents enthalten sind, die einen Schmelzpunkt oberhalb von 20°C aufweisen.
4. Mikrokapseln gemäß Anspmch 1, dadurch gekennzeichnet, dass Imidacloprid als Aktivsubstanz enthalten ist.
5. Mikrokapseln gemäß Anspmch 1, dadurch gekennzeichnet, dass Thiacloprid als Aktivsubstanz enthalten ist.
6. Verfahren zur Herstellung von Mikrokapseln gemäß Anspmch 1, dadurch gekennzeichnet, dass man eine Suspension von mindestens einer festen Aktivsubstanz in Wasser
a) mit mindestens einem in Wasser dispergierten Polyisocyanat und b) mindestens einer Polyol- und/oder Polyamin-Komponente
in Kontakt bringt.
Verwendung von Mikrokapseln gemäß Anspmch 1 zur Applikation der enthaltenen, festen Aktivsubstanzen.
EP02712964A 2001-04-10 2002-04-02 Mikrokapseln Withdrawn EP1379328A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10117784 2001-04-10
DE10117784A DE10117784A1 (de) 2001-04-10 2001-04-10 Mikrokapseln
PCT/EP2002/003617 WO2002083290A1 (de) 2001-04-10 2002-04-02 Mikrokapseln

Publications (1)

Publication Number Publication Date
EP1379328A1 true EP1379328A1 (de) 2004-01-14

Family

ID=7681022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02712964A Withdrawn EP1379328A1 (de) 2001-04-10 2002-04-02 Mikrokapseln

Country Status (9)

Country Link
US (1) US20040115280A1 (de)
EP (1) EP1379328A1 (de)
JP (1) JP2004535276A (de)
CN (1) CN1501837A (de)
BR (1) BR0208797A (de)
CA (1) CA2443682A1 (de)
DE (1) DE10117784A1 (de)
MX (1) MXPA03009229A (de)
WO (1) WO2002083290A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314960A (zh) * 2005-03-28 2013-09-25 住友化学株式会社 农药组合物
CN100400151C (zh) * 2005-09-09 2008-07-09 浙江大学宁波理工学院 一种着色交联聚氨酯微球的制备方法
US8753676B2 (en) * 2006-02-15 2014-06-17 Botanocap Ltd. Applications of microencapsulated essential oils
JP4965899B2 (ja) * 2006-06-01 2012-07-04 住化エンビロサイエンス株式会社 マイクロカプセル剤
CN100482740C (zh) * 2006-09-14 2009-04-29 华明扬 芳香聚脲微胶囊的制备方法
CN100396842C (zh) * 2006-09-14 2008-06-25 华明扬 聚氨酯芳香微胶囊的制备方法
JP2008119684A (ja) * 2006-10-19 2008-05-29 Sumitomo Chemical Co Ltd マイクロカプセルの製造方法及びマイクロカプセル組成物
CN100463936C (zh) * 2006-12-26 2009-02-25 温州大学 一种聚氨酯树脂用微胶囊化红磷制备方法
JP5437811B2 (ja) * 2007-10-31 2014-03-12 日本エンバイロケミカルズ株式会社 マイクロカプセル剤の製造方法
ES2628087T3 (es) * 2010-06-25 2017-08-01 Cognis Ip Management Gmbh Procedimiento para producir microcápsulas
KR20130100290A (ko) 2010-08-30 2013-09-10 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 협착성 병변을 위한 전단 제어 방출 및 혈전 용해 치료법
EP2497809A1 (de) 2011-03-11 2012-09-12 Rhodia Opérations Verkapselter Aktivator und seine Verwendung zur Auslösung eines Geliersystems durch physikalische Mittel
EP2589290B1 (de) 2011-11-04 2014-11-26 Endura S.p.a. Mikrokapseln enthaltend ein Pyrethroid und/oder Neonicotinoid und ein synergistisches Mittel
PT106198B (pt) * 2012-03-08 2014-10-07 Sapec Agro S A Formulação inseticida, método para a sua preparação e utilização da mesma
CN102939961B (zh) * 2012-11-06 2014-07-30 绍兴文理学院 一种具有核壳结构的农药微颗粒制剂及其制备方法
RU2640885C2 (ru) 2012-11-16 2018-01-12 Басф Се Инкапсулированная частица удобрения, содержащая пестицид
CN103103804A (zh) * 2012-12-10 2013-05-15 苏州尊元纺织有限公司 一种芳香锦纶织物的生产方法
CN104273122B (zh) * 2013-07-03 2016-08-10 上海追光科技有限公司 长效聚氨酯农药微胶囊的制备方法
CN103394314B (zh) * 2013-07-30 2015-12-23 浙江理工大学 一种聚氨酯包裹精油的微胶囊的制备方法
CN104938483A (zh) * 2015-06-26 2015-09-30 青岛农业大学 一种环境友好型二氧化碳基聚合物载吡虫啉微胶囊及其制备方法
ES2918016T3 (es) 2015-07-24 2022-07-13 Basf Se Compuestos de piridina útiles para combatir hongos fitopatógenos
UA121417C2 (uk) 2015-09-03 2020-05-25 Басф Агро Б.В. Композиція мікрочастинок, яка містить сафлуфенацил
CN105284841A (zh) * 2015-11-24 2016-02-03 然晟(上海)实业发展有限公司 一种恶虫威微胶囊及其制备方法
CN105494330A (zh) * 2015-12-01 2016-04-20 然晟(上海)实业发展有限公司 一种复凝聚法制恶虫威微胶囊及其制备方法
CN105696329A (zh) * 2016-01-27 2016-06-22 然晟(上海)实业发展有限公司 一种含恶虫威微胶囊整理剂及应用
WO2018032387A1 (en) * 2016-08-17 2018-02-22 Jiangsu Rotam Chemistry Co., Ltd. Herbicide composition comprising clomazone and use thereof
CN106577739A (zh) * 2016-11-04 2017-04-26 东莞市联洲知识产权运营管理有限公司 一种触破式微胶囊剂及其制备方法
MX2019015014A (es) 2017-06-13 2020-02-26 Monsanto Technology Llc Herbicidas microencapsulados.
CN108124864A (zh) * 2018-02-07 2018-06-08 郑州农达生化制品有限公司 一种稳定型复硝酚钠及其制备方法
CN111296429A (zh) * 2020-03-27 2020-06-19 仲恺农业工程学院 一种具有光响应性昆虫病毒杀虫剂及其制备方法
EP4011208A1 (de) 2020-12-08 2022-06-15 BASF Corporation Mikropartikelzusammensetzungen mit fluopyram
EP4011205A1 (de) 2020-12-08 2022-06-15 Basf Se Mikropartikelzusammensetzungen mt triflodimoxazin

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2166508A5 (de) * 1971-12-28 1973-08-17 Poudres & Explosifs Ste Nale
CA1112243A (en) * 1978-09-08 1981-11-10 Manfred Bock Process for the preparation of polyisocyanates containing isocyanurate groups and the use thereof
DE3829587A1 (de) * 1988-09-01 1990-03-15 Bayer Ag Beschichtungsmittel, ein verfahren zu ihrer herstellung und die verwendung von ausgewaehlten zweikomponenten-polyurethansystemen als bindemittel fuer derartige beschichtungsmittel
DE59106623D1 (de) * 1990-12-21 1995-11-09 Chemie Linz Gmbh Mikrokapseln aus Melamin und deren Verwendung zur flammhemmenden Ausrüstung von Kunststoffen.
DE69221601T2 (de) * 1992-01-03 1998-01-15 Ciba Geigy Ag Suspension von Mikrokapseln und Verfahren zu ihrer Herstellung
US5993842A (en) * 1994-12-12 1999-11-30 Zeneca Limited Microcapsules containing suspensions of biologically active compounds
EP0959087B1 (de) * 1998-05-22 2003-10-15 Bayer Aktiengesellschaft Wasserdispergierbare Polyether-modifizierte Polyisocyanatgemische
US7056522B2 (en) * 1999-07-03 2006-06-06 Termiguard Technologies, Inc. Sustained release pest control products and their applications
DE19947147A1 (de) * 1999-10-01 2001-04-05 Bayer Ag Mikrokapseln
GR1003957B (el) * 2000-08-28 2002-08-06 Syngenta Participations Ag Ελεγχος ζιζανιων που καταστρεφουν το ξυλο με thiamethoxam.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02083290A1 *

Also Published As

Publication number Publication date
US20040115280A1 (en) 2004-06-17
BR0208797A (pt) 2004-03-09
CN1501837A (zh) 2004-06-02
DE10117784A1 (de) 2002-10-17
WO2002083290A1 (de) 2002-10-24
JP2004535276A (ja) 2004-11-25
MXPA03009229A (es) 2004-01-29
CA2443682A1 (en) 2002-10-24

Similar Documents

Publication Publication Date Title
WO2002083290A1 (de) Mikrokapseln
EP1513400B1 (de) Mikrokapsel-formulierungen
EP1656831B1 (de) Suspensionskonzentrate auf Ölbasis
WO2001024631A1 (de) Mikrokapseln
DE10200603A1 (de) Pulver-Formulierungen
WO2003034822A2 (de) Pulverförmige wirkstoff-formulierungen
WO2003105584A1 (de) Pulver-formulierungen
EP1056337A1 (de) Perlpolymerisat-formulierungen
WO2005072525A2 (de) Pulver-formulierungen
WO1999040786A1 (de) Perlpolymerisat-formulierungen
WO2000062611A1 (de) Agrochemische wirkstoffe enthaltende perlpolymerisate
WO2000042845A1 (de) Verwendung von naturstoffen zur verhinderung des leachings von agrochemischen wirkstoffen
WO2001005223A1 (de) Streugranulate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PROBST, JOACHIM

Inventor name: KRUEGER, JOACHIM

Inventor name: PODSZUN, WOLFGANG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060927