WO2000062611A1 - Agrochemische wirkstoffe enthaltende perlpolymerisate - Google Patents

Agrochemische wirkstoffe enthaltende perlpolymerisate Download PDF

Info

Publication number
WO2000062611A1
WO2000062611A1 PCT/EP2000/003065 EP0003065W WO0062611A1 WO 2000062611 A1 WO2000062611 A1 WO 2000062611A1 EP 0003065 W EP0003065 W EP 0003065W WO 0062611 A1 WO0062611 A1 WO 0062611A1
Authority
WO
WIPO (PCT)
Prior art keywords
methacrylate
weight
agrochemical active
bead
oil
Prior art date
Application number
PCT/EP2000/003065
Other languages
English (en)
French (fr)
Inventor
Wolfgang Podszun
Björn CHRISTENSEN
Norbert Schick
Joachim Krüger
Hilmar Wolf
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU39652/00A priority Critical patent/AU3965200A/en
Publication of WO2000062611A1 publication Critical patent/WO2000062611A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds

Definitions

  • the present invention relates to new bead polymers containing agrochemical active ingredients, a process for the preparation of these bead polymers and their use for the application of agrochemical active ingredients.
  • EP-A 0 201 214 already discloses microparticles which can be prepared from ethylenically unsaturated monomers and which contain pesticidal active ingredients and have a particle diameter of between approximately 0.01 and 250 ⁇ m.
  • a disadvantage of these preparations is that the active components are not always released over a sufficiently long period of time and in the amount desired in each case.
  • formulations which contain easily washable agrochemical active ingredients in microencapsulated form in unsaturated polyester resins (cf. EP-A 0 517 669).
  • a disadvantage of these preparations is that the release of the microencapsulated active ingredients does not always meet the practical requirements and these formulations are not very suitable for solid, poorly soluble active ingredients.
  • EP-A 0 281 918 shows that macroporous, crosslinked polystyrene bead polymers are suitable as carriers for agricultural chemicals and can be used in crop protection. Even when these preparations are used, however, the speed and the amount in which the agricultural chemicals are released often leave something to be desired.
  • the polymeric carriers with 80 to 300 ⁇ m are quite coarse, which leads to a clear tendency of the particles to sediment and prevents or hinders the application by spraying.
  • US-A 4 690 825 describes porous bead polymers as carriers for active substances.
  • the disadvantage of these products is that they can only absorb a small amount of active ingredient and that loading with solid active ingredients is difficult.
  • agrochemical active ingredient between 5 and 75 wt .-%.
  • bead polymers according to the invention can be prepared by
  • bead polymers according to the invention are better suited for the application of agrochemical active substances, in particular solid active substances, than the constitutionally most similar known preparations.
  • This enables them to release the active components in a uniform amount over a fairly long period of time. It is also favorable that the release rate of the active ingredient can be controlled via the volatility of the oil used. The release rate of the active substance correlates with the volatility or the vapor pressure of the oil phase.
  • the solid polymer phase (a) present in the bead polymers according to the invention consists of polymerized units of vinyl monomers and crosslinking agents.
  • vinyl monomers are primarily aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, ethylvinylbenzene, vinylnaphthahn and (meth) acrylic acid esters such as, for example, methyl methacrylate, ethyl acrylate and hydroxyethyl methacrylate, benzyl acrylate, benzyl methacrylate, phenylethyl acrylate, phenylethyl methyl acrylate, phenyl methyl methacrylate, phenyl methyl acrylate, phenyl methyl acrylate, phenyl methyl acrylate, phenyl methyl acrylate, phenyl methacrylate, phenyl methacrylate, phenyl methacrylate, phenyl methacrylate, phenyl methacrylate, phenyl methacrylate, phenyl methacrylate, phenyl methacrylate
  • vinyl monomers with C 4 -C 2 -alkyl radicals such as n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, n-octyl acrylate, n- Octyl methacrylate, decyl acrylate, decyl methacrylate, dodecyl acrylate, dodecyl methacrylate, stearyl acrylate, stearyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, 4-tert-butylcyclohexyl methacrylate, vinyl laurate
  • Examples of particularly preferred (meth) acrylic acid esters are: n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, n-octyl acrylate, n-octyl methacrylate, Decyl acrylate, decyl methacrylate, dodecyl acrylate,
  • crosslinkers which may be mentioned are allyl methacrylate, ethylene glycol dimethacrylate, ethylene glycol diacrylate, butanediol diacrylate, butanediol dimethacrylate, neopentylglycol dimethacrylate, hexanediol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol trimetholate metholate tolate metholate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacrylate methacryl
  • Vegetable and animal oils, synthetic oils and mineral oils are suitable for the liquid oil phase (b).
  • Mineral oils are preferred.
  • Mineral oils purified by distillation as well as undistilled oils, so-called residual oils, are suitable.
  • Mineral oils with a boiling point between 75 and 370 ° C., in particular between 100 and 370 ° C., are particularly preferred.
  • mineral oils with a high paraffin and isoparaffin content are well suited. It has been found that the rate of release of the agrochemical active ingredient can be controlled in a simple manner by the boiling point of the oil.
  • Pearl polymers with a low-boiling oil release the active ingredient faster than pearl polymers with a higher-boiling oil.
  • agrochemical active substances are understood to mean all substances customary for plant treatment. Fungicides, bactericides, insecticides, acaricides, nematicides, herbicides, plant growth regulators, plant nutrients and repellents may preferably be mentioned. Solid agrochemical agents are preferred.
  • fungicides are: 2-anilino-4-methyl-6-cyclopropyl-pyrimidine; 2 ', 6'-dibromo-2-methyl-4'-trifluoromethoxy-4'-trifluoromethyl-1,3-thiazole-5-carboxanilide; 2,6-dichloro-N- (4-trifluoromethylbenzyl) benzamide; (E) -2-methoximino-N-methyl-2- (2-phenoxyphenyl) acetamide; 8-hydroxyquinoline sulfate; Methyl- (E) -2- ⁇ 2- [6- (2-cyanophenoxy) pyrimidin-4-yloxy] phenyl ⁇ -3-methoxyacrylate; Methyl (E) methoximino [alpha- (o-tolyloxy) -otolyl] acetate; 2-phenylphenol (OPP), aldimorph, ampropylfos, anilazine, azacon
  • Nickel dimethyldithiocarbamate Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,
  • PCNB Quintozen
  • Tebuconazole Tecloftalam, Tecnazen, Tetraconazole, Thiabendazole, Thicyofen, Thiophanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemo ⁇ h, Trififolumol, Trififolumol, Trififolumol
  • bactericides are:
  • insecticides examples include acaricides and nematicides.
  • Fenamiphos Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate,
  • Fipronil fluazuron, flucycloxuron, flucythrinate, flufenoxuron, flufenprox,
  • Imidacloprid isazophos, isofenphos, isoprocarb, isoxathion, ivermectin, lambda cyhalothrin, lufenuron,
  • Mecarbam Mevinphos, Mesulfenphos, Metaldehyde, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Monocrotophos, Moxidectin,
  • Parathion A Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenophos, Promecarb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetrozin, Pyrach
  • Tebufenozide Tebufenpyrad
  • Tebupirimiphos Teflubenzuron, Tefluthrin, Temefos, Terbam, Terbufos, Tetrachlorvinphos, Thiacloprid, Thiafenox, Thiametoxam,
  • Thiodicarb Thiofanox, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Transfluthrin, Triarathen, Triazophos, Triazuron, Trichlorfon, Triflumuron.
  • herbicides are: anilides, such as diflufenican and propanil; Aryl carboxylic acids such as dichloropicolinic acid, dicamba and picloram; Aryloxyalkanoic acids, such as, for example, 2,4-D, 2,4-DB, 2,4-DP, fluroxypyr, MCPA, MCPP and triclopyr; Aryloxy-phenoxy-alkanoic acid esters, such as, for example, diclofop-methyl, fenoxaprop-ethyl, fluazifop-butyl, haloxyfop-methyl and quizalofop-ethyl; Azinones such as chloridazon and norflurazon; Carbamates, such as, for example, chloropropham, desmedipham, phenmedipham and propham; Chloroacetanilides, such as, for example, alachlor, acetochlor, butachlor, metazachlor, metolochlor, pretilachlor
  • Imidazolinones e.g. Imazethapyr, imazamethabenz, imazapyr and imazaquin; Nitriles, e.g. Bromoxynil, dichlobenil and ioxynil; Oxyacetamides, e.g. Mefenacet; Sulfonylureas, e.g. Amidosulfuron, bensulfuron-methyl, chlorimuron-ethyl, chlorosulfuron, cinosulfuron, metsulfuron-methyl, nicosulfuron, primisulfuron, pyrazosulfuron-ethyl, thifensulfuron-methyl, triasulfuron and
  • Tribenuron-methyl Tribenuron-methyl; Thiol carbamates, e.g. Butylates, cycloates, dialallates, EPTC, esprocarb, molinates, prosulfocarb, thiobencarb and triallates; Triazines, e.g. Atrazin, cyanazin, simazin, simetryne, terbutryne and terbutylazin; Triazinones, e.g. Hexazinone, metamitron and metribuzin; Others, such as Aminotriazole, benfuresate, bentazone, cinmethylin, clomazone, clopyralid.
  • Triazines e.g. Atrazin, cyanazin, simazin, simetryne, terbutryne and terbutylazin
  • Triazinones e.g. Hexazinone, metamitron and metribuzin
  • Others such as Amin
  • Chlorcholine chloride and ethephon are examples of plant growth regulators.
  • Examples of plant nutrients are customary inorganic or organic fertilizers for supplying plants with macro and / or micronutrients.
  • repellents are diethyl tolylamide, ethylhexanediol and butopyronoxyl.
  • the bead polymer formulations according to the invention contain one or more agrochemical active ingredients.
  • Suitable oil-soluble dispersants are, for example, fatty acids, fatty acid esters and especially fatty acid amides. Examples include decanecarboxylic acid amide and dodecanecarboxamide. Oil-soluble polymers with a molecular weight of 2,000 to 1,000,000 are also very suitable. Preferred are polymers with a proportion of polymerized units of C 8 -C 2 -alkyl (meth) acrylates and / or vinyl esters of C 8 -C 22 carboxylic acids. Polymers with polymerized units of stearyl methacrylate, lauryl methacrylate and vinyl stearate may be mentioned as examples.
  • Copolymers of C 8 to C 22 alkyl (meth) acrylates or vinyl esters of C 8 to C 22 carboxylic acids with hydrophilic monomers are particularly suitable.
  • hydrophilic monomers are understood as meaning polymerizable olefinically unsaturated compounds which are wholly or partly soluble in water (more than 2.5% by weight at 20 ° C.).
  • Examples include: acrylic acid and its alkali metal and ammonium salts, methacrylic acid and its alkali metal and ammonium salts, hydroxyethyl methacrylate, hydroxyethyl acrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, triethylene glycol monoacrylate, triethylene glycol tetra monoethylyl monoacrylate, tolate, methacrylate, methacrylate, tolate, methacrylate, methacrylate, tolate, methacrylate, tolate, methacrylate, tolate, methacrylate Dimethylaminoethyl methacrylate, acrylamide, methacrylamide, vinyl pyrrolidone and vinyl imidazole. Aminoethyl methacrylate, N, N-dimethylaminoethyl methacrylate, acrylamide, methacrylamide,
  • hydrophilic monomer from the group aminoethyl methacrylate, N, N-dimethylaminoethyl methacrylate, acrylamide, methacrylamide, vinyl pyrrolidone and vinyl imidazole.
  • the bead polymers according to the invention can contain additives which are usually used as additives in plant treatment compositions. These include, for example, dyes, antioxidants and cold stabilizers.
  • Colorants which are soluble or sparingly soluble are pigments, such as, for example, titanium dioxide, carbon black or zinc oxide.
  • Suitable antioxidants are all substances which can normally be used for this purpose in plant treatment products. Sterically hindered phenols and alkyl-substituted hydroxyanisoles and hydroxytoluenes are preferred.
  • Suitable cold stabilizers are all substances which can normally be used for this purpose in plant treatment products. Urea, glycerol or propylene glycol are preferred.
  • liquid oil phase (b) generally between 20 and 60% by weight, preferably between 25 and 50% by weight
  • agrochemical active ingredients (c) in general between 5 and 75% by weight, preferably between 10 and 50% by weight,
  • oil-soluble dispersant (d) generally between 0.1 and 10% by weight, preferably between 0.2 and 5% by weight and
  • additives generally between 0 and 20 wt .-%, preferably between 0 and 5 wt .-%.
  • the particle size of the bead polymers according to the invention can be varied within a certain range. It is generally between 1 and
  • the bead polymers according to the invention are multi-phase, preferably three-phase. Within the polymer beads, the polymer phase forms a preferably open one
  • Sponge structure the pores of which fill the oil.
  • the active substance is predominantly in the oil phase in finely dispersed form.
  • the bead polymers according to the invention can be present either as solid particles or as a dispersion of solid particles in an aqueous phase.
  • the bead polymers according to the invention are prepared in such a way that an organic phase composed of vinyl monomer (s), crosslinking agent, agrochemical active ingredient, oil, oil-soluble dispersant and initiator in an aqueous phase composed of water, water-soluble dispersant, optionally additives and optionally if necessary, buffer reagent is finely divided with stirring at temperatures between 0 ° C and 60 ° C, then polymerized while increasing the temperature and with stirring.
  • an organic phase composed of vinyl monomer (s), crosslinking agent, agrochemical active ingredient, oil, oil-soluble dispersant and initiator
  • aqueous phase composed of water, water-soluble dispersant, optionally additives and optionally if necessary
  • buffer reagent is finely divided with stirring at temperatures between 0 ° C and 60 ° C, then polymerized while increasing the temperature and with stirring.
  • the starting materials required for carrying out the process according to the invention for the organic phase are characterized by the constituents listed above.
  • the organic phase additionally contains an initiator.
  • the agrochemical active ingredient is present in the organic phase in finely divided form. If it is a solid active ingredient, this is in the form of finely divided particles.
  • finely divided means that the active substance particles have an average particle size of less than 5 ⁇ m, preferably less than 2 ⁇ m.
  • a finely divided dispersion can be produced using bead mills or ball mills. It is advisable to add the initiator to the organic phase only after grinding in order to rule out premature polymerization. It is also possible to add small amounts of polymerization inhibitors to the organic phase. Effective amounts are, for example, 20 to 1000, preferably 50 to 200 ppm, based on the organic phase. Suitable polymerization inhibitors are, for example, hydroquinone, hydroquinone monomethyl ether and 2,6, di-tert-butyl-4-methylphenol.
  • Initiators which can be used in carrying out the process according to the invention are all substances which can customarily be used to initiate polymerizations. Oil-soluble initiators are preferred. Peroxy compounds such as dibenzoyl peroxide, dilauryl peroxide, bis (p-chlorobenzoyl peroxide), dicyclohexyl peroxidicarbonate, tert-butyl peroctoate, 2,5-bis- (2-ethylhexanoylperoxi) -2,5-dimethylhexane and tert-arylperoxi-2-ethylhex are mentioned as examples , further azo compounds such as 2,2'-azobis (isobutyronitrile) and 2,2'-azobis (2-methylisobutyronitrile).
  • the initiators are generally used in amounts between 0.05 and 2.5% by weight, preferably between 0.2 and 1.5% by weight, based on the monomer mixture.
  • the aqueous phase contains at least one dispersant (protective colloid) and, if necessary, additional buffer reagents.
  • Natural and synthetic water-soluble polymers such as gelatin, starch and cellulose derivatives, in particular cellulose esters and cellulose ethers, furthermore polyvinyl alcohol, partially saponified polyvinyl acetate, should preferably be mentioned.
  • Polyvinylpyrrolidone polyacrylic acid, polymethacrylic acid and copolymers of (meth) acrylic acid and (meth) acrylic acid esters, and also copolymers of methacrylic acid and methacrylic acid ester neutralized with alkali metal hydroxide.
  • the amount of dispersant is generally between 0.05 and 2% by weight, preferably between 0.1 and 1% by weight, based on the aqueous phase.
  • buffer reagents All substances normally used for this purpose can be used as buffer reagents. Examples include phosphate and borate salts.
  • the buffer reagents are preferably added in such a way that the pH of the aqueous phase at the start of the polymerization has a value between 12 and 5, in particular between 10 and 6.
  • the amount of aqueous phase is generally between 75 and 1 200 wt .-%, preferably between 100 and 500 wt .-%, based on the sum of the monomer mixture and agrochemical active ingredient.
  • the organic phase is added to the aqueous phase with stirring.
  • the temperature can be varied within a certain range. In general, temperatures between 0 ° C and 60 ° C, preferably between 10 ° C and 50 ° C.
  • the polymerization takes place in the second step of the process according to the invention.
  • the stirring speed is important for setting the particle size.
  • the mean particle size of the bead polymer decreases with increasing stirring speed.
  • the exact stirring speed for setting a certain predetermined bead size depends in individual cases on the reactor size, the reactor geometry and the stirrer geometry. It has proven to be expedient to determine the necessary stirring speed experimentally.
  • bead sizes are generally between 6 and 30 ⁇ m at speeds between 300 and 500 revolutions reached per minute.
  • the polymerization temperature can be varied within a wide range. It depends on the decomposition temperature of the initiator used. Generally one works at temperatures between 50 ° C and 150 ° C, preferably between 55 ° C and 100 ° C.
  • the duration of the polymerization depends on the reactivity of the components involved.
  • the polymerization generally lasts between 30 minutes and several hours. It has proven useful to use a temperature program in which the
  • Low temperature polymerization e.g. 70 ° C is started and the reaction temperature is increased as the polymerization conversion progresses.
  • the bead polymer can be isolated, for example by filtering or decanting, and optionally dried after washing.
  • the bead polymers according to the invention are outstandingly suitable for applying agrochemical active ingredients to plants and / or their habitat. They ensure the release of the active components in the desired amount over a longer period of time.
  • the bead polymers according to the invention can be used as such either in solid form or as suspensions, if appropriate after prior dilution with water.
  • the application is carried out according to customary methods, for example by pouring, spraying, spraying or scattering.
  • the application rate of the bead polymer formulations according to the invention can be varied within a substantial range. It depends on the respective agrochemical active ingredients and their content in the bead polymer.
  • Example 1 was repeated, a solution of 583 g of isododecane, 225 g of methacrylic acid-C 3 -ester, 25 g of hydroxyethyl methacrylate and 1.25 g was used. 795 g of a 29.5% strength by weight solution of a dispersant were obtained.
  • the Staudinger index measured with an Ubbelohde viscometer at 25 ° C, was 31.4 ml / g.
  • Example 3 was repeated with the difference that the dispersant solution from Example 2 was used and the stirring speed was set to 480 revolutions per minute. 1335 g of a dispersion of a bead polymer were obtained; the average particle size was 25 ⁇ m; the active ingredient content 5.2% by weight.
  • Dispersion with a particle size of the drug particles of 1 to 4 ⁇ m had arisen.
  • the temperature was raised from room temperature to 60 ° C within 1 hour and then held at 60 ° C for 4 hours.
  • 350 g of a dispersion of a bead polymer were obtained; the particle size was 3 to 20 ⁇ m; the active ingredient content 8.2% by weight.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Neue Perlpolymerisate, die aus a) einer kontinuierlichen festen Polymerphase, b) einer flüssigen Ölphase, c) mindestens einem agrochemischen Wirkstoff, d) mindestens einem öllöslichen Dispergiermittel und e) gegebenenfalls Zusatzstoffen bestehen, wobei der Gehalt an agrochemischem Wirkstoff zwischen 5 und 75 Gew.-% liegt, ein Verfahren zur Herstellung der neuen Perlpolymerisate und deren Verwendung zur Applikation von agrochemischen Wirkstoffen.

Description

AGROCHEMISCHE WI RKSTOFFE ENTHALTENDE PERLPOLYMERISATE
Die vorliegende Erfindung betrifft neue Perlpolymerisate, die agrochemische Wirkstoffe enthalten, ein Verfahren zur Herstellung dieser Perlpolymerisate und deren Verwendung zur Applikation von agrochemischen Wirkstoffen.
Aus der EP-A 0 201 214 sind bereits aus ethylenisch ungesättigten Monomeren herstellbare Mikropartikel bekannt, die pestizide Wirkstoffe enthalten und einen Teilchendurchmesser zwischen etwa 0,01 und 250 μm aufweisen. Nachteilig an diesen Zubereitungen ist jedoch, daß die aktiven Komponenten nicht immer über einen ausreichend langen Zeitraum und in der jeweils gewünschten Menge freigesetzt werden.
Weiterhin wurden schon Formulierungen beschrieben, die leicht auswaschbare agro- chemische Wirkstoffe in mikroverkapselter Form in ungesättigten Polyesterharzen enthalten (vgl. EP-A 0 517 669). Ungünstig an diesen Zubereitungen ist aber, daß die Freigabe der mikroverkapselten Wirkstoffe nicht in allen Fällen den praktischen Anforderungen genügt und diese Formulierungen für feste, schwerlösliche Wirkstoffe nicht gut geeignet sind.
Ferner geht aus der EP-A 0 281 918 hervor, daß makroporöse, vernetzte Polystyrol- Perlpolymerisate als Träger für Agrochemikalien geeignet und im Pflanzenschutz anwendbar sind. Auch beim Einsatz dieser Präparate läßt allerdings die Geschwindigkeit und die Menge, in welcher die Agrochemikalien freigesetzt werden, häufig zu wünschen übrig. Außerdem sind die polymeren Träger mit 80 bis 300 μm recht grob, was zu einer deutlichen Sedimentationsneigung der Partikel führt und die Ausbringung durch Spritzen verhindert oder erschwert.
Schließlich ist der US-A 4 269 959 zu entnehmen, daß schwach vernetzte Polystyrol- Perlpolymerisate flüssige Wirkstoffe, wie Agrochemikalien, aufsaugen können und die so beladenen Produkte sich als Slow-Release-Formulierungen einsetzen lassen. Die Wirkungsdauer derartiger Zubereitungen ist aber nicht immer ausreichend. Die Teilchengrößen von 150 bis 1000 μm erlauben außerdem keine Anwendung der Zubereitungen durch herkömmliches Spritzen.
Die US-A 4 690 825 beschreibt poröse Perlpolymerisate als Träger für Wirkstoffe. Nachteilig bei diesen Produkten ist, daß sie nur eine geringe Menge an Wirkstoff aufnehmen können und die Beladung mit festen Wirkstoffen nur schwer gelingt.
Es wurden nun neue Perlpolymerisate gefunden, die aus
a) einer kontinuierlichen festen Polymerphase,
b) einer flüssigen Ölphase,
c) mindestens einem agrochemischen Wirkstoff,
d) mindestens einem öllöslichen Dispergiermittel und
e) gegebenenfalls Zusatzstoffen
bestehen, wobei der Gehalt an agrochemischem Wirkstoff zwischen 5 und 75 Gew.-% liegt.
Weiterhin wurde gefunden, daß sich erfindungsgemäße Perlpolymerisate herstellen lassen, indem man
A) eine organische Phase aus
10 bis 50 Gew.-% eines Monomeren-Gemisches aus Vinylmono- mer(en) und Vernetzer, 20 bis 60 Gew.-% Öl,
5 bis 75 Gew.-% an mindestens einem agrochemischen Wirkstoff,
- 0,1 bis 10 Gew.-% an mindestens einem öllöslichen Dispergiermittel,
0,05 bis 2,5 Gew.-% an mindestens einem Initiator und
gegebenenfalls Zusatzstoffen,
B) in einer wäßrigen Phase aus
Wasser,
- mindestens einem wasserlöslichen Dispergiermittel und
gegebenenfalls einem Pufferreagenz
unter Rühren bei Temperaturen zwischen 0°C und 60°C fein verteilt,
C) dann unter Temperaturerhöhung und unter Rühren polymerisiert und
D) gegebenenfalls danach entweder
α) das entstandene Perlpolymerisat isoliert, wäscht und trocknet
oder
ß) das Perlpolymerisat in wäßriger Suspension erhält. Schließlich wurde gefunden, daß die erfindungsgemäßen Perlpolymerisate sehr gut zur Applikation von agrochemischen Wirkstoffen geeignet sind, insbesondere für Spritzapplikationen und zur Saatgutbehandlung.
Es ist als äußerst überraschend zu bezeichnen, daß die erfindungsgemäßen Perlpolymerisate besser zur Applikation von agrochemischen Wirkstoffen, insbesondere von festen Wirkstoffen geeignet sind als die konstitutionell ähnlichsten, vorbekannten Zubereitungen.
Die erfindungsgemäßen Perlpolymerisate zeichnen sich durch eine Reihe von
Vorteilen aus. So sind sie in der Lage, die aktiven Komponenten über einen recht langen Zeitraum in gleichmäßiger Menge freizusetzen. Günstig ist auch, daß die Freisetzungsrate des Wirkstoffs über die Flüchtigkeit des eingesetzten Öles gesteuert werden kann. Dabei korreliert die Freisetzungsgeschwindigkeit des Wirkstoffes mit der Flüchtigkeit bzw. dem Dampfdruck der Ölphase.
Die in den erfindungsgemäßen Perlpolymerisaten vorhandene feste Polymerphase (a) besteht aus polymeriserten Einheiten von Vinylmonomeren und Vernetzern.
Vinylmonomere im Sinne der Erfindung sind in erster Linie aromatische Vinylver- bindungen wie Styrol, α-Methylstyrol, Ethylvinylbenzol, Vinylnaphthahn und (Meth)acrylsäureester wie zum Beispiel Methylmethacrylat, Ethylacrylat und Hydroxyethylmethacrylat, Benzylacrylat, Benzylmethacrylat, Phenylethylacrylat, Phenylethylmethacrylat, Phenylpropylacrylat, Phenylpropylmethacrylat, Phenyl- nonylacrylat, Phenylnonylmethacrylat, 3-Methoxybutylacrylat, 3-Methoxybutyl- methacrylat, Butoxyethylacrylat, Butoxyethylmethacrylat, Diethylenglykolmono- acrylat, Diethylenglykolmonomethacrylat, Triethylenglykolmonoacrylat, Triethylen- glykolmonomethacrylat, Tetraethylenglykolmonoacrylat, Tetraethylenglykolmono- methacrylat, Furfurylacrylat, Furfurylmethacrylat, Tetrahydrofurfurylacrylat und Tetrahydrofurfurylmethacrylat. Weitere geignete Vinylmonomere sind Acrylnitril,
Vinylchlorid, Vinylidenchlorid, Vinylacetat und Vinylpropionat. Bevorzugt sind außerdem Vinylmonomere mit C4-C2 -Alkylresten, wie n-Butyl- acrylat, n-Butylmethacrylat, iso-Butylacrylat, iso-Butylmethacrylat, n-Hexylacrylat, n-Hexylmethacrylat, Ethylhexylacrylat, Ethylhexylmethacrylat, n-Octylacrylat, n- Octylmethacrylat, Decylacrylat, Decylmethacrylat, Dodecylacrylat, Dodecylmeth- acrylat, Stearylacrylat, Stearylmethacrylat, Cyclohexylacrylat, Cyclohexylmeth- acrylat, 4-tert.-Butylcyclohexylmethacrylat, Vinyllaurat, Vinylstearat, und Vinyl- adipat.
Bevorzugt sind auch Mischungen unterschiedlicher Vinylmonomere.
Als Beispiele für besonders bevorzugte (Meth)acrylsäureester seien genannt: n-Butylacrylat, n-Butylmethacrylat, iso-Butylacrylat, iso-Butylmethacrylat, n-Hexylacrylat, n-Hexylmethacrylat, Ethylhexylacrylat, Ethylhexylmethacrylat, n-Octyl- acrylat, n-Octylmethacrylat, Decylacrylat, Decylmethacrylat, Dodecylacrylat,
Dodecylmethacrylat, Stearylacrylat, Stearylmethacrylat, Cyclohexylacrylat, Cyclo- hexylmethacrylat, 4-tert.-Butylcyclohexylmethacrylat, Benzylacrylat, Benzylmeth- acrylat, Phenylethylacrylat, Phenylethylmethacrylat, Phenylpropylacrylat, Phenyl- propylmethacrylat, Phenylnonylacrylat, Phenylnonylmethacrylat, 3-Methoxybutyl- acrylat, 3-Methoxybutylmethacrylat, Butoxyethylacrylat, Butoxyethylmethacrylat,
Diethylenglykolmonoacrylat, Diethylenglykolmonomethacrylat, Triethylenglykol- monoacrylat, Triethylenglykolmonomethacrylat, Tetraethylenglykolmonoacrylat, Tetraethylenglykolmonomethacrylat, Furfurylacrylat, Furfurylmethacrylat, Tetrahydrofurfurylacrylat und Tetrahydrofurfurylmethacrylat.
Als Vernetzer seien beispielhaft genannt Allylmethacrylat, Ethylenglykoldimeth- acrylat, Ethylenglykoldiacrylat, Butandioldiacrylat, Butandioldimethacrylat, Neo- pentylglycoldimethacrylat, Hexandioldimethacrylat, Triethylenglykoldimethacrylat, Tetraethylenglykoldimethacrylat, Trimethylolpropantriacrylat, Pentaerythritoltetra- methacrylat und Divinylbenzol. In der festen Polymerphase (a) kann der Anteil an Vernetzer innerhalb eines bestimmten Bereiches variiert werden. Der Gehalt an Vernetzer liegt im allgemeinen zwischen 0,1 und 30 Gew.-%, vorzugsweise zwischen 0,5 und 20 Gew.-%, besonders bevorzugt zwischen 1 und 15 Gew.-%.
Für die flüssige Ölphase (b) sind pflanzliche und tierische Öle, synthetische Öle und Mineralöle geeignet. Bevorzugt sind Mineralöle. In Frage kommen sowohl destillativ gereinigte Mineralöle als auch nicht destillierte Öle, sogenannte Rückstandsöle. Besonders bevorzugt sind Mineralöle mit einem Siedepunkt zwischen 75 und 370°C, insbesondere zwischen 100 und 370°C. In vielen Fällen sind Mineralöle mit einem hohen Paraffin- und Isoparaffinanteil gut geeignet. Es wurde gefunden, daß die Freisetzungsgeschwindigkeit des agrochemischen Wirkstoffs in einfacher Weise durch den Siedepunkt des Öles gesteuert werden kann. Perlpolymerisate mit einem niedrig siedenden Öl setzen den Wirkstoff schneller frei als Perlpolymerisate mit einem höher siedenden Öl.
Unter agrochemischen Wirkstoffen (c) sind im vorliegenden Zusammenhang alle zur Pflanzenbehandlung üblichen Substanzen zu verstehen. Vorzugsweise genannt seien Fungizide, Bakterizide, Insektizide, Akarizide, Nematizide, Herbizide, Pflanzen- wuchsregulatoren, Pflanzennährstoffe und Repellents. Feste agrochemische Wirkstoffe werden bevorzugt.
Als Beispiele für Fungizide seien genannt: 2-Anilino-4-methyl-6-cyclopropyl-pyrimidin; 2',6'-Dibromo-2-methyl-4'-trifluoro- methoxy-4'-trifluoromethyl-l ,3-thiazol-5-carboxanilid; 2,6-Dichloro-N-(4-trifluoro- methylbenzyl)-benzamid; (E)-2-Methoximino-N-methyl-2-(2-phenoxyphenyl)-acet- amid; 8-Hydroxychinolinsulfat; Methyl-(E)-2- {2-[6-(2-cyanophenoxy)-pyrimidin-4- yloxy]-phenyl}-3-methoxyacrylat; Methyl-(E)-methoximino[alpha-(o-tolyloxy)-o- tolyl]-acetat; 2-Phenylphenol (OPP), Aldimorph, Ampropylfos, Anilazin, Azaco- nazol. Benalaxyl, Benodanil, Benomyl, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazole, Bupirimate, Buthiobate,
Calciumpolysulfid, Captafol, Captan, Carbendazim, Carboxin, Chinomethionat (Quinomethionat), Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Cufraneb, Cymoxanil, Cyproconazole, Cyprofuram,
Dichlorophen, Diclobutrazol, Dichlofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Dinocap, Diphenylamin, Dipyrithion, Ditalimfos, Dithianon, Dodine, Drazoxolon, Edifenphos, Epoxyconazole, Ethirimol, Etridiazol, Fenarimol, Fenbuconazole, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpro- pimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam, Fludioxonil, Fluoromide, Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil, Flutriafol, Folpet, Fosetyl- Aluminium, Fthalide, Fuberidazol, Furalaxyl, Furmecyclox, Guazatine, Hexachlorobenzol, Hexaconazol, Hymexazol,
Imazalil, Imibenconazol, Iminoctadin, Iprobenfos (IBP), Iprodion, Isoprothiolan, Kasugamycin, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfemaphthenat, Kupferoxy chlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung, Mancopper, Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil,
Nickeldimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,
Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin, Probenazol, Prochloraz, Procymidon, Propamocarb, Propiconazole, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon,
Quintozen (PCNB), Quinoxyfen, Schwefel und Schwefel-Zubereitungen,
Tebuconazol, Tecloftalam, Tecnazen, Tetraconazol, Thiabendazol, Thicyofen, Thio- phanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemoφh, Triflumizol, Triforin, Triticonazol,
Validamycin A, Vinclozolin, Zineb, Ziram, Spiroxamine,
N-(R)-( 1 -(4-Chlorphenyl)-ethyl)-2,2-dichlor- 1 -ethyl-3t-methyl- 1 r-cyclopropancar- bonsäureamid (Diastereomerengemisch oder einzelne Isomere), Iprovalicarb,
Fenhexamid,
2-[2-(l-Chlor-cyclopropyl)-3-(2-chlorphenyl)-2-hydroxypropyl]-2,4-dihydro-[l,2,4]- triazol-3-thion und l-(3,5-Dimethyl-isoxazol-4-sulfonyl)-2-chlor-6,6-difluor-[l,3]-dioxolo-[4,5-f]- benzimidazol.
Als Beispiele für Bakterizide seien genannt:
Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Teclofta- lam, Kupfersulfat und andere Kupfer-Zubereitungen.
Als Beispiele für Insektizide, Akarizide und Nematizide seien genannt:
Abamectm, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz,
Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin, Bacillus thuringiensis, 4-Bromo-2-(4-chloφhenyl)-l-(ethoxymethyl)-5-(trifluorome- thyl)-lH-pyrrole-3-carbonitrile, Bendiocarb, Benfuracarb, Bensultap, Betacyfluthrin, Bifenthrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarb- oxin, Butylpyridaben, Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloetho- carb, Chloretoxyfos, Chlorfenvinphos, Chlorfluazuron, Chlormephos, N-[(6-Chloro~
3-pyridinyl)-methyl]-N'-cyano-N-methyl-ethanimidamide, Chlorpyrifos, Chlorpyri- fos M, Cis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyflu- thrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin, Deltamethrin, Demeton-M, Demeton-S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflu- benzuron, Dimethoat, Dimethylvinphos, Dioxathion, Disulfoton,
Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Ethoprophos,
Etrimphos,
Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate,
Fipronil, Fluazuron, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox,
Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb,
HCH, Heptenophos, Hexaflumuron, Hexythiazox,
Imidacloprid, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin, Lambda- cyhalothrin, Lufenuron,
Malathion, Mecarbam, Mevinphos, Mesulfenphos, Metaldehyd, Methacrifos, Metha- midophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Mono- crotophos, Moxidectin,
Naled, NC 184, Nitenpyram, Omethoat, Oxamyl, Oxydemethon M, Oxydepro fos,
Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phos- phamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenophos, Pro- mecarb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetrozin, Pyrachlophos,
Pyridaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,
Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos,
Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Teme- phos, Terbam, Terbufos, Tetrachlorvinphos, Thiacloprid, Thiafenox, Thiametoxam,
Thiodicarb, Thiofanox, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Transfluthrin, Triarathen, Triazophos, Triazuron, Trichlorfon, Triflumuron.
Trimethacarb,
Vamidothion, XMC, Xylylcarb, Zetamethrin.
Als Beispiele für Herbizide seien genannt: Anilide, wie z.B. Diflufenican und Propanil; Arylcarbonsäuren, wie z.B. Dichlor- picolinsäure, Dicamba und Picloram; Aryloxyalkansäuren, wie z.B. 2,4-D, 2,4-DB, 2,4-DP, Fluroxypyr, MCPA, MCPP und Triclopyr; Aryloxy-phenoxy-alkansäure- ester, wie z.B. Diclofop-methyl, Fenoxaprop-ethyl, Fluazifop-butyl, Haloxyfop- methyl und Quizalofop-ethyl; Azinone, wie z.B. Chloridazon und Norflurazon; Carbamate, wie z.B. Chloφropham, Desmedipham, Phenmedipham und Propham; Chloracetanilide, wie z.B. Alachlor, Acetochlor, Butachlor, Metazachlor, Metola- chlor, Pretilachlor und Propachlor; Dinitroaniline, wie z.B. Oryzalin, Pendimethalin und Trifluralin; Diphenylether, wie z.B. Acifluorfen, Bifenox, Fluoroglycofen, Fomesafen, Halosafen, Lactofen und Oxyfluorfen; Harnstoffe, wie z.B. Chlortoluron, Diuron, Fluometuron, Isoproturon, Linuron und Methabenzthiazuron; Hydroxyl- amine, wie z.B. Alloxydim, Clethodim, Cycloxydim, Sethoxydim und Tralkoxydim;
Imidazolinone, wie z.B. Imazethapyr, Imazamethabenz, Imazapyr und Imazaquin; Nitrile, wie z.B. Bromoxynil, Dichlobenil und Ioxynil; Oxyacetamide, wie z.B. Mefenacet; Sulfonylharnstoffe, wie z.B. Amidosulfuron, Bensulfuron-methyl, Chlorimuron-ethyl, Chlorsulfuron, Cinosulfuron, Metsulfuron-methyl, Nicosulfuron, Primisulfuron, Pyrazosulfuron-ethyl, Thifensulfuron-methyl, Triasulfuron und
Tribenuron-methyl; Thiolcarbamate, wie z.B. Butylate, Cycloate, Diallate, EPTC, Esprocarb, Molinate, Prosulfocarb, Thiobencarb und Triallate; Triazine, wie z.B. Atrazin, Cyanazin, Simazin, Simetryne, Terbutryne und Terbutylazin; Triazinone, wie z.B. Hexazinon, Metamitron und Metribuzin; Sonstige, wie z.B. Aminotriazol, Benfuresate, Bentazone, Cinmethylin, Clomazone, Clopyralid. Difenzoquat, Dithio- pyr, Ethoftimesate, Fluorochloridone, Glufosinate, Glyphosate, Isoxaben, Pyridate, Quinchlorac, Quinmerac, Sulphosate und Tridiphane. Desweiteren seien 4-Amino-N- (1,1 -dimethylethyl)-4,5-dihydro-3-(l -metylethyl)-5-oxo- 1 H- 1 ,2,4-triazole- 1 - carboxamide und Benzoesäure,2-((((4,5-dihdydro-4-methyl-5-oxo-3-propoxy-lH- 1 ,2,4-triazol- 1 -yl)carbonyl)amino)sulfonyl)-,methylester genannt.
Als Beispiele für Pflanzenwuchsregulatoren seien Chlorcholinchlorid und Ethephon genannt. Als Beispiele für Pflanzennährstoffe seien übliche anorganische oder organische Dünger zur Versorgung von Pflanzen mit Makro- und/oder Mikronährstoffen genannt.
Als Beispiele für Repellents seien Diethyl-tolylamid, Ethylhexandiol und Buto- pyronnoxyl genannt.
Die erfindungsgemäßen Perlpolymerisat-Formulierungen enthalten einen oder mehrere agrochemische Wirkstoffe.
Als öllösliche Dispergiermittel sind beispielsweise Fettsäuren, Fettsäureester und besonders Fettsäureamide geeignet. Beispielhaft seien genannt Dekancarbonsäure- amid und Dodekancarbonsäureamid. Gut geeignet sind auch öllösliche Polymerisate mit einem Molekulargewicht von 2 000 bis 1 000 000. Bevorzugt sind Polymerisate mit einem Anteil von einpolymerisierten Einheiten von C8- bis C 2-Alkyl(meth)- acrylaten und/oder Vinylester von C8- bis C22-Carbonsäuren. Beispielhaft seien Polymerisate mit einpolymerisierten Einheiten von Stearylmethacrylat, Laurylmethacrylat und Vmylstearat genannt. Besonders gut geeignet sind Copolymerisate aus C8- bis C22-Alkyl(meth)acrylaten bzw. Vinylester von C8- bis C22-Carbonsäuren mit hydro- philen Monomeren. Unter hydrophilen Monomeren werden in diesem Zusammenhang polymerisierbare olefinisch ungesättigte Verbindungen verstanden, die ganz oder teilweise (zu mehr als 2,5 Gew.-% bei 20°C) in Wasser löslich sind. Als Beispiele seien genannt: Acrylsäure und ihre Alkalimetall und Ammoniumsalze, Meth- acrylsäure und ihre Alkalimetall- und Ammoniumsalze, Hydroxyethylmethacrylat, Hydroxyethylacrylat, Diethylenglykolmonoacrylat, Diethylenglykolmonometh- acrylat, Triethylenglykolmonoacrylat, Triethylenglykolmonomethacrylat, Tetraethylenglykolmonoacrylat, Tetraethylenglykolmonomethacrylat, Glycerinmonoacry- lat, Aminoethylmethacrylat, N,N-Dimethylaminoethylmethacrylat, Acrylamid, Meth- acrylamid, Vinylpyrrolidon und Vinylimidazol. Bevorzugt sind Aminoethyl- methacrylat, N,N-Dimethylaminoethylmethacrylat, Acrylamid, Methacrylamid,
Vinylpyrrolidon und Vinylimidazol. Besonders bevorzugte öllösliche Dispergiermittel sind Copolymerisate aus
75 - 99 Gew.% C8- bis C22-Alkyl(meth)acrylat und/oder Vinylester von C - bis C 2-Carbonsäuren und
1 - 25 Gew.% hydrophilem Monomer aus der Gruppe Aminoethylmeth- acrylat, N,N-Dimethylaminoethylmethacrylat, Acrylamid, Methacrylamid, Vinylpyrrolidon und Vinylimidazol.
Die erfindungsgemäßen Perlpolymerisate können solche Zusatzstoffe enthalten, die üblicherweise in Pflanzenbehandlungsmitteln als Additive eingesetzt werden. Hierzu gehören zum Beispiel Farbstoffe, Antioxidantien und Kältestabilisatoren.
Als Farbstoffe kommen lösliche oder wenig lösliche Farbpigmente in Betracht, wie beispielsweise Titandioxid, Farbruss oder Zinkoxid.
Als Antioxidantien kommen alle üblicherweise für diesen Zweck in Pflanzenbehandlungsmitteln einsetzbaren Stoffe in Frage. Bevorzugt sind sterisch gehinderte Phenole und alkylsubstituierte Hydroxyanisole und Hydroxytoluole.
Als Kältestabilisatoren kommen alle üblicherweise für diesen Zweck in Pflanzenbehandlungsmitteln einsetzbaren Stoffe in Betracht. Vorzugsweise in Frage kommen Harnstoff, Glycerin oder Propylenglykol.
Der Gehalt an den einzelnen Komponenten kann in den erfindungsgemäßen Perl- polymerisaten innerhalb eines größeren Bereiches variiert werden. So liegen die Anteile
- an kontinuierlicher fester Polymeφhase (a) im allgemeinen zwischen 10 und
50 Gew.-%, vorzugsweise zwischen 20 und 40 Gew.-%, an flüssiger Ölphase (b) im allgemeinen zwischen 20 und 60 Gew.-%, vorzugsweise zwischen 25 und 50 Gew.-%,
an agrochemischen Wirkstoffen (c) im allgemeinen zwischen 5 und 75 Gew.-%, vorzugsweise zwischen 10 und 50 Gew.-%,
an öllöslichem Dispergiermittel (d) im allgemeinen zwischen 0,1 und 10 Gew.-%, vorzugsweise zwischen 0,2 und 5 Gew.-% und
an Zusatzstoffen (e) im allgemeinen zwischen 0 und 20 Gew.-%, vorzugsweise zwischen 0 und 5 Gew.-%.
Die Teilchengröße der erfindungsgemäßen Perlpolymerisate kann innerhalb eines bestimmten Bereiches variiert werden. Sie liegt im allgemeinen zwischen 1 und
100 μm, vorzugsweise zwischen 5 und 50 μm, besonders bevorzugt zwischen 5 und 30 μm.
Die erfindungsgemäßen Perlpolymerisate sind mehφhasig, vorzugsweise dreiphasig. Innerhalb der Perlpolymerisate bildet die Polymeφhase eine vorzugsweise offene
Schwammstruktur, deren Poren das Öl ausfüllt. Der Wirkstoff befindet sich überwiegend in fein dispergierter Form in der Ölphase.
Die erfindungsgemäßen Perlpolymerisate können entweder als feste Partikel oder als Dispersion fester Teilchen in einer wäßrigen Phase vorliegen.
Die Herstellung der erfindungsgemäßen Perlpolymerisate erfolgt in der Weise, daß eine organische Phase aus Vinylmonomer(en), Vernetzer, agrochemischem Wirkstoff, Öl, öllöslichem Dispergiermittel und Initiator in einer wäßrigen Phase aus Wasser, wasserlöslichem Dispergiermittel, gegebenenfalls Zusatzstoffen und gegebe- nenfalls Pufferreagenz unter Rühren bei Temperaturen zwischen 0°C und 60°C fein verteilt, dann unter Temperaturerhöhung und unter Rühren polymerisiert wird.
Die bei der Durchführung des erfindungsgemäßen Verfahrens für die organische Phase benötigten Ausgangsmaterialien sind durch die oben aufgeführten Bestandteile charakterisiert. Zur Einleitung der Polymerisation enthält die organische Phase zusätzlich einen Initiator.
Der agrochemische Wirkstoff liegt in der organischen Phase in feinteilig disper- gierter Form vor. Handelt es sich um einen festen Wirkstoff, so liegt dieser in Form von feinteilig dispergierten Partikeln vor.
Feinteilig heißt in diesem Zusammenhang, daß die Wirkstoffpartikel eine mittlere Teilchengröße von weniger als 5 μm, vorzugsweise weniger als 2 μm aufweisen. Die Herstellung einer feinteiligen Dispersion kann mit Hilfe von Perlmühlen oder Kugelmühlen durchgeführt werden. Es ist zweckmäßig, den Initiator erst nach der Mahlung zur organischen Phase zuzugeben, um eine vorzeitige Polymerisation auszuschließen. Es ist auch möglich, der organischen Phase geringe Mengen an Polymerisationinhibitoren zuzusetzen. Wirksame Mengen sind beispielsweise 20 bis 1000, vorzugs- weise 50 bis 200 ppm bezogen auf die organische Phase. Geeignete Polymerisationsinhibitoren sind beispielsweise Hydrochinon, Hydrochinonmonomethylether und 2,6,Ditert.-butyl-4-methyl-phenol.
Als Initiatoren können bei der Durchführung des erfindungsgemäßen Verfahrens alle üblicherweise für die Einleitung von Polymerisationen verwendbaren Substanzen eingesetzt werden. Vorzugsweise in Betracht kommen öllösliche Initiatoren. Beispielhaft genannt seien Peroxyverbindungen, wie Dibenzoylperoxid, Dilaurylperoxid, Bis(p-chlorbenzoylperoxid), Dicyclohexylperoxidicarbonat, tert.-Butylperoctoat, 2,5- Bis-(2-ethylhexanoylperoxi)-2,5-dimethylhexan und tert.-Arnylperoxi-2-ethylhexan, desweiteren Azoverbindungen, wie 2,2'-Azobis(isobutyronitril) und 2,2'-Azobis(2- methylisobutyronitril). Die Initiatoren werden im allgemeinen in Mengen zwischen 0,05 und 2,5 Gew.-%, vorzugsweise zwischen 0,2 und 1,5 Gew.-%, bezogen auf das Monomeren-Gemisch eingesetzt.
Als Zusatzstoffe können bei der Durchführung des erfindungsgemäßen Verfahrens alle diejenigen Substanzen eingesetzt werden, die schon im Zusammenhang mit der
Beschreibung der erfindungsgemäßen Perlpolymerisate als Zusatzstoffe genannt wurden.
Die wäßrige Phase enthält mindestens ein Dispergiermittel (Schutzkolloid) und gegebenenfalls zusätzlich Pufferreagenzien.
Als Dispergiermittel kommen alle üblicherweise für diesen Zweck eingesetzten Substanzen in Betracht. Vorzugsweise genannt seien natürliche und synthetische wasserlösliche Polymere, wie Gelatine, Stärke und Cellulosederivate, insbesondere Cellu- loseester und Celluloseether, ferner Polyvinylalkohol, teilverseiftes Polyvinylacetat,
Polyvinylpyrrolidon, Polyacrylsäure, Polymethacrylsäure und Copolymerisate aus (Meth)acrylsäure und (Meth)acrylsäureestern, und außerdem auch mit Alkalimetall- hydroxid neutralisierte Copolymerisate aus Methacrylsäure und Methacrylsäureester. Die Menge an Dispergiermittel beträgt im allgemeinen zwischen 0,05 und 2 Gew.-%, vorzugsweise zwischen 0,1 und 1 Gew.-%, bezogen auf die wäßrige Phase.
Als Pufferreagenzien in Frage kommen alle üblicherweise für diesen Zweck eingesetzten Substanzen. Beispielhaft genannt seien Phosphat- und Borat-Salze. Vorzugsweise werden die Pufferreagentien in der Weise zugefügt, daß der pH-Wert der wäßrigen Phase bei Beginn der Polymerisation einen Wert zwischen 12 und 5, insbesondere zwischen 10 und 6 aufweist.
Die Menge an wäßriger Phase beträgt im allgemeinen zwischen 75 und 1 200 Gew.-%, vorzugsweise zwischen 100 und 500 Gew.-%, bezogen auf die Summe aus Monomerengemisch und agrochemischem Wirkstoff. Im ersten Schritt des erfindungsgemäßen Verfahrens wird die organische Phase unter Rühren in die wäßrige Phase gegeben. Die Temperatur kann dabei innerhalb eines bestimmten Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 60°C, vorzugsweise zwischen 10°C und 50°C.
Im zweiten Schritt des erfindungsgemäßen Verfahrens erfolgt die Polymerisation. Dabei ist die Rührgeschwindigkeit wichtig für die Einstellung der Teilchengröße. So nimmt die mittlere Teilchengröße der Perlpolymerisate mit zunehmender Rührdrehzahl ab. Die exakte Rührdrehzahl zur Einstellung einer bestimmten vorgegebenen Perlgröße hängt im Einzelfall stark von der Reaktorgröße, der Reaktorgeometrie und der Rührergeometrie ab. Es hat sich als zweckmäßig erwiesen, die notwendige Rührdrehzahl experimentell zu ermitteln. Für Laborreaktoren, die ein Reaktionsvolumen von 3 Litern aufweisen und mit Blattrührern ausgestattet sind, werden bei Verwendung von Copolymerisaten aus (Meth)acrylsäure und (Meth)acrylsäureestern als Dis- pergiermittel im allgemeinen Perlgrößen zwischen 6 und 30 μm bei Drehzahlen zwischen 300 und 500 Umdrehungen pro Minute erreicht.
Die Polymerisationstemperatur kann innerhalb eines größeren Bereiches variiert werden. Sie hängt von der Zerfallstemperatur des eingesetzten Initiators ab. Im allge- meinen arbeitet man bei Temperaturen zwischen 50°C und 150°C, vorzugsweise zwischen 55°C und 100°C.
Die Dauer der Polymerisation hängt von der Reaktivität der beteiligten Komponenten ab. Im allgemeinen dauert die Polymerisation zwischen 30 Minuten und mehreren Stunden. Es hat sich bewährt, ein Temperatuφrogramm anzuwenden, bei dem die
Polymerisation bei niedriger Temperatur, z.B. 70°C begonnen wird und mit fortschreitendem Polymerisationsumsatz die Reaktionstemperatur erhöht wird.
Die Aufarbeitung im letzten Schritt des erfindungsgemäßen Verfahrens erfolgt nach üblichen Methoden. Ist die Abtrennung der feinteiligen festen Phase erwünscht, so kann das Perlpolymerisat zum Beispiel durch Filtrieren oder Dekantieren isoliert und gegebenenfalls nach dem Waschen getrocknet werden.
Ist die Herstellung einer Suspension von Perlpolymerisat in der wäßrigen Phase gewünscht, so erübrigt sich in den meisten Fällen eine weitere Aufarbeitung.
Die erfindungsgemäßen Perlpolymerisate eignen sich hervorragend zur Applikation von agrochemischen Wirkstoffen auf Pflanzen und/oder deren Lebensraum. Sie gewährleisten die Freisetzung der aktiven Komponenten in der jeweils gewünschten Menge über einen längeren Zeitraum.
Die erfmdungsgemäßen Perlpolymerisate können als solche entweder in fester Form oder als Suspensionen, gegebenenfalls nach vorherigem Verdünnen mit Wasser, in der Praxis eingesetzt werden. Die Anwendung erfolgt dabei nach üblichen Methoden, also zum Beispiel durch Gießen, Verspritzen, Versprühen oder Verstreuen.
Die Aufwandmenge an den erfindungsgemäßen Perlpolymerisat-Formulierungen kann innerhalb eines größeren Bereiches variiert werden. Sie richtet sich nach den jeweiligen agrochemischen Wirkstoffen und nach deren Gehalt in den Perlpolymeri- säten.
Die Erfindung wird durch die folgenden Beispiele veranschaulicht.
Beispiel 1
Herstellung eines Dispergiermittels
In einem 2 1-Planschliffbecher mit Blattrührer, Gaseinlaß- und Gasauslaßrohr wurde unter Stickstoffbegasung eine Lösung aus 583 g Isododecan, 225 g Methacrylsäure-
C13-Ester, 25 g N- Vinylpyrrolidon und 1,0 g Dibenzoylperoxyd innerhalb von 2 h auf 78°C erhitzt, 10 h bei dieser Temperatur belassen, anschließend auf 90°C erhitzt und weitere 2 h bei dieser Temperatur belassen. Danach wurde auf 25 °C abgekühlt. Man erhielt 810 g einer 29 gew.-%igen Lösung eines Dispergiermittels. Der Staudinger- Index, gemessen mit Ubbelohde-Viskosimeter bei 25 °C, betrug 26,7 ml/g.
Beispiel 2
Herstellung eines Dispergiermittels
Beispiel 1 wurde wiederholt, wobei eine Lösung aus 583 g Isododecan, 225 g Meth- acrylasäure-Cι3-Ester, 25 g Hydroxyethylmethacrylat und 1,25 g eingesetzt wurde. Man erhielt 795 g einer 29,5 gew.-%igen Lösung eines Dispergiermittels. Der Staudinger-Index, gemessen mit Ubbelohde-Viskosimeter bei 25 °C, betrug 31,4 ml/g.
Beispiel 3
Herstellung eines erfindungsgemäßen Perlpolymerisates
a) Wirkstoffdispersion
90 g Imidacloprid, 183,4 g Mineralöl BP Eneφar T 017 und 26,6g Dispergiermittellösung aus Beispiel 1 wurden in einer Kugelmühle solange (ca. 24h) behandelt bis eine absetzstabile Dispersion mit einer Teilchengröße der Imidaclopridpartikel von 1 bis 2 μm entstanden ist. b) Perlpolymerisat
Es wurden 273 g der Dispersion aus a), 107,64 g Stearylmethacrylat, 9,36 g Hexa- methylendimethacrylat und 1,17 g 2,2'-Azobis(2,4-dimethylvaleronitril) intensiv ge- mischt. Man überführte die Mischung in einen Rührreaktor, der zuvor mit einer
Lösung aus 870 g entionisiertem Wasser, 48,75 g Polyvinylalkohol (Mowiol 26-88) und 29,3 g Natriumligninsulfonat (Borresperse Na) befüllt wurde. Die Rührge- schwindigkeit wurde auf 600 Umdrehungen pro Minute eingestellt, und die Temperatur wird 4 Stunden auf 60°C und dann 1 Stunde auf 70°C gehalten. Man erhielt 1330 g einer Dispersion eines Perlpolymerisates; die mittlere Teilchengröße betrug
16 μm; der Wirkstoffgehalt 5,2 Gew.-%.
Beispiel 4
Herstellung eines erfindungsgemäßen Perlpolymerisates
Beispiel 3 wurde wiederholt mit dem Unterschied, daß die Dispergiermittellösung aus Beispiel 2 verwendet wurde und die Rührgeschwindigkeit auf 480 Umdrehungen pro Minute eingestellt wurde. Man erhielt 1335 g einer Dispersion eines Perlpolymerisates; die mittlere Teilchengröße betrug 25 μm; der Wirkstoffgehalt 5,2 Gew.-%.
Beispiel 5
Herstellung eines erfindungsgemäßen Perlpolymerisates
a) Wirkstoffdispersion
300g Dichlobenil, 589 g Mineralöl BP Eneφar T 017 und 110g Decancarbonsäure- amid wurden in einer Kugelmühle (Dispermat SL-C5) solange (ca. 1 1h) bei einer Temperatur von 30 bis 40°C behandelt bis eine absetzstabile Dispersion mit einer Teilchengröße der Dichobenilpartikel von 0,5 bis 1,5 μm entstanden war. b) Perlpolymerisat
Es wurden 234 g der Dispersion aus a), 131 g Stearylmethacrylat, 25 g Hexa- methylendimethacrylat und 1,56 g 2,2'-Azobis(2,4-dimethylvaleronitril) intensiv ge- mischt. Man überführte die Mischung in einen Rührreaktor, der zuvor mit einer
Lösung aus 870 g entionisiertem Wasser, 48,75g Polyvinylalkohol (Mowiol 26-88) und 29,3 g Natriumligninsulfonat (Borresperse Na) befüllt wurde. Die Rührgeschwindigkeit wurde auf 600 Umdrehungen pro Minute eingestellt, und die Temperatur wird 4 Stunden auf 60°C und dann 1 Stunde auf 70°C gehalten. Man erhielt 1320 g einer Dispersion eines Perlpolymerisates; die Teilchengröße betrug 5 bis 10 μm; der Wirkstoffgehalt 5,0 Gew.-%.
Beispiel 6
Herstellung eines erfindungsgemäßen Perlpolymerisates
a) Wirkstoffdispersion
761,4 g Benzoesäure,2-((((4,5-dihydro-4-methyl-5-oxo-3-propoxy-lH-l,2,4-triazol- l-yl)carbonyl)amino)sulfonyl)-methylester-Natriumsalz, 1548,6 g Mineralöl BP Eneφar T 017 und 187,5 g Dispergiermittel Atlox LP-6 wurden in einer Perlmühle
(Dispermat SL-C50) solange (ca. 3 h) bei einer Temperatur von 30 bis 40°C behandelt, bis eine absetzstabile Dispersion mit einer Teilchengröße der Wirkstoffpartikel von 1 bis 4 μm entstanden war.
b) Polymerisat
Es wurden 111 g der Dispersion aus a), 29,4 g Stearylmethacrylat, 3,3 g Hexamethylendimethacrylat und 0,3 g 2,2'-Azobis(2-methylbutyronitril) intensiv gemischt. Man emulgierte diese Mischung mit einer Lösung aus 206 g entionisiertem Wasser, 1,9 g Polyvinylalkohol (Mowiol 26-88) und 5,5 g Natriumligninsulfonat
(Borresperse Na) mittels eines Rotor-Stator-Mischers (Silverson L4R). Die entstandene Emulsion wurde in einen Rührreaktor überführt. Die Rührgeschwindigkeit wurde auf 350 Umdrehungen pro Minute eingestellt. Die Temperatur wurde innerhalb 1 Stunde von Raumtemperatur auf 60°C erhöht und dann 4 Stunden auf 60°C gehalten. Man erhielt 350 g einer Dispersion eines Perlpolymerisates; die Teilchengröße betrug 3 bis 20 μm; der Wirkstoffgehalt 8,2 Gew.-%.
Beispiel 7
Herstellung eines erfindungsgemäßen Perlpolymerisates
a) Wirkstoffdispersion
761,4 g Tebuconazole, 1548,6 g Mineralöl BP Eneφar T 017 und 187,5 g Dispergiermittel Atlox LP-6 wurden in einer Perlmühle (Dispermat SL-C50) solange (ca. 3 h) bei einer Temperatur von 30 bis 40°C behandelt, bis eine absetzstabile
Dispersion mit einer Teilchengröße der Wirkstofφartikel von 1 bis 4 μm entstanden war.
b) Perlpolymerisat
Es wurden 110,9 g der Dispersion aus a) 29,4 g Stearylmethacrylat, 3,3 g Hexa- methylendimethacrylat und 0,3 g 2,2'-Azobis(2-methylbutyronitril) intensiv gemischt. Man emulgierte diese Mischung mit einer Lösung aus 206 g entionisiertem Wasser, 1,9 g Polyvinylalkohol (Mowiol 26-88) und 5,5 g Natriumligninsulfonat (Borresperse Na) mittels eines Rotor-Stator-Mischers (Silverson L4R). Die entstandene Emulsion wurde in einen Rührreaktor überführt. Die Rührgeschwindigkeit wurde auf 350 Umdrehungen pro Minute eingestellt. Die Temperatur wurde innerhalb 1 Stunde von Raumtemperatur auf 60°C erhöht und dann 4 Stunden auf 60°C gehalten. Man erhielt 350 g einer Dispersion eines Perlpolymerisates; die Teilchen- große betrug 3 bis 20 μm; der Wirkstoffgehalt 8,2 Gew.-%.

Claims

Patentansprüche
1. Perlpolymerisate, bestehend aus
a) einer kontinuierlichen festen Polymeφhase,
b) einer flüssigen Ölphase,
c) mindestens einem agrochemischen Wirkstoff,
d) mindestens einem öllöslichen Dispergiermittel und
e) gegebenenfalls Zusatzstoffen,
wobei der Gehalt an agrochemischem Wirkstoff zwischen 5 und 75 Gew.-% liegt.
2. Perlpolymerisate gemäß Anspruch 1, dadurch gekennzeichnet, daß als agrochemischer Wirkstoff ein Fungizid, Bakterizid, Insektizid, Akarizid, Nematizid, Molluskizid, Herbizid, Pflanzenwuchsregulator, Pflanzennährstoff oder ein Repellent enthalten ist.
3. Verfahren zur Herstellung von Perlpolymerisaten gemäß Anspruch 1, dadurch gekennzeichnet, daß man
A) eine organische Phase aus
10 bis 50 Gew.-% eines Monomeren-Gemisches aus Vinyl- monomer(en) und Vernetzer,
20 bis 60 Gew.-% Öl, 5 bis 75 Gew.-% an mindestens einem agrochemischen Wirkstoff,
- 0,1 bis 10 Gew.-% an mindestens einem öllöslichen Dispergiermittel,
0,05 bis 2,5 Gew.-% an mindestens einem Initiator und
- gegebenenfalls Zusatzstoffen,
B) in einer wäßrigen Phase aus
Wasser,
mindestens einem wasserlöslichen Dispergiermittel und
gegebenenfalls einem Pufferreagenz
unter Rühren bei Temperaturen zwischen 0°C und 60°C fein verteilt,
C) dann unter Temperaturerhöhung und unter Rühren polymerisiert und
D) gegebenenfalls danach entweder
α) das entstandene Perlpolymerisat isoliert, wäscht und trocknet
oder
ß) das Perlpolymerisat in wäßriger Suspension erhält. Verwendung von Perlpolymerisaten gemäß Anspruch 1 zur Applikation von agrochemischen Wirkstoffen aufpflanzen und/oder deren Lebensraum.
PCT/EP2000/003065 1999-04-19 2000-04-06 Agrochemische wirkstoffe enthaltende perlpolymerisate WO2000062611A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU39652/00A AU3965200A (en) 1999-04-19 2000-04-06 Pearl polymer containing agrochemical active substances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19917562.4 1999-04-19
DE1999117562 DE19917562A1 (de) 1999-04-19 1999-04-19 Perlpolymerisate

Publications (1)

Publication Number Publication Date
WO2000062611A1 true WO2000062611A1 (de) 2000-10-26

Family

ID=7905029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/003065 WO2000062611A1 (de) 1999-04-19 2000-04-06 Agrochemische wirkstoffe enthaltende perlpolymerisate

Country Status (3)

Country Link
AU (1) AU3965200A (de)
DE (1) DE19917562A1 (de)
WO (1) WO2000062611A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000022A1 (en) * 2000-06-26 2002-01-03 Forskarpatent I Syd Composition for inhibiting feeding of weevils
WO2006111313A2 (de) * 2005-04-16 2006-10-26 Bauer Technologies Gmbh Verfahren zur oberflächenbehandlung von perlpolymeren
JP2010540480A (ja) * 2007-09-27 2010-12-24 ビーエーエスエフ ソシエタス・ヨーロピア 浸透移行性増強剤
FR2965148A1 (fr) * 2011-04-28 2012-03-30 Rhodia Operations Dispersion en milieu apolaire contenant des polymeres semi-cristallins a chaines laterales

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138382A1 (de) * 2001-08-13 2003-02-27 Goldschmidt Ag Th Mischungen von Pflanzenschutzmitteln mit Wasser-in-Öl Polymerdispersion
DE10148570A1 (de) * 2001-10-01 2003-04-10 Goldschmidt Ag Th Mikroorganismen und eine Wasser-in-Öl-Polymerdispersion enthaltende Zusammensetzung und deren Verwendung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201214A2 (de) * 1985-04-10 1986-11-12 Nippon Paint Co., Ltd. Verfahren zur Herstellung Polymere Mikroteilchen mit pestizider Wirksamkeit
US4690825A (en) * 1985-10-04 1987-09-01 Advanced Polymer Systems, Inc. Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen
EP0517669A1 (de) * 1991-06-05 1992-12-09 Sandoz Ltd. Mikroverkapselte Agrarchemikalien
JPH0952805A (ja) * 1995-08-10 1997-02-25 Agro Kanesho Co Ltd 2,6−ジクロロベンゾニトリルマイクロカプセル化除草製剤
WO1998024317A1 (en) * 1996-12-04 1998-06-11 Monsanto Company Herbicidal compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201214A2 (de) * 1985-04-10 1986-11-12 Nippon Paint Co., Ltd. Verfahren zur Herstellung Polymere Mikroteilchen mit pestizider Wirksamkeit
US4923894A (en) * 1985-04-10 1990-05-08 Nippon Paint Co., Ltd. Polymeric microparticles having pesticidal activity
US4690825A (en) * 1985-10-04 1987-09-01 Advanced Polymer Systems, Inc. Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen
EP0517669A1 (de) * 1991-06-05 1992-12-09 Sandoz Ltd. Mikroverkapselte Agrarchemikalien
JPH0952805A (ja) * 1995-08-10 1997-02-25 Agro Kanesho Co Ltd 2,6−ジクロロベンゾニトリルマイクロカプセル化除草製剤
WO1998024317A1 (en) * 1996-12-04 1998-06-11 Monsanto Company Herbicidal compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 06 30 June 1997 (1997-06-30) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000022A1 (en) * 2000-06-26 2002-01-03 Forskarpatent I Syd Composition for inhibiting feeding of weevils
WO2006111313A2 (de) * 2005-04-16 2006-10-26 Bauer Technologies Gmbh Verfahren zur oberflächenbehandlung von perlpolymeren
WO2006111313A3 (de) * 2005-04-16 2007-02-22 Bauer Technologies Gmbh Verfahren zur oberflächenbehandlung von perlpolymeren
JP2010540480A (ja) * 2007-09-27 2010-12-24 ビーエーエスエフ ソシエタス・ヨーロピア 浸透移行性増強剤
FR2965148A1 (fr) * 2011-04-28 2012-03-30 Rhodia Operations Dispersion en milieu apolaire contenant des polymeres semi-cristallins a chaines laterales

Also Published As

Publication number Publication date
DE19917562A1 (de) 2000-10-26
AU3965200A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
EP1139739B1 (de) Agrochemische formulierungen
EP1656831B1 (de) Suspensionskonzentrate auf Ölbasis
DE102004020840A1 (de) Verwendung von Alkylcarbonsäureamiden als Penetrationsförderer
EP1513400A1 (de) Mikrokapsel-formulierungen
EP1643833A1 (de) Agrochemische formulierungen
DE10117784A1 (de) Mikrokapseln
DE102005042876A1 (de) Verwendung von Laktatestern zur Verbesserung der Wirkung von Pflanzenschutzmitteln
WO2001024631A1 (de) Mikrokapseln
WO1999041982A1 (de) Perlpolymerisat-formulierungen
WO2000062611A1 (de) Agrochemische wirkstoffe enthaltende perlpolymerisate
DE10205221A1 (de) Verfahren zur Herstellung von Granulaten
WO2003105584A1 (de) Pulver-formulierungen
WO1999040786A1 (de) Perlpolymerisat-formulierungen
WO2001005223A1 (de) Streugranulate
WO2010136125A1 (de) Pulverformulierungen mit adsorbens-partikeln
DE19901944A1 (de) Verwendung von Naturstoffen zur Verhinderung des Leachings von agrochemischen Wirkstoffen
WO2001039596A1 (de) Verwendung von imidazol-derivaten als vogelrepellent-stoffe
EP1285941A1 (de) Verwendung alkoxylierter Phenolderivate
DE10207829A1 (de) Verwendung alkoxylierter Phenolderivate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP