EP1372184A2 - Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe - Google Patents

Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe Download PDF

Info

Publication number
EP1372184A2
EP1372184A2 EP03012802A EP03012802A EP1372184A2 EP 1372184 A2 EP1372184 A2 EP 1372184A2 EP 03012802 A EP03012802 A EP 03012802A EP 03012802 A EP03012802 A EP 03012802A EP 1372184 A2 EP1372184 A2 EP 1372184A2
Authority
EP
European Patent Office
Prior art keywords
electrode
shaft
bushing
electrode system
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03012802A
Other languages
English (en)
French (fr)
Other versions
EP1372184A3 (de
Inventor
Frank Henning
René Roatzsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002126762 external-priority patent/DE10226762A1/de
Priority claimed from DE20210400U external-priority patent/DE20210400U1/de
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1372184A2 publication Critical patent/EP1372184A2/de
Publication of EP1372184A3 publication Critical patent/EP1372184A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode

Definitions

  • the invention is based on an electrode system for a metal halide lamp and associated lamp according to the preamble of claim 1. These are in particular lamps with an output of at least 20 W, preferably from 100 W, up to powers of 400 W, possibly over 1000 W.
  • EP-A 587 238 describes a metal halide lamp with a ceramic discharge vessel known, in which a two-part implementation in an elongated Stopper capillary by means of glass solder at the end of the Plug is sealed.
  • the outer part of the bushing is permeable Material (niobium stick), the inner part made of halide-resistant material (for example a pen made of tungsten or molybdenum).
  • halide-resistant material for example a pen made of tungsten or molybdenum.
  • another solution is used, namely the replacement of the inner Mo pin part with a cermet part.
  • Whose thermal expansion coefficient can be set between that of other metal parts and that of ceramics.
  • a disadvantage of such solutions is that the connection between the inner part of the bushing and the electrode is very prone to breakage. This applies both to the further processing of the electrode system and in Lifetime behavior of the system when the lamp is in operation. Ultimately, can cause the electrodes to kink to burst the discharge tubes during operation.
  • WO 01/82331 tries this by a multi-part arrangement of the Bypass implementation.
  • this only solves the basic problem insufficient.
  • the diameter of the electrode is smaller than that of the inner part, the two components by melting the End of the inner part and embedding the electrode end therein become. Melting is often done by brazing or laser soldering.
  • the inner part mostly consists of molybdenum or Mo-containing cermet. there but the melting amount on the inner part can not be within the required Accuracy can be ensured reproducibly. Remedy would offer an increase in the melting length. However, that is the limit towards the maximum permissible "welding hump height".
  • the maximum allowable amount of the cant is determined by the minimum allowable Capillary inner diameter of the discharge vessel determined.
  • a means for positive locking in particular a notch or groove, near the end of the electrode facing the bushing appropriate. It is so close to the end of the shaft that it is from the Material of the bushing from the connection area or melting area is encased.
  • the agent comprises at least one local depression or notch.
  • a circumferential depression is preferred, which is V-shaped or U-shaped, can be designed rectangular or trough-shaped.
  • the notch can for example by grinding or punching.
  • This notch can be an irregular or regular reduction in the Cross section of the electrode. In particular, it is a circumferential notch or U-shaped or V-shaped groove.
  • the recess is a provisional fixation option for a possible coil at the distal end of an extended one Electrode shaft provides by melting the end area the execution is then finally and particularly securely fixed, similar as is known as a fixing option from US-A 5 451 837.
  • the implementation can be made in one piece, or in two or more parts be constructed by the outer part of niobium or another hydrogen permeable Material, while the inner part has properties, that favors the connection with the shaft (see below).
  • the inner part can be replaced by an extended shaft of the electrode so that the connection technology according to the invention on the connection between the only remaining outer bushing part and accordingly elongated core pin is applied.
  • the known structure of ceramic discharge vessels also includes a Elongated capillary tube (hereinafter called capillary), where through this capillary an electrically conductive, one or two part Implementation related to the discharge from an inner part and there is an outer pin-shaped part, is passed vacuum-tight.
  • the bushing is usually sealed on the outside of the stopper with glass solder.
  • an electrode is attached with its shaft, which in the interior of the discharge vessel protrudes.
  • the lamp power is preferably between 20 and 400 W, however Larger powers (2000 W and more) are also possible.
  • the attached table shows the dimensions for different lamp powers (35, 70 and 150 W) of the following parts: lamp core pin groove execution Abschmelz Scheme power material AD [ ⁇ m] Depth T [ ⁇ m] Width B [ ⁇ m] Final distance [ ⁇ m] material AD [ ⁇ m] Length [ ⁇ m] 35 W 200 30 50 50 Mo or Nb 560 150 70 W 300 50 100 50 Mo or Nb 680 225 70 W 300 60 70 70 Mo or Nb 680 225 150 W 500 70 100 70 Cermet with Mo or Nb 800 270 150 W 500 90 80 70 Cermet with Mo or Nb 800 250
  • Core pin material and outer diameter in ⁇ m; Groove in the core pin: depth T, width B and distance of the groove from the distal end of the pin, each in ⁇ m; Implementation: material and outer diameter in ⁇ m; Melting area: Length of the connection area of both components in ⁇ m.
  • connection between the two components implementation and The core pin is made by laser soldering.
  • the inner end region is the Implementation (hereinafter referred to as the melting range), with the electrode in contact, made of Mo, W, or a cermet, the W in one Contains amount that keeps it weldable.
  • the diameter of both to be connected Parts can be approximately the same size in this embodiment.
  • the Electrode is preferably made of tungsten. Your first end is in the connection area embedded, the second end faces the discharge.
  • the Shaft of the electrode can still be used to limit the dead volume Helix, preferably made of molybdenum, be covered, as is known per se.
  • the inner part of the current feedthrough by extending the electrode core pin (usually from Tungsten) to the outer lead-through part (usually made of niobium) replace in accordance with EP-A 1 056 115.
  • the elongated shaft of the electrode can also be used with a helix to limit the dead volume, preferably made of molybdenum, as in the case of the two-part Power supply (EP-A 587 238) practiced.
  • the feedthrough or at least the outer part thereof in the case of a two-part feedthrough consists of an outer part which is adapted to the (aluminum oxide) ceramic and is permeable to H 2 and O 2 (in particular a niobium pin or tube, but also the use of Tantalum is possible), which is covered with glass solder and sealed.
  • the inner part of the implementation consists made of a halide resistant metal (preferably molybdenum or Tungsten or its alloys) or a corresponding cermet.
  • Prefers is the material molybdenum.
  • the inner part is only partly on his outer end covered with glass solder and melted.
  • the inside part is in particular a pen made of cermet or molybdenum or of the higher melting Tungsten.
  • the tungsten can have a rhenium additive either as an alloy or as a plating on the surface.
  • the Rhenium increases the high temperature resistance and corrosion resistance of tungsten.
  • molybdenum is especially for mercury-containing Suitable fillings
  • W is advantageous for mercury-free fillings used. In particular, W is also for relatively small watt lamps from 70 W. suitable.
  • the inner part of the two-part bushing is on one side with the outer Part (niobium stick or tube) and on the other side with the electrode connected.
  • the inner part can itself be constructed in several parts, for example described in WO 01/82331.
  • the stopper can be made in one part, but also in several parts. For example can in a manner known per se a stopper capillary from an annular Be part of the plug.
  • a metal halide lamp with an output of 150 W is shown schematically in FIG. It consists of a cylindrical outer bulb 1 made of quartz glass which defines a lamp axis and is squeezed (2) and base (3) on two sides.
  • the axially arranged discharge vessel 4 made of Al 2 O 3 ceramic is cylindrical or bulbous in shape and has two ends 6. It is held in the outer bulb 1 by means of two current leads 7, which are connected to the base parts 3 via foils 8.
  • the power supply lines 7 are welded to bushings 9, which are each fitted in an end plug 12 at the end 6 of the discharge vessel.
  • the stopper part is designed as an elongated capillary tube 12 (stopper capillary).
  • the end 6 of the discharge vessel and the stopper capillary 12 are, for example, sintered together directly.
  • the bushings 9 each consist of two parts.
  • the outer part 13 is designed as a niobium stick and extends up to about a quarter of the length the capillary tube 12 into this.
  • the inner part 14 extends inside of the capillary tube 12 towards the discharge volume. It stops on the discharge side Electrodes 15, consisting of an electrode shaft 16 Tungsten and one pushed onto the discharge end of the shaft Spiral 17.
  • the inner part 14 of the implementation is on the one hand with the Electrode shaft 15 laser soldered and on the other hand with the outer part 13 the execution laser-welded.
  • the niobium stick 13 is approximately 3 mm deep the stopper capillary 12 inserted and sealed by means of glass solder 10.
  • the discharge vessel is filled, e.g. Argon, from mercury and additives to metal halides.
  • a metal halide filling without Mercury, preferably xenon and in particular a high ignition gas Pressure well above 1.3 bar can be selected.
  • FIG. 2 An electrode system is shown in detail in FIG. 2.
  • implementation 9 is a system consisting of a niobium stick (or tube) as an outer part 13 and a molybdenum pin as the inner part 14.
  • the niobium pin 13 is on the discharge side with the inner part 14 made of molybdenum butt welded. Inner part 14 is in the same way on the discharge side soldered to the electrode shaft 16.
  • the alternative is to use an inner part 14 made of cermet with a high proportion of Mo, the remainder Al 2 O 3 .
  • the shaft 16 has a diameter of 0.4 mm.
  • the diameter of the inner Part is 0.8 mm, the outer part is 0.88 mm.
  • the inner part 14 has that is, a 100% larger diameter than the electrode shaft 16.
  • FIG. 3a The principle of the connection according to the invention is shown in FIG. 3a.
  • the lamp power considered about 0.5 mm to 2 mm away from the lead-through end of the electrode shaft 16 circumferential groove 18 attached. It also has one, depending on performance Depth of 0.5 to 2 mm and a width of 0.5 to 2 mm.
  • the melting area 25 extends beyond the groove 18, which is here is rectangular, from.
  • the melted molybdenum serves as a solder for embedding the tungsten shaft 16.
  • the groove enables an additional one Form fit and serves as a reservoir for excess melt or the slag generated when segregating cermet.
  • the groove can also have a circumferential groove with a different shape
  • a cross section in particular a V-shaped recess 26 (Fig. 3b) or a trough-shaped puncture 27 (Fig. 3c).
  • a positive locking device that consists of two opposite one another There are notches 28 in the shaft (FIG. 3d).
  • Figure 4 is on the shaft 36, which is greatly elongated and therefore replaces the inner lead-through part, a coil 20 for displacement of the dead volume is applied, which is made of molybdenum consists. The last turn 21 is held in the groove 18. While the manufacture becomes a provisional fixation up to laser welding achieved to produce the melting area.
  • FIG. 5 shows an embodiment in which the bushing 30 (one-piece made of niobium) with the extended core pin 31 made of tungsten or is welded. Both components have approximately the same outside diameter.
  • the means for positive locking is a notch 32.
  • the connection area 33 which can contain material from both components shown here very schematically.
  • FIG. 6 A further embodiment is shown in FIG. 6, in which, in addition to the first Groove 37 remote from the discharge, a second groove 38 in the vicinity of the front, discharge-side End of the shaft 39 ensures that the second Spiral end can be fixed.
  • the helix is not shown. benefits result here in particular from the simplification of the automatic Orientation for the subsequent laser soldering.
  • Both notches 37 and 38 are shaped like a trough with sloping side walls.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamp (AREA)

Abstract

Das Elektrodensystem für eine Metallhalogenidlampe mit keramischem Entladungsgefäß (4) besteht aus einer elektrisch leitenden Durchführung (9) und einer damit verbundenen Elektrode (15), wobei die Durchführung bezogen auf die Elektrode (15) einen Abschmelzbereich (25) besitzt, in den die Elektrode (16) mit ihrem der Durchführung zugewandten Ende eingebettet ist, wobei zumindest der Abschmelzbereich (25) eines der hochschmelzenden Metalle Mo oder W enthält, und wobei die Elektrode (15) einen Schaft (16,36,31,39) aus Wolfram besitzt. Die Elektrode (15) weist in dem vom Material der Durchführung ummantelten Bereich ein Mittel zum Formschluss auf, das zumindest aus einer Vertiefung (18,26-28,32,37,38) im Schaft der Elektrode (15) besteht. <IMAGE> <IMAGE> <IMAGE> <IMAGE>

Description

Technisches Gebiet
Die Erfindung geht aus von einem Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um Lampen mit einer Leistung von mindestens 20 W, bevorzugt ab 100 W, bis hin zu Leistungen von 400 W, ggf. über 1000 W.
Stand der Technik
Aus der EP-A 587 238 ist eine Metallhalogenidlampe mit keramischem Entladungsgefäß bekannt, bei der eine zweiteilige Durchführung in einer langgestreckten Stopfenkapillare mittels Glaslot am entladungsfernen Ende des Stopfens abgedichtet ist. Der äußere Teil der Durchführung besteht aus permeablem Material (Niobstift), der innere Teil aus halogenidresistentem Material (beispielsweise Stift aus Wolfram oder Molybdän). Für höhere Lampenleistungen (bis etwa 400 W) wird eine andere Lösung angewendet, nämlich der Ersatz des inneren Mo-Stift-Teiles durch ein Cermet-Teil. Dessen thermischer Ausdehnungskoeffizient lässt sich wunschgemäß einstellen zwischen dem anderer Metallteile und dem der Keramik.
Nachteilig an derartigen Lösungen ist, dass die Verbindung zwischen dem inneren Teil der Durchführung und der Elektrode sehr bruchanfällig ist. Dies gilt sowohl bei der Weiterverarbeitung des Elektrodensystems als auch im Lebensdauerverhalten des Systems im Betrieb der Lampe. Letztlich können abknickende Elektroden zum Platzen der Entladungsgefäße im Betrieb führen.
Die WO 01/82331 versucht dies durch eine mehrteilige Anordnung der Durchführung zu umgehen. Jedoch löst dies das grundsätzliche Problem nur unzureichend. Gemeinhin ist der Durchmesser der Elektrode kleiner als der des inneren Teils, wobei die beiden Komponenten durch Abschmelzen des Endes des inneren Teils und Einbetten des Elektrodenendes darin verbunden werden. Oft geschieht das Abschmelzen durch Hart- oder Laserlöten. Das innere Teil besteht meist aus Molybdän oder Mo-haltigem Cermet. Dabei kann aber die Abschmelzmenge am inneren Teil nicht innerhalb der erforderlichen Genauigkeit reproduzierbar sichergestellt werden. Abhilfe würde eine Vergrößerung der Abschmelzlänge bieten. Dem steht jedoch die Begrenzung der maximal zulässigen "Schweißbuckelhöhe" entgegen. Damit ist eine Überhöhung gemeint, die im Bereich der Schweiß- oder Lötzone aus einer lokalen Schweißgut- oder Lotanhäufung resultiert. Es kann sich auch um Schlacke (insbesondere im Falle einer Cermet-Verbindung) handeln. Das maximal zulässige Maß der Überhöhung wird dabei durch den minimal zulässigen Kapillar-Innendurchmesser des Entladungsgefäßes bestimmt.
Darstellung der Erfindung
Es ist Aufgabe der vorliegenden Erfindung, ein Elektrodensystem gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, wobei die Verbindung zwischen Durchführung und Elektrode so konzipiert ist, dass sie dauerhaft mechanischen und thermischen Belastungen standhält.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
Erfindungsgemäß ist ein Mittel zum Formschluss, insbesondere eine Kerbe oder Nut, in der Nähe des der Durchführung zugewandten Endes der Elektrode angebracht. Es ist so nahe am Ende des Schafts angebracht, dass es vom Material der Durchführung aus dem Verbindungsbereich bzw. Abschmelzbereich ummantelt wird. Das Mittel umfasst zumindest eine lokale Vertiefung oder Kerbe. Bevorzugt ist eine umlaufende Vertiefung, die V- oder U-förmig, rechtwinkelig oder trogförmig gestaltet sein kann. Die Kerbe kann beispielsweise durch Schleifen oder Stanzen hergestellt werden.
Diese Kerbe kann eine unregelmäßige oder regelmäßige Verringerung des Querschnitts der Elektrode sein. Insbesondere ist sie eine umlaufende Kerbe oder Nut in U- oder V-Form. Beim Verbinden der Durchführung mit der Elektrode, die meist durch Löten (Hart- oder Laserlöten) oder Schweißen geschieht, wird nunmehr ein zusätzlicher Formschluss erreicht, der die mechanische Belastbarkeit der Verbindung erhöht. Auch der Ausschuss in Folge unzulässig großer Schweiß/Lötzonenüberhöhung wird reduziert, da nun ein Reservoir für die überschüssige Schmelze bzw. Schlacke zur Verfügung steht.
Ein zusätzlicher Vorteil ist, dass die Vertiefung eine provisorische Fixiermöglichkeit für eine etwaige Wendel am entladungsfernen Ende eines verlängerten Elektrodenschafts bietet, die durch das Aufschmelzen des Endbereichs der Durchführung dann endgültig und besonders sicher fixiert wird, ähnlich wie dies als Fixiermöglichkeit aus US-A 5 451 837 bekannt ist.
Die Durchführung kann einteilig hergestellt sein, oder zwei- oder mehrteilig aufgebaut sein, indem der äußere Teil aus Niob oder einem anderen wasserstoffpermeablem Material besteht, während der innere Teil Eigenschaften, die die Verbindung mit dem Schaft begünstigt, besitzt (s.u.). Der innere Teil kann durch einen verlängerten Schaft der Elektrode ersetzt werden, so dass die erfindungsgemäße Verbindungstechnik auf die Verbindung zwischen dem alleine verbleibenden äußeren Durchführungsteil und dem entsprechend verlängerten Kernstift angewendet wird.
Der bekannte Aufbau keramischer Entladungsgefäße umfasst außerdem ein langgezogenes Kapillarrohr (im folgenden Stopfenkapillare genannt), wobei durch diese Stopfenkapillare eine elektrisch leitende, ein- oder zweiteilige Durchführung, die bezogen auf die Entladung aus einem inneren Teil und einem äußeren stiftförmigen Teil besteht, vakuumdicht hindurchgeführt ist. Die Durchführung ist meist außen am Stopfen durch Glaslot abgedichtet. An der Durchführung ist innen eine Elektrode mit ihrem Schaft befestigt, die in das Innere des Entladungsgefäßes hineinragt.
Bevorzugt beträgt die Leistung der Lampe zwischen 20 und 400 W, aber auch größere Leistungen (2000 W und mehr) sind möglich.
Die beiliegende Tabelle zeigt die Bemaßung für verschiedene Lampenleistungen (35, 70 und 150 W) folgender Teile:
Lampe Kernstift Nut Durchführung Abschmelzbereich
Leistung Material AD [µm] Tiefe T [µm] Breite B [µm] Endabstand [µm] Material AD [µm] Länge [µm]
35 W 200 30 50 50 Mo oder Nb 560 150
70 W 300 50 100 50 Mo oder Nb 680 225
70 W 300 60 70 70 Mo oder Nb 680 225
150 W 500 70 100 70 Cermet mit Mo oder Nb 800 270
150 W 500 90 80 70 Cermet mit Mo oder Nb 800 250
Kernstift: Material und Außendurchmesser in µm;
Nut im Kernstift: Tiefe T, Breite B und Abstand der Nut vom entladungsfernen Ende des Stifts, jeweils in µm;
Durchführung: Material und Außendurchmesser in µm;
Abschmelzbereich: Länge des Verbindungsbereichs beider Komponenten in µm.
Die Verbindung zwischen den beiden Komponenten Durchführung und Kernstift erfolgt durch Laserlöten.
Bevorzugt ist das Verhältnis der Breite B der Kerbe und ihrer Tiefe T im Bereich B/T = 1:1, insbesondere sollte es zwischen 0,8 und 2,2 liegen. Aus Stabilitätsgründen sollte der verbleibende Außendurchmesser des Kernstiftes im Bereich der Kerbe mindestens 60 % des ursprünglichen Durchmessers betragen, bevorzugt sind 65 bis 75 %.
Im Falle einer zweiteiligen Durchführung ist der innere Endbereich der Durchführung (im folgenden Abschmelzbereich genannt), der mit der Elektrode in Kontakt steht, aus Mo, W, oder einem Cermet gefertigt, das W in einer Menge enthält, die es schweißfähig hält. Der Durchmesser beider zu verbindenden Teile kann in dieser Ausführungsform etwa gleich groß sein. Die Elektrode besteht bevorzugt aus Wolfram. Ihr erstes Ende ist im Verbindungsbereich eingebettet, das zweite Ende ist der Entladung zugewandt. Der Schaft der Elektrode kann zum Begrenzen des Totvolumens noch mit einer Wendel, bevorzugt aus Molybdän, ummantelt sein, wie an sich bekannt.
Es besteht alternativ die Möglichkeit, den inneren Teil der Stromdurchführung mittels einer Verlängerung des Elektrodenkernstiftes (in der Regel aus Wolfram) bis zum äußeren Durchführungsteil (in der Regel aus Niob) zu ersetzen, entsprechend der EP-A 1 056 115. Der so verlängerte Schaft der Elektrode kann zur Begrenzung des Totvolumens ebenfalls mit einer Wendel, bevorzugt aus Molybdän, ummantelt sein, wie an sich auch bei der 2-teiligen Stromzuführung (EP-A 587 238) praktiziert.
Die Durchführung oder zumindest deren äußerer Teil im Falle einer zweiteiligen Durchführung besteht aus einem in der thermischen Ausdehnung an die (Aluminiumoxid)-Keramik angepassten äußeren, für H2 und O2 permeablen Teil (insbesondere Stift oder Rohr aus Niob, aber auch die Verwendung von Tantal ist möglich), der mit Glaslot bedeckt und abgedichtet ist.
Im Falle einer zweiteiligen Durchführung besteht der innere Teil der Durchführung aus einem halogenidresistentem Metall (bevorzugt Molybdän oder Wolfram oder deren Legierungen) oder einem entsprechenden Cermet. Bevorzugt ist das Material Molybdän. Der innere Teil ist nur teilweise an seinem äußeren Ende mit Glaslot bedeckt und eingeschmolzen. Der Innenteil ist insbesondere ein Stift aus Cermet oder Molybdän oder aus dem höherschmelzenden Wolfram. Das Wolfram kann einen Rheniumzusatz aufweisen, entweder als Legierung oder als Plattierung an der Oberfläche. Das Rhenium erhöht die Hochtemperaturbelastbarkeit und Korrosionsbeständigkeit des Wolfram. Während sich Molybdän besonders für Quecksilberhaltige Füllungen eignet, wird W vorteilhaft für Quecksilber-freie Füllungen verwendet. Insbesondere ist W auch für relativ kleinwattige Lampen ab 70 W geeignet.
Das Innenteil der zweiteiligen Durchführung ist auf einer Seite mit dem äußeren Teil (Niobstift oder -rohr) und auf der anderen Seite mit der Elektrode verbunden. Das Innenteil kann selbst mehrteilig aufgebaut sein, wie beispielsweise in WO 01/82331 beschrieben.
Der Stopfen kann einteilig, aber auch mehrteilig ausgeführt sein. Beispielsweise kann in an sich bekannter Weise eine Stopfenkapillare von einem ringförmigen Stopfenteil umgeben sein.
Kurze Beschreibung der Zeichnungen
Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen schematisch:
Figur 1
eine Metallhalogenidlampe mit keramischem Entladungsgefäß;
Figur 2
das Elektrodensystem der Lampe der Figur 1 im Detail;
Figur 3
den Verbindungsbereich des Elektrodensystems der Figur 2 mit verschieden geformten Kerben (a bis d);
Figur 4
ein weiteres Ausführungsbeispiel des Verbindungsbereichs;
Figur 5
ein weiteres Ausführungsbeispiel des Verbindungsbereichs;
Figur 6
ein weiteres Ausführungsbeispiel eines Endbereichs.
Bevorzugte Ausführung der Erfindung
In Figur 1 ist schematisch eine Metallhalogenidlampe mit einer Leistung von 150 W dargestellt. Sie besteht aus einem eine Lampenachse definierenden zylindrischen Außenkolben 1 aus Quarzglas, der zweiseitig gequetscht (2) und gesockelt (3) ist. Das axial angeordnete Entladungsgefäß 4 aus Al2O3-Keramik ist zylindrisch oder bauchig geformt und besitzt zwei Enden 6. Es ist mittels zweier Stromzuführungen 7, die mit den Sockelteilen 3 über Folien 8 verbunden sind, im Außenkolben 1 gehaltert. Die Stromzuführungen 7 sind mit Durchführungen 9 verschweißt, die jeweils in einem Endstopfen 12 am Ende 6 des Entladungsgefäßes eingepasst sind. Das Stopfenteil ist als ein langgezogenes Kapillarrohr 12 (Stopfenkapillare) ausgeführt. Das Ende 6 des Entladungsgefäßes und die Stopfenkapillare 12 sind beispielsweise miteinander direkt versintert.
Die Durchführungen 9 bestehen jeweils aus zwei Teilen. Der äußere Teil 13 ist jeweils als Niobstift ausgeführt und ragt bis etwa in ein Viertel der Länge des Kapillarrohr 12 in dieses hinein. Der innere Teil 14 erstreckt sich innerhalb des Kapillarrohrs 12 zum Entladungsvolumen hin. Er haltert entladungsseitig Elektroden 15, bestehend aus einem Elektrodenschaft 16 aus Wolfram und einer am entladungsseitigen Ende des Schaftes aufgeschobenen Wendel 17. Der innere Teil 14 der Durchführung ist einerseits mit dem Elektrodenschaft 15 lasergelötet und andererseits mit dem äußeren Teil 13 der Durchführung laserverschweißt. Der Niobstift 13 ist etwa 3 mm tief in die Stopfenkapillare 12 eingesetzt und mittels Glaslot 10 abgedichtet.
Die Füllung des Entladungsgefäßes besteht neben einem inerten Zündgas, z.B. Argon, aus Quecksilber und Zusätzen an Metallhalogeniden. Möglich ist beispielsweise auch die Verwendung einer Metallhalogenid-Füllung ohne Quecksilber, wobei als Zündgas bevorzugt Xenon und insbesondere ein hoher Druck, deutlich über 1,3 bar, gewählt werden kann.
In Fig. 2 ist ein Elektrodensystem im Detail gezeigt. Als Durchführung 9 dient ein System, bestehend aus einem Niobstift (oder auch Rohr) als Außenteil 13 und einem Molybdänstift als Innenteil 14.
Der Niobstift 13 ist entladungsseitig mit dem Innenteil 14 aus Molybdän stumpf verschweißt. Auf der Entladungsseite ist Innenteil 14 in gleicher Weise an den Elektrodenschaft 16 angelötet.
Die Alternative ist die Verwendung eines inneren Teils 14 aus Cermet mit einem hohen Anteil an Mo, Rest Al2O3.
Der Schaft 16 hat einen Durchmesser von 0,4 mm. Der Durchmesser des inneren Teils ist 0,8 mm, der des äußeren Teils ist 0,88 mm. Das Innenteil 14 hat also einen um 100 % größeren Durchmesser als der Elektrodenschaft 16.
In Figur 3a ist das Prinzip der erfindungsgemäßen Verbindung dargestellt. In Abhängigkeit von der betrachteten Lampenleistung ist etwa 0,5 mm bis 2 mm vom durchführungsseitigen Ende des Elektrodenschafts 16 entfernt eine umlaufende Nut 18 angebracht. Sie hat, ebenfalls leistungsabhängig, eine Tiefe von 0,5 bis 2 mm und eine Breite von 0,5 bis 2 mm. Beim Laserlöten (Pfeil) dehnt sich der Abschmelzbereich 25 bis über die Nut 18, die hier rechteckig ausgebildet ist, aus. Das aufgeschmolzene Molybdän dient als Lot zur Einbettung des Wolfram-Schaftes 16. Die Nut ermöglicht einen zusätzlicher Formschluss und dient als Reservoir für überschüssige Schmelze bzw. der beim Entmischen von Cermet entstehenden Schlacke.
Alternativ kann die Nut auch einen umlaufenden Einstich mit anders geformtem Querschnitt besitzen, insbesondere einen V-förmigen Einstich 26 (Fig. 3b) oder einen trogförmigen Einstich 27 (Fig. 3c). eine weitere Alternative ist ein Formschlussmittel, das aus zwei einander gegenüberliegenden Kerben 28 im Schaft besteht (Fig. 3d).
In einer besonders bevorzugten Ausführungsform (Figur 4) ist auf den Schaft 36, der stark verlängert ist und daher das innere Durchführungsteil ersetzt, eine Wendel 20 zur Verdrängung des Totvolumens aufgebracht, die aus Molybdän besteht. Die letzte Windung 21 ist in der Nut 18 gehaltert. Während der Herstellung wird dadurch eine provisorische Fixierung bis zum Laserschweißen zur Herstellung des Abschmelzbereichs erzielt.
In Figur 5 ist eine Ausführungsform gezeigt, bei der die Durchführung 30 (einteilig aus Niob) mit dem verlängerten Kernstift 31 aus Wolfram hartgelötet oder verschweißt ist. Beide Komponenten haben etwa denselben Außendurchmesser. Das Mittel zum Formschluss ist eine Kerbe 32. Der Verbindungsbereich 33, der Material aus beiden Komponenten enthalten kann, ist hier stark schematisch dargestellt.
In Figur 6 ist eine weitere Ausführungsform gezeigt, bei der neben der ersten entladungsfernen Nut 37 eine zweite Nut 38 in der Nähe des vorderen, entladungsseitigen Endes des Schaftes 39 dafür sorgt, dass auch das zweite Wendelende fixiert werden kann. Die Wendel ist nicht dargestellt. Vorteile ergeben sich hier insbesondere auch durch die Vereinfachung der automatischen Lageorientierung für das anschließende Laserlöten. Beide Kerben 37 und 38 sind hier rinnenförmig mit schrägen Seitenwänden geformt.

Claims (13)

  1. Elektrodensystem für eine Metallhalogenidlampe, bestehend aus einer elektrisch leitenden Durchführung (9) und einer damit verbundenen Elektrode mit einem Schaft (16), wobei die Durchführung und die Elektrode einen Verbindungsbereich mit aufgeschmolzenen Material besitzen, in den die Elektrode mit ihrem der Durchführung zugewandten Ende des Schaftes eingebettet ist, und wobei der Schaft der Elektrode aus Wolfram gefertigt ist, dadurch gekennzeichnet, dass die Elektrode innerhalb des Verbindungsbereichs ein Mittel zum Formschluss aufweist, das aus einer zumindest lokalen Vertiefung am Schaft der Elektrode besteht.
  2. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass die Durchführung aus einem inneren Teil (14) und einem äußeren Teil (13) besteht, wobei die Elektrode mit dem inneren Teil verbunden ist.
  3. Elektrodensystem nach Anspruch 2, dadurch gekennzeichnet, dass der innere Teil aus einem schweißfähigen Cermet besteht.
  4. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass die Durchführung und der Elektrodenschaft zylindrisch sind, wobei der Durchmesser der Durchführung 80 bis 300 % des Durchmessers des Elektrodenschafts beträgt.
  5. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass das Mittel zum Formschluss aus zwei einander gegenüberliegenden lokale n oder einer umlaufenden Vertiefung am Schaft besteht.
  6. Elektrodensystem nach Anspruch 5, dadurch gekennzeichnet, dass die Vertiefung U- oder V-förmig ist, wobei der Boden des U oder V eine maximale Einstichtiefe T definiert.
  7. Elektrodensystem nach Anspruch 6, dadurch gekennzeichnet, dass die maximale Einstichtiefe T 25 bis 40 % des Durchmessers des Schafts beträgt.
  8. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass das Mittel zum Formschluss 0,1 bis 2 mm von dem der Durchführung zugewandten Ende des Schaftes beabstandet ist.
  9. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass die Elektrode zusätzlich eine Wendel am entladungsfernen Ende umfasst, die den Schaft ummantelt, wobei das der Durchführung zugewandte Ende der Wendel in der Vertiefung am Schaft verankert ist.
  10. Entladungslampe mit einem Elektrodensystem nach Anspruch 1.
  11. Entladungslampe nach Anspruch 10, dadurch gekennzeichnet, dass die Lampe ein keramisches Entladungsgefäß, insbesondere aus Al2O3, enthält.
  12. Entladungslampe nach Anspruch 11, dadurch gekennzeichnet, dass das Entladungsgefäß zwei Enden (6) besitzt, die mit keramischen Stopfen verschlossen sind, die jeweils ein langgezogenes Kapillarrohr (12), im folgenden Stopfenkapillare genannt, enthalten, und wobei durch diese Stopfenkapillare (12) eine elektrisch leitende Durchführung (9) hindurchgeführt ist, wobei an der Durchführung eine Elektrode (16) mit einem Schaft (15) befestigt ist, die in das Innere des Entladungsgefäßes hineinragt.
  13. Entladungslampe nach Anspruch 10, dadurch gekennzeichnet, dass die Lampe eine Metallhalogenidfüllung besitzt.
EP03012802A 2002-06-14 2003-06-05 Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe Withdrawn EP1372184A3 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2002126762 DE10226762A1 (de) 2002-06-14 2002-06-14 Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe
DE10226762 2002-06-14
DE20210400U DE20210400U1 (de) 2002-07-04 2002-07-04 Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe
DE20210400U 2002-07-04

Publications (2)

Publication Number Publication Date
EP1372184A2 true EP1372184A2 (de) 2003-12-17
EP1372184A3 EP1372184A3 (de) 2006-05-31

Family

ID=29585337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03012802A Withdrawn EP1372184A3 (de) 2002-06-14 2003-06-05 Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe

Country Status (4)

Country Link
US (1) US6995514B2 (de)
EP (1) EP1372184A3 (de)
JP (1) JP2004022545A (de)
CA (1) CA2432255A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069677A1 (de) * 2008-12-17 2010-06-24 Osram Gesellschaft mit beschränkter Haftung Entladungslampe
CN110444465A (zh) * 2018-05-02 2019-11-12 欧司朗有限公司 用于放电灯的电极,放电灯和用于制造电极的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615929B2 (en) * 2005-06-30 2009-11-10 General Electric Company Ceramic lamps and methods of making same
JP2007073200A (ja) * 2005-09-02 2007-03-22 Osram Melco Toshiba Lighting Kk 高圧放電ランプ
JP4852718B2 (ja) * 2005-09-07 2012-01-11 岩崎電気株式会社 電極支持体、それを用いた金属蒸気放電灯、および電極支持体の製造方法
DE202006002833U1 (de) * 2006-02-22 2006-05-04 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe mit keramischem Entladungsgefäß
JP2011034980A (ja) * 2010-11-04 2011-02-17 Osram Melco Toshiba Lighting Kk 高圧放電ランプ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829570A (ja) * 1981-08-14 1983-02-21 Pioneer Electronic Corp 金属製の軸状物と、之に嵌插する回転体との取付構造
JPH0589839A (ja) * 1991-09-26 1993-04-09 Toshiba Lighting & Technol Corp 管球用ウエルズ
EP0700070A2 (de) * 1994-09-01 1996-03-06 Osram Sylvania Inc. Kathode für Hochintensitäts-Entladungslampe
JP2001068062A (ja) * 1999-01-29 2001-03-16 Ngk Insulators Ltd セラミック放電管の電極構造及びそのセラミック放電管を用いた高圧放電灯
EP1150334A1 (de) * 1999-01-26 2001-10-31 Hamamatsu Photonics K.K. Elektrode für entladungsröhre und mit solcher elektrode versehener entladungsröhre
WO2001082331A1 (en) * 2000-04-19 2001-11-01 Koninklijke Philips Electronics N.V. High-pressure discharge lamp

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587238B1 (de) 1992-09-08 2000-07-19 Koninklijke Philips Electronics N.V. Hochdruckentladungslampe
JP3238909B2 (ja) 1999-05-24 2001-12-17 松下電器産業株式会社 メタルハライドランプ
EP1271595B1 (de) * 2001-06-13 2013-06-05 Ushiodenki Kabushiki Kaisha Ultrahochdruck-Entladungslampe vom Kurzbogentyp
US6805603B2 (en) * 2001-08-09 2004-10-19 Matsushita Electric Industrial Co., Ltd. Electrode, manufacturing method thereof, and metal vapor discharge lamp

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829570A (ja) * 1981-08-14 1983-02-21 Pioneer Electronic Corp 金属製の軸状物と、之に嵌插する回転体との取付構造
JPH0589839A (ja) * 1991-09-26 1993-04-09 Toshiba Lighting & Technol Corp 管球用ウエルズ
EP0700070A2 (de) * 1994-09-01 1996-03-06 Osram Sylvania Inc. Kathode für Hochintensitäts-Entladungslampe
EP1150334A1 (de) * 1999-01-26 2001-10-31 Hamamatsu Photonics K.K. Elektrode für entladungsröhre und mit solcher elektrode versehener entladungsröhre
JP2001068062A (ja) * 1999-01-29 2001-03-16 Ngk Insulators Ltd セラミック放電管の電極構造及びそのセラミック放電管を用いた高圧放電灯
WO2001082331A1 (en) * 2000-04-19 2001-11-01 Koninklijke Philips Electronics N.V. High-pressure discharge lamp

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 006, Nr. 106 (M-213), 10. Mai 1983 (1983-05-10) -& JP 58 029570 A (PIONEER KK), 21. Februar 1983 (1983-02-21) *
PATENT ABSTRACTS OF JAPAN Bd. 017, Nr. 424 (E-1410), 6. August 1993 (1993-08-06) -& JP 05 089839 A (TOSHIBA LIGHTING & TECHNOL CORP), 9. April 1993 (1993-04-09) *
PATENT ABSTRACTS OF JAPAN Bd. 2000, Nr. 20, 10. Juli 2001 (2001-07-10) -& JP 2001 068062 A (NGK INSULATORS LTD), 16. März 2001 (2001-03-16) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069677A1 (de) * 2008-12-17 2010-06-24 Osram Gesellschaft mit beschränkter Haftung Entladungslampe
CN110444465A (zh) * 2018-05-02 2019-11-12 欧司朗有限公司 用于放电灯的电极,放电灯和用于制造电极的方法

Also Published As

Publication number Publication date
US20050280370A1 (en) 2005-12-22
US6995514B2 (en) 2006-02-07
EP1372184A3 (de) 2006-05-31
CA2432255A1 (en) 2003-12-14
JP2004022545A (ja) 2004-01-22

Similar Documents

Publication Publication Date Title
EP0887839B1 (de) Hochdruckentladungslampe mit keramischem Entladungsgefäss
EP0607149B1 (de) Verfahren zum herstellen einer metallhalogenid-entladungslampe mit keramischem entladungsgefäss
EP0887841B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
EP0887840B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
EP0602530A2 (de) Verfahren zur Herstellung einer vakuumdichten Abdichtung zwischen einem keramischen und einem metallischen Partner, insbesondere für Entladungsgefässe und -lampen
DE9422090U1 (de) Keramisches Entladungsgefäß
EP2020018B1 (de) Hochdruckentladungslampe
DE69403176T2 (de) Elektrische Lampe
EP0639853B1 (de) Hochdruckentladungslampe mit keramischem Entladungsgefäss
EP1372184A2 (de) Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe
DE102006052715B4 (de) Verfahren zur Herstellung einer quecksilberfreien Bogenentladungsröhre mit jeweils einem Einkristall an den Elektrodenspitzen
EP1730766B1 (de) Elektrodensystem für eine hochdruckentladungslampe
DE10026802A1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
EP1351278B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
DE10256389A1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
EP1048052B1 (de) Verfahren zur herstellung einer elektrode für entladungslampen
EP0764970B1 (de) Hochdruckentladungslampe
DE10226762A1 (de) Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe
DE10159580B4 (de) Bogenentladungsröhre und Verfahren zu deren Herstellung
DE202004013922U1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
DE20210400U1 (de) Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe
DE102006011732A1 (de) Metallhalogenidlampe mit keramischen Entladungsgefäß
DE69408787T2 (de) Entladungslampe mit einem bimetallischen Schalter versehen und zu einer Lampe passender bimetallischen Schalter
DE60111103T2 (de) Hochdruckentladungslampe
DE102005058896A1 (de) Hochdruckentladungslampe mit keramischem Entladungsgefäß

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: B23K 1/18 20060101ALI20060411BHEP

Ipc: H01J 61/36 20060101ALI20060411BHEP

Ipc: H01J 61/073 20060101AFI20030927BHEP

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070103

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566