EP1730766B1 - Elektrodensystem für eine hochdruckentladungslampe - Google Patents

Elektrodensystem für eine hochdruckentladungslampe Download PDF

Info

Publication number
EP1730766B1
EP1730766B1 EP04802774A EP04802774A EP1730766B1 EP 1730766 B1 EP1730766 B1 EP 1730766B1 EP 04802774 A EP04802774 A EP 04802774A EP 04802774 A EP04802774 A EP 04802774A EP 1730766 B1 EP1730766 B1 EP 1730766B1
Authority
EP
European Patent Office
Prior art keywords
winding
electrode system
filament
shank
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04802774A
Other languages
English (en)
French (fr)
Other versions
EP1730766A2 (de
Inventor
Anton Dambacher
Helmut Davideit
Klaus Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004012242A external-priority patent/DE102004012242A1/de
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP1730766A2 publication Critical patent/EP1730766A2/de
Application granted granted Critical
Publication of EP1730766B1 publication Critical patent/EP1730766B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors

Definitions

  • the invention is based on an electrode system for a high-pressure discharge lamp according to the preamble of claim 1.
  • electrodes for high-pressure discharge lamps which contain mercury and / or sodium.
  • One field of application are, for example, metal halide lamps, another in particular high-pressure sodium lamps.
  • the implementation is more massive than the shaft and accordingly, the winding of significantly thicker wire than the helix.
  • Common electrode systems for low wattages to about 100 W are often in three parts, the implementation is designed in two parts with a connector to the electrode shaft of molybdenum pin and a niobium pin as the tail.
  • Higher Watt lamps are often three or four parts, they use as a connector usually a pin-shaped cermet.
  • Another object is to provide a lamp with such an electrode system.
  • a rigid connection between helix and winding is produced, which improves the quality and leads to better reproducible results in the behavior of the lamp.
  • Such a link has not yet been considered because of the completely different requirement profiles for helix and winding.
  • the electrode system does not matter how exactly the electrode system is constructed.
  • it consists at least of an electrode shaft with a head which is designed as a helix, and a connection part. At least on a part of the connection part, an enveloping winding is applied.
  • connection part may on the one hand be integrally connected to the electrode shaft.
  • the integral part usually consists of a pin, which is made of tungsten.
  • connection part can also be a separate part. In this case it is often structurally associated with a part of the bushing which is attached to the connecting part. Common are connecting parts made of molybdenum, tungsten or cermet. In this case, the diameter of the connection part is often noticeable (up to 150%) or even significantly (up to 400%) larger than the diameter of the electrode shaft.
  • the concept according to the invention can take account of the fact that, with a very large difference in the diameter of the helix and the winding, these two parts are made of separate workpieces which are connected to one another.
  • a typical rigid connection can be achieved, for example, by welding, soldering or entangling.
  • coil and winding are connected to one another via a so-called winding interruption.
  • This embodiment develops particular advantages when the diameter of the electrode shaft and connecting part are not chosen too different and do not differ from each other by more than 50%, in particular even being equal to 20%.
  • coil and winding can be made in one piece from a wire.
  • This technique has the advantage that coil and winding are applied directly to the electrode system in one operation, and not separately manufactured as usual and then laboriously must be applied separately.
  • this new technique represents a quantum leap in cost reduction and quality improvement for electrode systems and high pressure discharge lamps made therewith.
  • the invention enables the experts to simplify and reduce the cost of producing ceramic discharge vessels equipped with electrodes. In particular, the development of lamps with low power is in the spotlight. Because the simple and reliable manufacturing method allows for the first time small tolerances in the production, especially of small wattages in the range of 20 to 75 W.
  • connection part often also consists of an electrically conductive cermet consisting of molybdenum and Al 2 O 3 with approximately equal proportions, as is known per se. This embodiment is more common for smaller wattages up to 150W.
  • the winding on the connecting part can be modified by a further winding. This further winding may have approximately the same properties as the first winding and a complementary second layer of the same material on the first winding form, or also consist of other material, or be designed for better stabilization as Umspinnungsdraht on the actual winding.
  • Another embodiment for higher wattages uses a four-part electrode system, wherein between connecting part, often made of molybdenum, and tail, often made of niobium, an intermediate piece, usually a cermet, is introduced.
  • the various components of the electrode system which is usually two to four parts, welded or soldered or mechanically connected, for example by crimping or plugging.
  • the electrode system according to the invention is used in ceramic discharge vessels for high-pressure discharge lamps. It does not matter whether the discharge vessel is closed on one or two sides.
  • the electrode is held in the discharge vessel via its shaft, for example through a passage which is part of or attached to the shaft, this passage being sealed in a ceramic capillary, as known per se.
  • the helix on the electrode shank can be flush with the shank, or even project or reset.
  • Starting material is for example an endless winding containing winding sections and interruptions of the winding.
  • a first winding section can form the helix ( W ), forming an adjacent, second winding section spaced apart from a so-called interruption ( U ), the winding ( W ).
  • WUW- Gewickel of any length, in particular with any length of the wound segments and the interruptions, can be produced and used.
  • a typical lamp with at least one electrode system has at least one discharge vessel containing metal vapor, in particular mercury and / or sodium, wherein the discharge vessel is made of ceramic.
  • the discharge vessel is made of ceramic.
  • it is relatively low-wattage lamps with a power of 20 to 400 W.
  • the preferred manufacturing method for producing an electrode system may also be modified in that instead of a continuous core pin, which solves the task of the shaft and the connection part in one, a core pin is used, which is composed of two parts with different diameters.
  • the cutting of the endless wound into sections is preferably carried out by wire eroding or by using laser pulses.
  • Such a coil has good dimensional stability.
  • the helix can not slip anymore.
  • a flush finish of the helix at the core pin is preserved.
  • a drop of the coil under heavy load is now excluded.
  • a cost-effective three-piece design is now possible instead of a complex four-part design, as a front piece can be tailored in length, which also allows the welding node to be moved out of the hot zone.
  • Another advantage is that in cooler regions the better adapted cermet can be used.
  • a three-piece design was not possible with large wattages, because on the one hand a cermet material is not sufficiently heat-stable and, conversely, an extension of the core pin into the passage is prohibited because of the large dead volume in the capillary resulting from this measure.
  • no molybdenum pin can be used, because then the seal does not work properly. A large pin of molybdenum is too little adapted in the coefficient of thermal expansion of the ceramic of the capillary.
  • the new manufacturing process for an electrode system with helix and winding makes the production much easier and less expensive and facilitates automation.
  • the new electrode is very well suited for laser production.
  • an Nd-YAG laser is used for this work.
  • the laser can be used as a cutting tool or for material processing, especially the removal.
  • a particularly straight, burr-free cut is achieved
  • a protruding core pin can be achieved at the tip of the electrode in a simple non-contact manner.
  • Another field of application of the laser is that the cross-sectional area of the spacer can thus be elegantly reduced locally.
  • This partial ablation serves to reduce the heat flow between coil and winding.
  • both the height and the width of the wire can be reduced.
  • the height is reduced, because thus at this point the outer diameter can be reduced.
  • the distance to the capillary of a ceramic discharge vessel is thereby increased, which reduces the risk of cracks.
  • Another application is to reduce the thickness of the winding by subsequently the last turns are reduced in height. advantageous In the end, the weldability is improved and the embedment in the ceramic, which surrounds the terminal pin, succeeds better.
  • Typical is a height reduction of 30 to 65%. This is especially important for small wattages up to 100 W.
  • connection part can be provided separately and possibly postponed later. But it can also be made directly from the wire of the integral. It can be single-layer or double-layered and realized as a single or double wrapping. Another possibility is a single-layer wrapping wrap.
  • FIG. 1 schematically shows as a section of a metal halide lamp 1 with two-sided closed ceramic discharge vessel 2 with a power of 150 W.
  • the electrodes 3 consist of pins 4, which have constant diameter as the electrode shaft. It is about 500 microns.
  • a coil 5 of 180 ⁇ m in diameter is mounted on the shaft 4.
  • a metal halide is filled in the discharge vessel 2, a metal halide is filled.
  • the ends 6 of the discharge vessel are closed by capillaries 7, which tightly enclose a two-part bushing 8, 9, consisting of an inner connecting part 8 and an outer end piece 9.
  • the end piece 9 is a niobium pin.
  • Fig. 2 shows in detail one end of the discharge vessel 2.
  • the end piece 9 is sealed by means of glass solder 10 in the capillary 7.
  • the connecting part 8 is made of molybdenum. It is a pin (hidden), which is surrounded by a winding 11 made of molybdenum.
  • the diameter of the connecting part 8 is considerably larger than that of the core pin 4 acting as shaft of the electrode.
  • the helix 5 serving as the electrode head on the shank is connected to the winding 11 via an interruption 12 comprising one or more windings. The number of turns is preferably one to three.
  • Fig. 3 schematically shows another embodiment of an electrode system 13 for the lamp of FIG. 1 in detail. It consists of a continuous pin 4, which simultaneously performs the task of the shaft and the connecting part.
  • a coil 5 is applied, which comprises about 6 turns of a wire and is cut flush.
  • a winding 11 of the same wire which consists of tungsten, is applied. It comprises about 30 turns.
  • Coil 5 and winding 11 are integrally manufactured and connected via an interruption 12, which comprises a winding. The distance between helix and winding corresponds approximately to three times the length of the helix. 5
  • the distance between filament and winding preferably increases with the wattage.
  • the electrode system 13 is similar to FIG. 3 built up.
  • coil 5 and coil 11 are not integral but separate.
  • the winding 11 is made of molybdenum, since this is best suited for adaptation to the thermal expansion coefficient of the ceramic of the capillary 7.
  • Such electrode systems must not be overly stressed because of the relatively low melting point of molybdenum. In other words, these systems are well suited for powers up to 100 W, but only to a limited extent.
  • Other suitable materials for the electrode system are tungsten, tantalum and rhenium, alone or in combination. Possibly. one material serves as a coating on the other.
  • the wire diameter of the winding 11 is significantly smaller than that of the helix 5 in order to keep the dead volume as small as possible.
  • the coil and the winding are connected to each other via a welding point S at the end of the interruption.
  • the electrode system 13 is completed by the fact that the end piece 9 of the niobium leadthrough of significantly larger diameter is welded onto the connection part 8.
  • the outer diameter of the winding and the diameter of the Niobstifts are about the same size.
  • the solution to the problem of thermal matching is to fabricate the winding from a suitable combination of materials. This is especially true for heavily loaded lamps.
  • an electrode system 13 is shown in section, in which the problem of adjusting the coefficient of thermal expansion compared to the material of the capillary is solved by acting on the actual winding 11, which consists of tungsten and as in FIG. 3 integral with the coil, a second coil 26 is applied which consists of molybdenum.
  • the coil 14 is usually made because of the minimization of the dead volume of thinner wire, usually 20 to 50% thinner.
  • FIG. 6 For example, a portion of an electrode system that uses a standard component as a front piece 20 at the discharge exposed end of the electrode system is shown. It consists of a core wire 21, which forms the shaft and the adjoining first portion of the connecting part.
  • the coil 22 is mounted on the first end of the shaft, in particular so that the coil 22 is flush with the shaft.
  • the winding 23, which has the same length as the coil 22, is also mounted flush with the second end of the shaft with an interruption 24 therebetween. Due to the same length of coil 22 and winding 23, the component is symmetrical, which greatly simplifies the use in manufacturing, because due to the symmetry does not have to be paid to the orientation of the component during installation. In other words, coil and winding are here designed as similar parts that can be interchanged.
  • FIG. 7 It is shown how the front piece 20 is attached to other components of the implementation.
  • the front piece 20 with a middle part or intermediate piece 25 made of cermet, which is wrapped with a separate winding 26, welded.
  • the end piece 27 made of niobium, also via welding. The classical boundaries between electrode and bushing are thus removed in favor of constructive advantages.
  • the particular advantage of this arrangement is that here the outer diameter of the winding 23 and the separate coil 26 of the central part 25 need not be the same size, since the front piece 20 can be optimized in terms of geometry and material to the needs of the coil 22, while the middle part 25th can be optimized for an enveloping and sealing effect in the capillary.
  • FIG. 8a and 8b an electrode system 30 is shown in which the advantages of a fixed distance between coil 35 and winding 39 are demonstrated.
  • the front piece 31 is novel according to FIG. 8a designed.
  • connector 32 and tail 33 may be conventional, so for example, by a molybdenum-wound 39 on a molybdenum pin 34 a (dashed) is applied and with an end piece 33, a pin of niobium, welded.
  • a front piece 31 is used, according to Fig. 8a consists of a shaft 34 made of tungsten, on which a filament 35 of tungsten is applied.
  • an interruption 36 is still wound on the shaft 34, which extends to the rear end 37 of the shaft.
  • This front piece 31 can be welded to the conventional connection part 32.
  • the highly schematically illustrated welding connection point 38 connects not only the core pins 34 and 34a, but also the interruption 36 with the winding 39. Again, geometry and materials can be optimized due to the decoupling between the front piece and middle part to the specific requirements.
  • FIG. 9 an electrode system 13 is shown, in which the assembly has a core pin 4 as a shaft and integral connection part. While the coil 5 is seated at the discharge end of the shaft 4 as usual, the coil 11 is longer than the connector 4 'hidden therein so that the end piece can be inserted into the cavity 15 at the rear end of the connector and then crimped. This can be dispensed with a welding process.
  • FIG. 10 is an alternative to FIG. 9 shown in the only difference at the rear end of the connecting part 4 'is an additional interruption 16 is set, without a core pin.
  • the tail is inserted into the cavity 15 and crimped by interruption 16.
  • FIG. 11 is an electrode system 13 shown with a three-part design: an asymmetrical front piece 17 with a continuous core pin 4, the shaft and forms the first part of the connection part. On it sits a short coil 18 and a long winding 19. This is a cermet pin 28 welded to surrounding Molybdnatureewickel, this in turn, an end piece 9 is welded. The welding point is designated in each case by 38.
  • FIG. 12 a front piece 17 is shown, in which the interruption 40 is two turns long.
  • the ratio between the outer diameter of the coil 14 and the outer diameter of the winding 29 is 1: 3.
  • a suitably sized centerpiece can be fitted.
  • a concrete example of a dimension is a 70 W lamp in which the shaft 21 has a diameter of 250 ⁇ m and the wire wound thereon for coil and winding has a diameter of 150 ⁇ m.
  • a symmetrical front piece made of it (see FIG. 6 and 7 ) has a length of the coil 22 of 1.1 mm, a length of the interruption 24 (1 turn) of 1.8 mm and a length of the winding 23 of again 1.1 mm.
  • An attached central part 25, which is wrapped with molybdenum wire 26, has a length of 8.5 mm with a core pin of 400 microns in diameter and a winding wire of 140 microns in diameter.
  • An attached end piece 27 made of niobium has a length of 16.8 mm and consists of a niobium pin with 730 microns in diameter.
  • the dimensioning of a 35 W lamp provides: the niobium pin 27 has a diameter of 610 microns; the center molybdenum core pin 25 has a diameter of 300 ⁇ m and is wrapped by a molybdenum wire 26 of 130 ⁇ m in diameter; the core pin 21, which acts as a continuous part for the electrode shaft and the connection part, has a diameter of 154 ⁇ m; on him a coil 22, interruption 24 and winding 23 is wound from a wire of 122 microns in diameter.
  • the dimensioning of a 150 W lamp provides: the niobium pin 27 has a diameter of 880 microns; the center molybdenum core pin 25 has a diameter of 540 ⁇ m and is wrapped by a molybdenum wire 26 of 150 ⁇ m in diameter; the core pin 21, which acts as a continuous part for the electrode shaft and the connection part, has a diameter of 500 ⁇ m; on him a coil 22, interruption 24 and winding 23 is wound from a wire of 180 microns in diameter.
  • the diameter DA of the connecting part can be between 50 and 400% of the diameter DS of the shaft.
  • separate filament and winding can be rigidly connected to each other by either the end of the interruption to the beginning of the winding or the coil is welded. while the interruption is either attached to the winding or coil integral.
  • the interruption may also be separate from filament and winding and then requires two welds. Instead of welding or soldering etc., a purely mechanically rigid connection is possible, for example by threading the interruption in the u.U. bent end of the coil or winding similar to the techniques known for halogen incandescent lamps.
  • the interruption can also be formed as a straight spacer 41, which is used for example via welds 42 between coil 5 and winding 11, see FIG. 13 ,
  • FIG. 14 an embodiment is shown in which the core wire 21 is wound by an interruption 24, which is partly an intact wire portion 24u and partly a wire portion 24r, wherein the diameter is removed to about 60%, which can be most easily realized by means of laser processing. In this way the heat flow from the head of the electrode to the back is suppressed.
  • FIG. 15 shown, in principle, the representation of FIG. 9 shows, but with the difference that here the interruption is evenly constricted laterally (41) or is constricted on one side (42). Both can be produced again by means of laser, but also mechanically.
  • FIG. 16 it is shown that a terminal part 45 of the winding 11, which is thus located at the discharge-distal end, may have a reduced diameter in order to optimize the region of the winding which comes into contact with the ceramic or glass solder 10; see for a better understanding FIG. 2 ,
  • the pin 4 and the interruption 12 and the coil 5 correspond to the in FIG. 2 shown arrangement. Again, the removal of the height in part 45 is best done with the laser.

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

    Technisches Gebiet
  • Die Erfindung geht aus von einem Elektrodensystem für eine Hochdruckenttadungslampe gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um Elektroden für Hochdruckentladungslampen, die Quecksilber und/oder Natrium enthalten. Ein Anwendungsgebiet sind beispielsweise Metallhalogenidlampen, ein weiteres insbesondere Natriumhochdrucklampen.
  • Stand der Technik
  • Aus der EP 587 238 und WO 95/28732 ist bereits ein Elektrodensystem für eine Hochdruckentladungslampe bekannt, bei dem eine Elektrode und eine Durchführung verwendet werden, wobei auf dem Elektrodenschaft eine Wendel angebracht ist. Gleichzeitig ist auf der Durchführung eine umhüllende Wicklung angebracht. Sie dient teils der Verbesserung der Abdichtung und dem Schutz vor Korrosion, insbesondere aber bei keramischen Entladungsgefäßen füllt die Wendel das Totvolumen in der Kapillare; außerdem passt der thermischen Ausdehnungskoeffizient des üblicherweise verwendeten Molybdäns besser zu Al2O3. Häufig besteht die Wendel aus Wolfram, um die hohen Temperaturen in Entladungsnähe auszuhalten. Bei der Wicklung kommt es eher auf Verträglichkeit mit dem Glaslot an, so dass hier meist ein Molybdändraht verwendet wir. Im allgemeinen ist die Durchführung massiver als der Schaft und entsprechend ist die Wicklung aus deutlich dickerem Draht als die Wendel. Übliche Elektrodensysteme für niedrige Wattagen bis etwa 100 W sind häufig dreiteilig, wobei die Durchführung zweiteilig mit einem Anschlussteil zum Elektrodenschaft aus Molybdänstift und einem Niobstift als Endstück gestaltet ist.
  • Höherwattige Lampen sind häufig drei- oder vierteilig, sie verwenden als Anschlussteil meist ein stiftförmiges Cermetteil.
  • Aus er DE-A 29 51 966 ist ein Elektrodensystem für eine Hochdruckentladungslampe mit Quarzkolben bekannt, bei dem der Schaft eine Verdickung besitzt, wobei ein Wendelteil darüber geführt ist.
  • Aus der JP-A 2000-100386 ist ein Elektrodensystem bekannt, bei dem eine Wendel und eine Wicklung separat auf einen Schaft aufgebracht sind.
  • Aus der US 4 724 358 ist eine Elektrode bekannt, bei der am Kopf eine Wendel aufgeschoben ist, die einen separaten Kernstift aufweist.
  • Darstellung der Erfindung
  • Es ist Aufgabe der vorliegenden Erfindung, ein Elektrodensystem gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, mit dem die Betriebseigenschaften von Hochdruckentladungslampen verbessert werden und insbesondere auch bessere Lichtstrom- und Maintenance-Eigenschaften erzielt werden.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
  • Eine weitere Aufgabe ist die Bereitstellung einer Lampe mit einem derartigen Elektrodensystem.
  • Diese Aufgabe wird durch die Merkmale des Anspruchs 18 gelöst.
  • Erfindungsgemäß wird eine starre Verbindung zwischen Wendel und Wicklung hergestellt, die die Qualität verbessert und zu besser reproduzierbaren Ergebnissen im Verhalten der Lampe führt. Es besteht dadurch eine feste Abstandsbeziehung zwischen Wendel und Wicklung, so dass die ohnehin erforderliche exakte Justierung der Wicklung automatisch eine exakte Justierung der Wendel nach sich zieht. Eine derartige Verknüpfung wurde aufgrund der an sich völlig unterschiedlichen Anforderungsprofile für Wendel und Wicklung bisher nicht in Betracht gezogen.
  • Für das Grundprinzip der Erfindung spielt es dabei keine Rolle, wie das Elektrodensystem genau aufgebaut ist. Im allgemeinen besteht es zumindest aus einem Elektrodenschaft mit einem Kopf, der als Wendel gestaltet ist, und einem Anschlussteil. Zumindest auf einem Teil des Anschlussteils ist eine umhüllende Wicklung aufgebracht.
  • Das Anschlussteil kann einerseits integral mit dem Elektrodenschaft verbunden sein. Dabei besteht das integrale Teil meist aus einem Stift, der aus Wolfram gefertigt ist.
  • Das Anschlussteil kann jedoch auch ein separates Teil sein. In diesem Fall ist es häufig baulich vereinigt mit einem Teil der Durchführung, die an das Anschlussteil angesetzt ist. Üblich sind Anschlussteile aus Molybdän, Wolfram oder Cermet. In diesem Fall ist der Durchmesser des Anschlussteils häufig merklich (bis 150 %) oder sogar erheblich (bis 400%) größer als der Durchmesser des Elektrodenschafts. Das erfindungsgemäße Konzept kann dem dadurch Rechnung tragen, dass bei sehr großem Unterschied im Durchmesser der Wendel und der Wicklung diese beiden Teile aus separaten Werkstücken gefertigt sind, die miteinander verbunden sind. Eine typische starre Verbindung lässt sich beispielsweise durch Schweißen, Löten oder Verwickeln erzielen.
  • In einer Ausführungsform der Erfindung sind Wendel und Wicklung über eine sog. Wicklungsunterbrechung miteinander verbunden. Besondere Vorteile entfaltet diese Ausführungsform dann, wenn der Durchmesser von Elektrodenschaft und Anschlussteil nicht allzu verschieden gewählt werden und sich nicht mehr als 50 % voneinander unterscheiden, insbesondere sogar bis auf 20 % gleich sind. In diesem Fall kann Wendel und Wicklung einstückig aus einem Draht gefertigt werden. Diese Technik hat den Vorteil, dass Wendel und Wicklung in einem Arbeitsvorgang direkt auf das Elektrodensystem aufgebracht werden, und nicht wie bisher üblich separat gefertigt und dann noch mühsam separat aufgebracht werden müssen. Somit stellt diese neue Technik einen Quantensprung in der Kostenreduzierung und Qualitätsverbesserung für Elektrodensysteme und damit hergestellte Hochdruckentladungslampen dar.
  • Die Erfindung versetzt die Fachwelt in die Lage, die Herstellung von mit Elektroden bestückten keramischen Entladungsgefäßen zu vereinfachen und zu verbilligen. Dabei steht insbesondere auch die Entwicklung von Lampen mit kleiner Leistung im Blickpunkt. Denn das einfache und zuverlässige Fertigungsverfahren ermöglicht erstmals geringe Toleranzen in der Fertigung, insbesondere von kleinen Wattagen im Bereich von 20 bis 75 W.
  • Übliche Elektrodensysteme sind dreiteilig und bestehen aus einem Elektrodenschaft aus Wolfram und einer zweiteiligen Durchführung mit einem Anschlussteil aus Molybdän, auf das die Wicklung aufgebracht ist und einem Endstück aus Niob. Das Anschlussteil besteht häufig auch aus einem elektrisch leitenden Cermet, bestehend aus Molybdän und Al2O3 mit in etwa gleichen Anteilen, wie an sich bekannt. Diese Ausführungsform ist eher für kleinere Wattagen bis 150 W üblich. Die Wicklung auf dem Anschlussteil kann durch eine weitere Wicklung modifiziert sein. Diese weitere Wicklung kann in etwa gleiche Eigenschaften wie die erste Wicklung haben und eine ergänzende zweite Lage aus dem gleichen Material auf der ersten Wicklung bilden, oder auch aus anderem Material bestehen, oder zur besseren Stabilisierung als Umspinnungsdraht auf der eigentlichen Wicklung ausgeführt sein.
  • Eine weitere Ausführungsform für höhere Wattagen (150 bis 400 W) verwendet ein vierteiliges Elektrodensystem, wobei zwischen Anschlussteil, häufig aus Molybdän, und Endstück, häufig aus Niob, ein Zwischenstück, meist ein Cermet, eingebracht ist.
  • Im allgemeinen werden die verschiedenen Bestandteile des Elektrodensystems, das üblicherweise zwei- bis vierteilig ist, verschweißt oder verlötet oder mechanisch verbunden, beispielsweise durch Crimpen oder Stecken.
  • Das erfindungsgemäße Elektrodensystem findet in keramischen Entladungsgefäßen für Hochdruckentladungslampen Verwendung. Dabei spielt es keine Rolle, ob das Entladungsgefäß einseitig oder zweiseitig verschlossen ist. Die Elektrode wird im Entladungsgefäß über ihren Schaft gehaltert, beispielsweise durch eine Durchführung, die Teil des Schaftes ist oder daran angesetzt ist, wobei diese Durchführung in einer keramischen Kapillare abgedichtet ist, wie an sich bekannt.
  • Die Wendel auf dem Elektrodenschaft kann bündig mit dem Schaft abschließen, oder auch vorstehen oder zurückgesetzt sein.
  • Damit ist eine besonders einfache Fertigung der Elektrode möglich. Ausgangsmaterial ist beispielsweise ein Endlosgewickel, das Wickelabschnitte und Unterbrechungen der Wicklung enthält. Ein erster Wickelabschnitt kann die Wendel (W) bilden, ein benachbarter, über eine sog. Unterbrechung (U) beabstandeter zweiter Wickelabschnitt die Wicklung (W) bilden. Im Prinzip ist ein derartiges sog. WUW-Gewickel mit beliebiger Länge, insbesondere mit beliebiger Länge der gewickelten Segmente und der Unterbrechungen, herstellbar und verwendbar.
  • Eine typische Lampe mit mindestens einem Elektrodensystem weist zumindest ein Entladungsgefäß auf, das Metalldampf enthält, insbesondere Quecksilber und/oder Natrium, wobei das Entladungsgefäß aus Keramik gefertigt ist. Bevorzugt handelt es sich um relativ niederwattige Lampen mit einer Leistung von 20 bis 400 W. Jedoch sind höherwattige Lampen, beispielsweise bis 2000 W, nicht ausgeschlossen.
  • Das bevorzugte Herstellverfahren zur Herstellung eines Elektrodensystems kann auch dahingehend modifiziert sein, dass statt eines durchgehenden Kernstifts, der die Aufgabe des Schafts und des Anschlussteils in einem löst, ein Kernstift verwendet wird, der aus zwei Teilen mit unterschiedlichem Durchmesser zusammengesetzt ist.
  • Das Schneiden des Endlosgewickels in Abschnitte erfolgt bevorzugt mittels Drahterodieren oder durch Anwendung von Laserpulsen. Ein derartiges Gewickel besitz gute Maßhaltigkeit. Die Wendel kann nicht mehr verrutschen. Ein bündiger Abschluss der Wendel am Kernstift bleibt erhalten. Ein Abfallen der Wendel bei starker Belastung ist jetzt ausgeschlossen.
  • Zudem wird ein definierter Wärmeübergang erzeugt. Die Elektrodenparameter bleiben innerhalb eines Fertigungsloses jetzt gleich, so dass auch der Kontakt und somit anfängliche Wärmeübergang nach dem Lampenstart zwischen Wendel und Schaft bei allen Lampen praktisch identisch ist. Separate Mittel zur Befestigung der Wendel, wie beispielsweise Überstände wie in DE-A 198 08 981 beschrieben, werden jetzt nicht mehr benötigt. Ein weiterer Vorteil der neuen Herstellungsmethode ist, dass sich die Elektrode durch den Verzicht auf das Aufschieben nicht mehr verbiegen kann. Die extrem schonende Fertigung bewirkt, dass keine Spleiße mehr im Elektrodenbereich abstehen, so dass das Schwärzungsverhalten und die Bogenruhe verbessert werden.
  • Mit dem neuen Herstellverfahren können extrem einfache, nämlich nur aus zwei Teilen bestehende Elektrodensysteme gefertigt werden, die auch für sehr geringe Wattagen maßhaltig sind. Für eine keramische 20 W-Lampe mit Wendel gab es bisher noch kein großtechnisch sinnvolles Herstellverfahren.
  • Damit lassen sich auch spezielle Bauteile, die als Frontstücke des Elektrodensystems fungieren, erstellen und insbesondere eine hochgradige Symmetrie aufweisen. Der Vorteil symmetrischer Elektrodensysteme bzw. von Bauteilen, die Frontstücke bilden, ist, dass dadurch die erste oder einzige Schweißung, die Bestandteile des Elektrodensystems miteinander verbindet, weiter weg vom Entladungsbogen angeordnet ist, wodurch das Problem überhitzter Schweißpunkte und abknickender Elektrodenköpfe minimiert wird.
  • Bei hoher Leistung, beispielsweise 150 bis 600 W, ist jetzt ein kostengünstiges Dreiteil-Design möglich statt eines aufwendigen Vierteil-Designs, da ein Frontstück in seiner Länge maßgeschneidert werden kann, wodurch auch hier der Schweißknoten aus der heißen Zone verlagert werden kann. Ein weiterer Vorteil ist, dass in kühleren Regionen das besser angepasste Cermet verwendet werden kann. Bisher war bei großen Wattagen ein Dreiteil-Design nicht möglich, weil zum einen ein Cermetmaterial nicht ausreichend wärmestabil ist und umgekehrt eine Verlängerung des Kernstifts bis in die Durchführung hinein sich wegen des aufgrund dieser Maßnahme entstehenden großen Totvolumens in der Kapillare verbietet. Zum andern kann auch kein Molybdänstift verwendet werden, weil dann die Abdichtung nicht ausreichend funktioniert. Ein großer Stift aus Molybdän ist zu wenig im thermischen Ausdehnungskoeffizienten an die Keramik der Kapillare angepasst.
  • Das neue Herstellverfahren für ein Elektrodensystem mit Wendel und Wicklung macht die Herstellung erheblich einfacher und kostengünstiger und erleichtert die Automatisierung.
  • Die neue Elektrode eignet sich sehr gut für die Herstellung mittels Laser. Typisch wird für diese Arbeiten ein Nd-YAG-Laser verwendet. Der Laser kann als Schneidewerkzeug verwendet werden oder für die Materialbearbeitung, insbesondere den Abtrag. Im ersten Fall wird ein besonders gerader, gratfreier Schnitt erzielt, im zweiten Fall lässt sich ein vorstehender Kernstift an der Spitze der Elektrode auf einfache berührungsfreie Weise erzielen. Ein weiteres Anwendungsgebiet des Lasers ist, dass die Querschnittsfläche des Distanzstückes damit elegant lokal reduziert werden kann. Dieses teilweises Abtragen dient dazu, den Wärmefluss zwischen Wendel und Wicklung zu verringern. Dabei kann sowohl die Höhe als auch die Breite des Drahtes verringert werden. Bevorzugt wird die Höhe verringert, weil damit an dieser Stelle der Außendurchmesser verringert werden kann. Der Abstand zur Kapillare eines keramischen Entladungsgefäßes wird dadurch vergrößert, was die Gefahr von Rissen verringert.
  • Eine weitere Anwendungsmöglichkeit ist die Reduzierung der Dicke der Wicklung, indem nachträglich die letzten Windungen in ihrer Höhe vermindert werden. vorteilhaft wird damit am Ende die Schweißbarkeit verbessert und die Einbettung in die Schmelzkeramik, die hier den Anschlussstift umgibt, gelingt besser.
  • Typisch ist eine Höhenreduzierung um 30 bis 65 %. Dies ist insbesondere bei kleinen Wattagen bis 100 W wichtig.
  • Insbesondere kann eine zusätzliche Umwicklung des Anschlussteils vorgesehen sein. Diese kann separat hergestellt sein und evtl. nachträglich aufgeschoben sein. Sie kann aber auch direkt aus dem Draht des Gewickels integral hergestellt sein. Sie kann einlagig oder zweilagig sein und als Einfach- oder Doppelgewickel realisiert sein. Eine weitere Möglichkeit ist ein einlagiges Umspinnungsgewickel.
  • Kurze Beschreibung der Zeichnungen
  • Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:
  • Figur 1
    eine Hochdruckentladungslampe, im Schnitt;
    Figur 2
    eine weitere Hochdruckentladungslampe, im Schnitt;
    Figur 3
    ein Elektrodensystem für die Lampe der Figur 2, im Schnitt;
    Figur 4 bis 13
    weitere Ausführungsbeispiele von Elektrodensystemen.
    Bevorzugte Ausführung der Erfindung
  • Figur 1 zeigt schematisch als Ausschnitt eine Metallhalogenidlampe 1 mit zweiseitig verschlossenem keramischem Entladungsgefäß 2 mit einer Leistung von 150 W. Die Elektroden 3 bestehen aus Stiften 4, die als Elektrodenschaft durchgängig konstanten Durchmesser besitzen. Er beträgt etwa 500 µm. In einem Abstand von 0,3 mm von der Entladungsseitigen Spitze des Stifts ist eine Wendel 5 von 180 µm Durchmesser auf dem Schaft 4 angebracht. Im Entladungsgefäß 2 ist eine Metallhalogenidfüllung eingefüllt. Die Enden 6 des Entladungsgefäßes sind mittels Kapillaren 7 verschlossen, die eine zweigeteilte Durchführung 8, 9 eng umschließen, bestehend aus einem inneren Anschlussteil 8 und einem äußeren Endstück 9. Das Endstück 9 ist ein Niobstift.
  • Fig. 2 zeigt im Detail ein Ende des Entladungsgefäßes 2. Das Endstück 9 ist mittels Glaslot 10 in der Kapillare 7 abgedichtet ist. Das Anschlussteil 8 besteht aus Molybdän. Es ist ein Stift (verdeckt), der von einer Wicklung 11 aus Molybdän umhüllt ist. Der Durchmesser des Anschlussteils 8 ist erheblich größer als der des als Schaft fungierenden Kernstifts 4 der Elektrode. Die auf dem Schaft befindliche als Elektrodenkopf dienende Wendel 5 ist über eine Unterbrechung 12, die eine oder mehrere Windungen umfasst, mit der Wicklung 11 verbunden. Die Anzahl der Windungen beträgt bevorzugt ein bis drei.
  • Fig. 3 zeigt schematisch ein anderes Ausführungsbeispiel eines Elektrodensystems 13 für die Lampe der Figur 1 im Detail. Es besteht aus einem durchgehenden Stift 4, der gleichzeitig die Aufgabe des Schafts und des Anschlussteils wahrnimmt. Am entladungsseitigen Ende ist eine Wendel 5 aufgebracht, die etwa 6 Windungen eines Drahtes umfasst und bündig abgeschnitten ist. Am durchführungsseitigen Ende ist eine Wicklung 11 desselben Drahtes, der aus Wolfram besteht, aufgebracht. Sie umfasst etwa 30 Windungen. Wendel 5 und Wicklung 11 sind integral gefertigt und über eine Unterbrechung 12, die eine Windung umfasst, verbunden. Der Abstand zwischen Wendel und Wicklung entspricht etwa dem Dreifachen der Länge der Wendel 5.
  • Allgemein gilt, dass der Abstand zwischen Wendel und Wicklung bevorzugt mit der Wattage steigt.
  • In Figur 4 ist das Elektrodensystem 13 ähnlich wie in Figur 3 aufgebaut. Jedoch sind Wendel 5 und Wicklung 11 nicht integral, sondern separat. Die Wicklung 11 ist aus Molybdän, da dieses sich am besten zur Anpassung an den thermischen Ausdehnungskoeffizienten der Keramik der Kapillare 7 eignet. Derartige Elektrodensysteme dürfen allerdings wegen des relativ niedrigen Schmelzpunkts von Molybdän nicht allzu stark belastet werden. Anders ausgedrückt sind diese Systeme für Leistungen bis 100 W gut geeignet, darüber aber nur bedingt. Andere geeignete Materialien für das Elektrodensystem sind Wolfram, Tantal und Rhenium, allein oder in Kombination. Ggf. dient ein Material als Beschichtung auf dem andern. Der Drahtdurchmesser der Wicklung 11 ist deutlich kleiner als der der Wendel 5, um das Totvolumen möglichst klein zu halten. Wendel und Wicklung sind über einen Schweißpunkt S am Ende der Unterbrechung miteinander verbunden.
  • Das Elektrodensystem 13 ist dadurch vervollständigt, dass an das Anschlussteil 8 noch das Endstück 9 der Durchführung aus Niob mit deutlich größerem Durchmesser angeschweißt ist. Der Außendurchmesser der Wicklung und der Durchmesser des Niobstifts sind etwa gleich groß.
  • In einer bevorzugten Ausführungsform besteht die Lösung des Problems der thermischen Anpassung besteht darin, die Wicklung aus einer geeigneten Kombination von Materialien zu fertigen. Dies gilt insbesondere für hochbelastete Lampen. In Figur 5 ist ein Elektrodensystem 13 im Ausschnitt gezeigt, bei dem das Problem der Anpassung des thermischen Ausdehnungskoeffizienten gegenüber dem Material der Kapillare gelöst wird, indem auf die eigentliche Wicklung 11, die aus Wolfram besteht und die wie in Figur 3 integral mit der Wendel ist, ein zweites Gewickel 26 aufgetragen wird, das aus Molybdän besteht. Das Gewickel 14 ist in aller Regel wegen der Minimierung des Totvolumens aus dünnerem Draht, in der Regel 20 bis 50 % dünner, gefertigt.
  • In Figur 6 ist ein Teil eines Elektrodensystems gezeigt, das ein Standard-Bauteil als Frontstück 20 am der Entladung ausgesetzten Ende des Elektrodensystems verwendet. Es besteht aus einem Kemdraht 21, der den Schaft und den daran anschließenden ersten Abschnitt des Anschlussteils bildet. Die Wendel 22 ist am ersten Ende des Schafts montiert, und zwar insbesondere so, dass die Wendel 22 bündig mit dem Schaft abschließt. Die Wicklung 23, die die gleiche Länge wie die Wendel 22 besitzt, ist am zweiten Ende des Schafts ebenfalls bündig montiert, wobei eine Unterbrechung 24 dazwischen angeordnet ist. Aufgrund der gleichen Länge von Wendel 22 und Wicklung 23 ist das Bauteil symmetrisch, was die Verwendung in der Fertigung enorm vereinfacht, weil aufgrund der Symmetrie nicht auf die Ausrichtung des Bauteils beim Einbau geachtet werden muss. In anderen Worten sind Wendel und Wicklung hier als gleichartige Teile konzipiert, die gegeneinander ausgetauscht werden können.
  • In Figur 7 ist gezeigt, wie das Frontstück 20 an weitere Komponenten der Durchführung angesetzt wird. Dabei wird das Frontstück 20 mit einem Mittelteil oder Zwischenstück 25 aus Cermet, das mit einer separaten Wicklung 26 umhüllt ist, verschweißt. Daran angesetzt ist das Endstück 27 aus Niob, ebenfalls über Schweißung. Die klassischen Grenzen zwischen Elektrode und Durchführung sind also zugunsten konstruktiver Vorteile aufgehoben.
  • Der besondere Vorteil dieser Anordnung ist, dass hier der Außendurchmesser der Wicklung 23 und des separaten Gewickels 26 des Mittelteils 25 nicht gleich groß sein müssen, da das Frontstück 20 bezüglich Geometrie und Material auf die Bedürfnisse der Wendel 22 optimiert werden kann, während das Mittelteil 25 auf eine Hüll- und Abdichtwirkung in der Kapillare hin optimiert werden kann.
  • In Figur 8a und 8b ist ein Elektrodensystem 30 gezeigt, bei dem die Vorteile eines fixierten Abstands zwischen Wendel 35 und Wicklung 39 demonstriert sind. Das Frontstück 31 ist neuartig gemäß Figur 8a gestaltet. Dagegen können Anschlussteil 32 und Endstück 33 konventionell ausgebildet sein, also beispielsweise, indem ein Molybdän-Gewickel 39 auf einem Molybdän-Stift 34a (gestrichelt) aufgebracht ist und mit einem Endstück 33, einem Stift aus Niob, verschweißt ist. Hier ist ein Frontstück 31 verwendet, das gemäß Fig. 8a aus einem Schaft 34 aus Wolfram besteht, auf dem eine Wendel 35 aus Wolfram aufgebracht ist. Zusätzlich ist jedoch noch eine Unterbrechung 36 auf den Schaft 34 gewickelt, die sich bis zum rückwärtigen Ende 37 des Schafts erstreckt.
  • Gemäß Figur 8b kann dieses Frontstück 31 mit dem konventionellen Anschlussteil 32 verschweißt werden. Der stark schematisiert dargestellte Schweiß-Verbindungspunkt 38 verbindet nicht nur die Kernstifte 34 und 34a, sondern auch die Unterbrechung 36 mit der Wicklung 39. Auch hier können Geometrie und Materialien aufgrund der Entkopplung zwischen Frontstück und Mittelteil auf die jeweiligen spezifischen Anforderungen hin optimiert werden.
  • In Figur 9 ist ein Elektrodensystem 13 gezeigt, bei dem die Baueinheit einen Kernstift 4 als Schaft und integrales Anschlussteil besitzt. Während die Wendel 5 wie üblich am entladungsseitigen Ende des Schafts 4 sitzt, ist die Wicklung 11 länger als das darin verborgene Anschlussteil 4', so dass in den Hohlraum 15 am rückseitigen Ende des Anschlussteils das Endstück eingeschoben und dann gecrimpt werden kann. Damit kann auf einen Schweißvorgang verzichtet werden.
  • In Figur 10 ist eine Alternative zu Figur 9 gezeigt, bei der als einziger Unterschied am rückwärtigen Ende des Anschlussteils 4' eine zusätzliche Unterbrechung 16 angesetzt ist, und zwar ohne Kernstift. In diesem Ausführungsbeispiel wird das Endstück in den Hohlraum 15 eingesetzt und von Unterbrechung 16 gecrimpt.
  • In Figur 11 ist ein Elektrodensystem 13 gezeigt mit einem dreiteiligen Design: ein unsymmetrisches Frontstück 17 mit durchgehendem Kernstift 4, der den Schaft und den ersten Teil des Anschlussteils bildet. Darauf sitzt eine kurze Wendel 18 und eine lange Wicklung 19. Daran ist ein Cermetstift 28 mit umgebenden Molybdängewickel angeschweißt, an dieses wiederum ist ein Endstück 9 angeschweißt. Der Schweißpunkt ist jeweils mit 38 bezeichnet.
  • In Figur 12 ist ein Frontstück 17 gezeigt, bei dem die Unterbrechung 40 zwei Windungen lang ist. Das Verhältnis zwischen Außendurchmesser der Wendel 14 und Außendurchmesser der Wicklung 29 ist hier 1:3. In die Wicklung kann ein geeignet dimensioniertes Mittelstück eingepasst werden.
  • Ein konkretes Beispiel einer Bemaßung ist eine 70 W-Lampe, bei der der Schaft 21 einen Durchmesser von 250 µm hat und der darauf gewickelte Draht für Wendel und Wicklung einen Durchmesser von 150 µm besitzt. Ein daraus gefertigtes symmetrisches Frontstück (siehe Figur 6 und 7) hat eine Länge der Wendel 22 von 1,1 mm, eine Länge der Unterbrechung 24 (1 Windung) von 1,8 mm und eine Länge der Wicklung 23 von wieder 1,1 mm. Ein daran angesetztes Mittelteil 25, das mit Molybdändraht 26 umwickelt ist, hat eine Länge von 8,5 mm mit einem Kernstift von 400 µm Durchmesser und einem Wickeldraht von 140 µm Durchmesser. Ein daran angesetztes Endstück 27 aus Niob hat eine Länge von 16,8 mm und besteht aus einem Niobstift mit 730 µm Durchmesser.
  • Die Bemaßung einer 35 W-Lampe sieht vor: der Niobstift 27 hat einen Durchmesser von 610 µm; der Molybdän-Kernstift 25 des Mittelteils hat einen Durchmesser von 300 µm und ist umwickelt von einem Molybdändraht 26 mit 130 µm Durchmesser; der Kernstift 21, der als durchgängiges Teil für Elektrodenschaft und Anschlussteil wirkt, hat einen Durchmesser von 154 µm; auf ihn ist eine Wendel 22, Unterbrechung 24 und Wicklung 23 aus einem Draht von 122 µm Durchmesser gewickelt.
  • Die Bemaßung einer 150 W-Lampe sieht vor: der Niobstift 27 hat einen Durchmesser von 880 µm; der Molybdän-Kernstift 25 des Mittelteils hat einen Durchmesser von 540 µm und ist umwickelt von einem Molybdändraht 26 mit 150 µm Durchmesser; der Kernstift 21, der als durchgängiges Teil für Elektrodenschaft und Anschlussteil wirkt, hat einen Durchmesser von 500 µm; auf ihn ist eine Wendel 22, Unterbrechung 24 und Wicklung 23 aus einem Draht von 180 µm Durchmesser gewickelt.
  • Der Durchmesser DA des Anschlussteils kann zwischen 50 und 400 % des Durchmesser DS des Schafts betragen.
  • Generell können separate Wendel und Wicklung miteinander starr verbunden sein, indem entweder das Ende der Unterbrechung mit dem Beginn der Wicklung oder der Wendel verschweißt ist. dabei ist die Unterbrechung entweder an die Wicklung oder Wendel integral angesetzt. Alternativ kann die Unterbrechung auch separat von Wendel und Wicklung sein und benötigt dann zwei Schweißpunkte. Statt einer Schweißung oder Lötung etc. ist auch eine rein mechanisch starre Verbindung möglich, beispielsweise durch Einfädeln der Unterbrechung in das u.U. aufgebogene Ende der Wendel oder Wicklung ähnlich den für Halogenglühlampen bekannten Techniken.
  • Statt einer Wicklungsunterbrechung, die schraubenförmig gewunden ist, kann die Unterbrechung auch als gerades Distanzstück 41 ausgebildet sein, das beispielsweise über Schweißpunkte 42 zwischen Wendel 5 und Wicklung 11 eingesetzt ist, siehe Figur 13.
  • In Figur 14 ist ein Ausführungsbeispiel gezeigt, bei dem der Kerndraht 21 von einer Unterbrechung 24 umwunden ist, die teils ein unversehrter Drahtabschnitt 24u und teils ein Drahtabschnitt 24r ist, bei dem der Durchmesser auf etwa 60 % abgetragen ist, was mittels Laserbearbeitung am einfachsten realisiert werden kann. Auf diese Weise wird der Wärmefluss vom Kopf der Elektrode nach hinten unterdrückt. Eine Alternative ist in Figur 15 gezeigt, die im Prinzip die Darstellung der Figur 9 zeigt, jedoch mit dem Unterschied, dass hier die Unterbrechung gleichmäßig seitlich eingeschnürt ist (41) oder einseitig eingeschnürt ist (42). Beides kann wieder mittels Laser, aber auch mechanisch, hergestellt werden.
  • In Figur 16 ist gezeigt, dass ein endständiger Teil 45 der Wicklung 11, der also am entladungsfernen Ende sitzt, einen reduzierten Durchmesser aufweisen kann, um den Bereich der Wicklung, der mit Schmelzkeramik oder Glaslot 10 in Berührung kommt, zu optimieren; siehe zum besseren Verständnis Figur 2. Der Stift 4 und die Unterbrechung 12 sowie die Wendel 5 entsprechen dabei der in Figur 2 gezeigten Anordnung. Auch hier ist der Abtrag der Höhe im Teil 45 am besten mit dem Laser zu bewerkstelligen.

Claims (18)

  1. Elektrodensystem (13; 30) für eine Hochdruckentladungslampe (1) mit keramischem Entladungsgefäß, bestehend zumindest aus einer Elektrode, die einen stiftförmigen Schaft (4; 21; 34) besitzt mit einer auf den Schaft in der Nähe des entladungsseitigen freien Endes des Schaftes aufgebrachten Wendel (5; 18; 22; 35) und einem mit dem Schaft (4; 21; 34) verbundenen Anschlussteil (8; 32; 4), und wobei auf dem Anschlussteil eine umhüllende Wicklung (11; 19; 23; 29; 39) aufgebracht ist, dadurch gekennzeichnet, dass der Abstand zwischen Wendel (5; 18; 22; 35) und Wicklung (11; 19; 23; 29; 39) fixiert ist, indem Wendel (5; 18; 22; 35) und Wicklung (11; 19; 23; 29; 39) miteinander
    - entweder über ein gerades Distanzstück (41), das über Schweißpunkte (42) zwischen Wendel (22) und Wicklung (23) eingesetzt ist,
    - oder über eine schraubenförmig um den Schaft (4; 21; 34) gewundene Wicklungsunterbrechung (12; 24; 36; 40), die ein oder mehrere Windungen mit größerer Steigung als die Wendel (5; 18; 22; 35) umfasst,
    verbunden sind.
  2. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass der Schaft (4; 21; 34) einen durchgängig konstanten Durchmesser aufweist.
  3. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass der Durchmesser des Anschlussteils (8; 32; 4) 50 % bis 400 % des Durchmessers des Schafts (4; 21; 34) beträgt.
  4. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass das Anschlussteil (8; 32; 4), integral mit dem Schaft (4; 21; 34) verbunden ist.
  5. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass Wendel (5; 18; 22; 35) und Wicklung (11; 19; 23; 29) sowie die Wicklungsunterbrechung (12; 24; 36; 40) einstückig aus einem Draht gefertigt sind.
  6. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass das Anschlussteil (8; 32; 4) ein separates Teil ist.
  7. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass das Anschlussteil (8; 32; 4) eine integrale Verlängerung des Schaftes (4; 21; 34) ist.
  8. Elektrodensystem nach Anspruch 6, dadurch gekennzeichnet, dass zumindest der Schaft (4; 21; 34) aus hochschmelzendem, elektrisch leitendem Material, bevorzugt aus Wolfram oder Tantal allein oder überwiegend aus Wolfram oder Tantal besteht.
  9. Elektrodensystem nach Anspruch 6, dadurch gekennzeichnet, dass das Anschlussteil (8; 32; 4) allein aus einem der Materialien Molybdän, Niob, elektrisch leitendem Cermet oder überwiegend aus einem dieser Materialien oder aus einer Legierung von Mo oder Nb besteht.
  10. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass Wendel (5; 18; 22; 35) und Wicklung (11; 19; 23; 29; 39) aus demselben Material bestehen.
  11. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass Wendel (5; 18; 22; 35) und Wicklung (11; 19; 23; 29; 39) aus Molybdän und/oder Wolfram bestehen.
  12. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass Wendel (5; 18; 22; 35) und Wicklung (11; 19; 23; 29; 39) gleiche Steigung besitzen.
  13. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass das Elektrodensystem ein Frontstück (20) umfasst, bei dem Wendel und Wicklung symmetrisch zueinander sind, indem Wendel (22) und Wicklung (23) gleiche Länge besitzen.
  14. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass auf die Wicklung (11; 23) oder einen Teil davon mindestens eine weitere Wicklung (26) oder Umspinnung aufgebracht ist.
  15. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass das Anschlussteil (8; 32; 4), im wesentlichen denselben Durchmesser wie der Schaft (4; 21; 34) hat, so dass deren Durchmesser weniger als 30 % voneinander abweichen.
  16. Elektrodensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Durchmesser der Wicklungsunterbrechung (12; 24; 36; 40) lokal reduziert ist.
  17. Elektrodensystem nach Anspruch 1, dadurch gekennzeichnet, dass die Wicklung ((11; 19; 23; 29)) am entladungsfernen Ende einen reduzierten äußeren Durchmesser aufweist.
  18. Hochdruckentladungslampe mit mindestens einem Elektrodensystem (13; 30) nach Anspruch 1, wobei die Lampe ein Entladungsgefäß (2) mit zwei Enden (7) aufweist, wobei ein derartiges Elektrodensystem (13; 30) in eines oder in beide dieser Enden (7) des Entladungsgefäßes eingesetzt ist, wobei das Entladungsgefäß (2) aus Keramik gefertigt ist.
EP04802774A 2004-02-23 2004-11-19 Elektrodensystem für eine hochdruckentladungslampe Not-in-force EP1730766B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004008746 2004-02-23
DE102004012242A DE102004012242A1 (de) 2004-02-23 2004-03-12 Elektrodensystem für eine Hochdruckentladungslampe
PCT/DE2004/002561 WO2005083744A2 (de) 2004-02-23 2004-11-19 Elektrodensystem für eine hochdruckentladungslampe

Publications (2)

Publication Number Publication Date
EP1730766A2 EP1730766A2 (de) 2006-12-13
EP1730766B1 true EP1730766B1 (de) 2013-03-27

Family

ID=34888808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802774A Not-in-force EP1730766B1 (de) 2004-02-23 2004-11-19 Elektrodensystem für eine hochdruckentladungslampe

Country Status (7)

Country Link
US (1) US20050264213A1 (de)
EP (1) EP1730766B1 (de)
JP (1) JP4587078B2 (de)
KR (1) KR20060131868A (de)
CA (1) CA2497511A1 (de)
RU (1) RU2006133920A (de)
WO (1) WO2005083744A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241654A1 (en) * 2005-03-22 2007-10-18 Robert Cassidy Lamp filament design
US7615929B2 (en) * 2005-06-30 2009-11-10 General Electric Company Ceramic lamps and methods of making same
US20070035249A1 (en) * 2005-08-10 2007-02-15 Geza Cseh Lamp with inner capsule
DE202006002833U1 (de) * 2006-02-22 2006-05-04 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe mit keramischem Entladungsgefäß
DE102007046899B3 (de) * 2007-09-28 2009-02-12 W.C. Heraeus Gmbh Stromdurchführung durch Keramikbrenner in Halogen-Metalldampflampen
CA2721636C (en) * 2008-04-30 2013-12-31 Iwasaki Electric Co., Ltd. Electrode for ultra-high pressure mercury lamp and ultra-high pressure mercury lamp
US8089212B2 (en) * 2008-08-08 2012-01-03 General Electric Company Lower turn per inch (TPI) electrodes in ceramic metal halide (CMH) lamps
JP5397106B2 (ja) * 2009-09-09 2014-01-22 岩崎電気株式会社 電極及びその製造方法並びに高圧放電ランプ
WO2016140610A1 (en) * 2015-03-02 2016-09-09 Profoto Ab Flash tube providing a flat peak synchronized output

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH559970A5 (de) * 1972-05-12 1975-03-14 Egyesuelt Izzolampa
US4275329A (en) * 1978-12-29 1981-06-23 General Electric Company Electrode with overwind for miniature metal vapor lamp
JPS6247941A (ja) * 1985-08-28 1987-03-02 Toshiba Corp 小形高圧金属蒸気放電灯
US5357167A (en) * 1992-07-08 1994-10-18 General Electric Company High pressure discharge lamp with a thermally improved anode
EP0587238B1 (de) * 1992-09-08 2000-07-19 Koninklijke Philips Electronics N.V. Hochdruckentladungslampe
ES2150433T3 (es) * 1992-09-08 2000-12-01 Koninkl Philips Electronics Nv Lampara de descarga de alta presion.
JP3431078B2 (ja) * 1994-04-13 2003-07-28 コーニングレッカ フィリップス エレクトロニクス エヌ ヴィ 高圧メタルハライドランプ
JP3627367B2 (ja) * 1996-04-05 2005-03-09 日本電池株式会社 セラミック放電灯
DE19727430A1 (de) * 1997-06-27 1999-01-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe mit keramischem Entladungsgefäß
DE19808981A1 (de) * 1998-03-04 1999-09-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elektrode mit Wendelaufsatz
JP3275847B2 (ja) * 1998-09-22 2002-04-22 松下電器産業株式会社 高圧金属蒸気放電灯
DE10256389A1 (de) * 2002-12-02 2004-06-09 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Metallhalogenidlampe mit keramischem Entladungsgefäß

Also Published As

Publication number Publication date
JP2007522640A (ja) 2007-08-09
KR20060131868A (ko) 2006-12-20
CA2497511A1 (en) 2005-08-23
US20050264213A1 (en) 2005-12-01
WO2005083744A3 (de) 2006-02-16
JP4587078B2 (ja) 2010-11-24
EP1730766A2 (de) 2006-12-13
RU2006133920A (ru) 2008-03-27
WO2005083744A2 (de) 2005-09-09

Similar Documents

Publication Publication Date Title
DE69805390T2 (de) Metalldampfentladungslampe
EP1817790B1 (de) Hochdruckentladungslampe
EP0887841B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
EP0602529B1 (de) Hochdruckentladungslampe mit einem keramischen Entladungsgefäss
DE9422090U1 (de) Keramisches Entladungsgefäß
DE19812298A1 (de) Metall-Halogenlampe und Verfahren zur Herstellung derselben
EP2020018B1 (de) Hochdruckentladungslampe
EP1730766B1 (de) Elektrodensystem für eine hochdruckentladungslampe
DE9207816U1 (de) Hochdruckentladungslampe
DE3429105A1 (de) Metalldampfentladungslampe
DE69011145T2 (de) Einseitig gequetschte Metalldampfentladungslampe.
EP2338161B1 (de) Entladungslampe mit einer elektrode
DE2737931C2 (de) Endverschluß für eine Entladungslampe
EP1351278B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
DE20106002U1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
DE102004012242A1 (de) Elektrodensystem für eine Hochdruckentladungslampe
DE10159580B4 (de) Bogenentladungsröhre und Verfahren zu deren Herstellung
EP0591777A2 (de) Verfahren zur Herstellung einer einseitig gequetschten Hochdruckentladungslampe kleiner Leistung und Hochdruckentladungslampen
EP1434252A2 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss, Elektrodensystem für eine solche Lampe und Herstellungsverfahren eines solchen Systems
DE10200009A1 (de) Entladungslampe
EP1372184A2 (de) Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe
DE69707350T2 (de) Elektrodenanordnung für Natrium-Hochdruckentladungslampe und deren Herstellungsverfahren
DE60022428T2 (de) Elektrode für eine Metall-Halogenlampe
DE69408787T2 (de) Entladungslampe mit einem bimetallischen Schalter versehen und zu einer Lampe passender bimetallischen Schalter
DE9202638U1 (de) Niederdruckentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060721

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070912

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 603892

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014087

Country of ref document: DE

Effective date: 20130523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130628

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014087

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH, 81543 MUENCHEN, DE

Effective date: 20130327

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014087

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014087

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014087

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH, 81543 MUENCHEN, DE

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130727

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E018064

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

26N No opposition filed

Effective date: 20140103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014087

Country of ref document: DE

Effective date: 20140103

BERE Be: lapsed

Owner name: OSRAM G.M.B.H.

Effective date: 20131130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131119

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 603892

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014087

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 80807 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200130

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004014087

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601