EP1356004A1 - Zweikomponenten-polyurethan-bindemittel als haftvermittler - Google Patents

Zweikomponenten-polyurethan-bindemittel als haftvermittler

Info

Publication number
EP1356004A1
EP1356004A1 EP02708272A EP02708272A EP1356004A1 EP 1356004 A1 EP1356004 A1 EP 1356004A1 EP 02708272 A EP02708272 A EP 02708272A EP 02708272 A EP02708272 A EP 02708272A EP 1356004 A1 EP1356004 A1 EP 1356004A1
Authority
EP
European Patent Office
Prior art keywords
use according
group
groups
organic
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02708272A
Other languages
English (en)
French (fr)
Inventor
Steffen Hofacker
Markus Mechtel
Wieland Hovestadt
Claus Kobusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP1356004A1 publication Critical patent/EP1356004A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/8083Masked polyisocyanates masked with compounds having only one group containing active hydrogen with compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/809Masked polyisocyanates masked with compounds having only one group containing active hydrogen with compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6644Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the invention relates to the use of solvent-containing two-component polyurethane binders as adhesive agents which are applied to a substrate and to which an inorganic or organic coating or an inorganic-organic hydride coating is subsequently applied.
  • Plastics are extremely versatile materials with a number of desirable properties.
  • one disadvantage of these materials is, for example
  • One method of protecting the surface of plastics from such damage is to apply a suitable coating to the plastic
  • Substrate The composition of the coating depends primarily on whether the surface is to be protected from mechanical damage, radiation, the effects of chemicals or other environmental influences (e.g. pollution, etc.).
  • Transparent plastics such as polycarbonate
  • numerous coating materials are known which in particular protect polycarbonates effectively from mechanical damage.
  • These are essentially organically modified, inorganic coatings, which are mostly condensation or UV-curing. Examples can be found in J. Sol-Gel Sei. Techn. 1998, 11, 153-159, Abstr. 23 rd Annual Conference in Organic Coatings, 1997, 271-279, EP-A 0 263
  • adhesion promoters react both with the plastic surface and with the coating and (covalent) chemical bonds are formed.
  • polycarbonates e.g. Aminosilanes, such as aminopropyltrialkoxysilanes (e.g. in DE-A 19 858 998).
  • the amino group reacts with the polycarbonate surface and the alkoxysilyl residues with the organically modified, silicon-containing inorganic coating.
  • these N-H functional new adhesion promoters have the disadvantage that the polycarbonate is considerably damaged by the basic nitrogen function, which is e.g. visually noticeable by a clear yellowing.
  • Another disadvantage is that the adhesion of the inorganic-organic hybrid coatings rapidly decreases when exposed to water, especially warm water. For example, the film becomes cloudy, bubbles form and finally complete
  • the object of the present invention was therefore to provide an adhesion promoter (primer) for silicon-containing coatings on polymeric substrates, which has good adhesion between the organically modified, silicon-containing inorganic
  • Coating and the surface of the polymeric substrate enables and leads neither to optical damage nor to a lability to water.
  • solvent-containing two-component polyurethane binders which contain a hardener component consisting of an addition product of a polyisocyanate with an alkoxysilane and a paint resin reactive towards isocyanate groups can be used as an adhesion promoter.
  • These solvent-based 2-component systems represent an ideal combination of a very high level of adhesion between, for example, a polymeric substrate and an inorganic coating and very good weathering stability.
  • Addition products of, for example, polyisocyanates with aminosilanes are already state of the art.
  • Such moisture-curing, alkoxysilane-terminated polyurethanes are used in flexible, sealing and adhesive compositions which cure at room temperature (for example US Pat. No. 5,700,868, US Pat. No. 4,625,012, US Pat. No. 4,474,933, US Pat. No. 3,979,344, DE-A 4234) 325, DE-A 2 155 259).
  • US Pat. No. 5,854,338 discloses a binder combination for water-dilutable two-component polyurethane coatings, which consists of an aqueous hydroxy- and / or amino-functional acrylate dispersion and a hardener component which has isocyanate and alkoxysilyl groups in a certain ratio. The alkoxysilyl groups are reacted by an unmodified
  • Polyisocyanates with corresponding amino-functional alkoxysilyl compounds are available.
  • alkoxysilyl compounds By incorporating the alkoxysilyl compounds into the hardener component, two-component polyurethane coatings with an improved property profile with regard to hardness, acid resistance or adhesion are available.
  • the present invention relates to the use of solvent-containing two-component polyurethane binders containing
  • Q is a group reactive towards isocyanate groups, preferably OH, SH or NHR, where R represents a -C ⁇ -A ⁇ kyl distr or C 6 -C 2 o- aryl group or for -Z-SiX a Y 3 - a ,
  • Z is a linear or branched -C ⁇ -alkylene group, preferably a linear or branched C i -C -alkylene group,
  • X is a hydrolyzable group, preferably C 1 -C 4 alkoxy
  • Y are the same or different C 1 -C 4 alkyl groups and
  • a is an integer from 1 to 3
  • the ratio of the groups of the coating resin (D) reactive towards isocyanate groups to the isocyanate groups of the curing agent (A) is between 0.5: 1 to 2: 1, preferably between 0.7: 1 to 1.3: 1.
  • the polyisocyanate (B) contained in the hardener component (A) preferably has an average NCO functionality of 2.3 to 4.5 and preferably an isocyanate Group content from 11.0 to 24.0 wt .-%.
  • the monomeric diisocyanate content is less than 1% by weight, preferably less than 0.5% by weight.
  • the polyisocyanate (B) consists of at least one organic polyisocyanate with aliphatic, cycloaliphatic, araliphatic and / or aromatically bound isocyanate groups.
  • the polyisocyanates or polyisocyanate mixtures (B) are any polyisocyanates made from at least two diisocyanates and containing uretdione, isocyanurate, allophanate, biuret, biuret, hni, made by modifying simple ahphatic, cycloahphatic, araliphatic and / or aromatic diisocyanates - Nooxadiazinedione and / or oxadiazinetrione structure, as described for example in J Prakt. Chem.
  • Suitable diisocyanates for the preparation of such polyisocyanates are any diisocyanates of the molecular weight range 140 to accessible by phosgenation or by phosgene-free processes, for example by thermal urethane cleavage
  • isocyanate groups such as.
  • the starting components (B) are preferably polyisocyanates or polyisocyanate mixtures of the type mentioned with exclusively aliphatic and / or cycloaliphatic isocyanate groups.
  • Very particularly preferred starting components (B) are polyisocyanates or polyisocyanate mixtures with a biuret or isocyanurate structure based on HDI, EPDI and 7'-or 4,4'-diisocyanatodicyclohexylmethane.
  • Groups of the general formula (I) are, for example, hydroxymethyltri (m) ethoxysilane and alkoxysilyl compounds with secondary amino groups or mercapto groups.
  • secondary aminoalkoxysilanes are N-methyl-3-aminopropyltri (m) ethoxy silane, N-phenyl-3-aminopropyltrimethoxysilane, bis (gamma-tri-methoxysilylpropyl) amine, N-butyl-3-aminopropyltri (m) ethoxysilane , N-ethyl-3-aminoisobutyltri (m) ethoxysilane or N-ethyl-3-aminoisobutylmethyldi (m) ethoxysilane as well as the analogous C 2 -C 4 alkoxysilanes.
  • R 2 and R 3 represent the same or different (cyclo) alkyl radicals having 1 to 8 carbon atoms
  • Preferred compounds of the general formula (II) are dimethyl maleate and diethyl maleate.
  • alkoxysilanes (C) with a functional group of the general formula (I) which is reactive towards isocyanate groups are 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane.
  • Preferred alkoxysilanes (C) are N-butyl-3-aminopropyl-tri (m) ethoxysilane and 3-mercapto-propyltri- (m) ethoxysilane.
  • alkoxysilanes (C) of the general formula (I) mentioned can of course also be used to prepare the hardener (A) used in the use according to the invention.
  • mixtures of alkoxysilanes (C) which contain the same functional group Q which is reactive towards isocyanate groups but different hydrolyzable groups X are possible.
  • the polyisocyanate component (B) is modified with alkoxysilanes (C) in a molar NCO / Q ratio of 1: 0.01 to 0.75, preferably in a molar NCO / Q ratio of 1: 0.05 to 0. 4, where Q has the meaning given in the general formula (I).
  • Polyhydroxyl compounds such as, for example, trifunctional and / or tetrafunctional alcohols and / or the like, are suitable as coating resins (D) which are reactive toward isocyanate groups Suitable polyether polyols, polyester polyols, polycarbonate polyols and / or polyacrylate polyols.
  • lacquer binders or lacquer binder components with groups that are reactive toward isocyanates as hydroxyl groups are also suitable as reactants (D) for the hardener (A) used in the use according to the invention.
  • reactants (D) include, for example, polyurethanes or polyureas, which can be crosslinked with polyisocyanates due to the active hydrogen atoms present in the urethane or urea groups.
  • Suitable reactants (D) are, for example, polyamines whose amino groups are blocked, such as e.g.
  • Preferred coating resins (D) are polyacrylate polyols and polyester polyols.
  • the polyisocyanate and / or binder components are generally used in a form diluted with solvents.
  • solvents are, for example, butyl acetate, ethyl acetate, 1-methoxy-2-propyl acetate, toluene, 2-butanone, xylene, 1,4-dioxane, diacetone alcohol, N-methylpyrrolidone,
  • Dimethylacetamide Dimethylfor amid, Dimethylsulfoxid or any mixture of such solvents.
  • Preferred solvents are butyl acetate, ethyl acetate and diaceto alcohol.
  • the solvent-containing 2-component PU binder used according to the invention can optionally be added as further components, the auxiliaries customary in coating technology.
  • auxiliaries are all additives known for the production of lacquers and paints, such as, for example, inorganic or organic pigments, light stabilizers, lacquer additives, such as dispersing, leveling, thickening, defoaming and other auxiliaries, adhesives, fungicides, bactericides, stabilizers. catalysts or inhibitors and catalysts.
  • auxiliaries are all additives known for the production of lacquers and paints, such as, for example, inorganic or organic pigments, light stabilizers, lacquer additives, such as dispersing, leveling, thickening, defoaming and other auxiliaries, adhesives, fungicides, bactericides, stabilizers. catalysts or inhibitors and catalysts.
  • several of the auxiliaries mentioned can also be added.
  • the 2-component PUR binder used according to the invention is applied to a substrate by the application methods customary in coating technology, such as Spraying, flooding, diving, spinning or knife coating.
  • polymeric substrates such as e.g. ABS, polyamide or polyurethane, metals, which may optionally have an organic coating, or also glass.
  • the 2-component PUR binder used according to the invention as an adhesion promoter is particularly suitable for transparent polymeric substrates, for example for thermoplastic polymers such as polycarbonates, polymethyl methacrylates, polystyrene, polyvinylcyclohexane and its copolymers or polyvinyl chloride or their blends.
  • thermoplastic polymers such as polycarbonates, polymethyl methacrylates, polystyrene, polyvinylcyclohexane and its copolymers or polyvinyl chloride or their blends.
  • inorganic coatings such as, for example, purely inorganic paint systems or also organically modified inorganic paint systems or else layers deposited by a plasma process (for example Al 2 O 3 , ⁇ O 2 , SiO x ,
  • TiC etc. can be applied.
  • Such monomer units are, for example, tetraalkoxysilanes such as tetra (m) ethoxysilane or metal alkoxides such as aluminum, titanium or zirconium alkoxide.
  • inorganic coating systems can of course also contain inorganic filler articles, for example SiO 2 , Al 2 O 3 or A1OOH.
  • Organically modified inorganic coating systems include e.g. to understand such coatings produced by the sol-gel process, which are built up from monomer units, which ask organic groups, which remain as constituents in the forming network. These organic groups can be functional or non-functional.
  • Monomer building blocks with non-functional organic groups are e.g. alkylalkoxysilanes, such as, for example, methyltri (m) ethoxysilane, arylalkoxysilanes or phenyltri (m) ethoxysilane, and also carbosilane compounds, such as those e.g. in US-A 5 679 755, US-A 5 677410, US-A 6 005 131, US-A 5 880305 or in EP-A 947 520.
  • alkylalkoxysilanes such as, for example, methyltri (m) ethoxysilane, arylalkoxysilanes or phenyltri (m) ethoxysilane
  • carbosilane compounds such as those e.g. in US-A 5 679 755, US-A 5 677410, US-A 6 005 131, US-A 5 880305 or in EP-A 947 520.
  • Monomer building blocks with functional organic groups are e.g. alkoxy silanes containing vinyl, acrylic or else methacrylic groups, such as vinyl tri (m) ethoxysilane, acryloxypropyl tri (m) ethoxysilane or methacryloxypropyl tri (m) ethoxysilane, and also epoxy-functional alkoxysilanes, for example glycidyloxypropyl tri (m) ethoxysilane, or also NCO-functional alkoxysilanes such as
  • organic groups are also to be understood as meaning those which do not necessarily serve for the establishment of an organic crosslink, such as, for example, halogens, acid groups, alcohol or thiol groups.
  • Suitable organic coatings are, for example, polyurethane or melamine resin crosslinking systems or alkyd resin coating systems.
  • inorganic-organic hybrid coatings are also preferred. These are characterized by the fact that they have both an organic polymer system and an inorganic polymer system which are present side by side or linked.
  • Possible inorganic-organic hybrid coatings are, for example, those in which an organic polymer matrix is modified by adding or incorporating inorganic building blocks.
  • Inorganic building blocks can be, for example, silica sol dispersions in water or in organic solvents and / or hydrolyzates of (organofunctional) alkoxysilanes.
  • a particularly high abrasion resistance and scratch resistance as well as a very good resistance to solvents are achieved if a coating system based on organofunctional alkoxysilanes and / or siloxanes is applied to the polymeric substrate coated with the adhesion promoter used according to the invention.
  • a well-known method for producing such paint binders is the sol-gel process, as described by CJ Blinker and W. Scherer in “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York (1990) is described in detail. Suitable sol-gel coatings with high mechanical resistance are state of the art and are described, for example, in US Pat. No. 4,624,870, US Pat. No. 3,986,997, US Pat. No.
  • Polymer substrates can thus be effectively protected against mechanical damage and / or against environmental influences such as UV light and / or contamination.
  • a polycarbonate sheet which is coated with the 2-component PU binder used according to the invention as an adhesion promoter and an inorganic coating which has been organically modified and prepared in accordance with the teaching of EP-A 947 520 (example 14) can be effective against mechanical damage and against radiation damage to be protected.
  • the protective effect remains intact even after intensive weathering.
  • a polycarbonate plate coated with the described coating structure can be exposed to boiling demineralized water for several days without a loss of adhesion or an optical change being discernible. After 1000 hours of weathering in a UV-A test with an intensity of 1.35 W / m 2 (ASTM G 154-97, cycle 4), no optical change can be observed on the substrate, on the primer or on the inorganic coating.
  • the 2-component PU binder used according to the invention can be dried and hardened between the ambient temperature and the softening temperature of the polymeric substrate.
  • the curing temperature range is preferably between 20 ° C and 130 ° C (Makrolon ® , Bayer AG, Leverkusen, or Lexan ® , GE Plastics, USA) or 20 to 160 ° C for Apec HT ® (Bayer AG, Leverkusen) with a curing time between 1 minute and 60 minutes.
  • the curing temperature range for Makrolon® is particularly preferably between 100 ° C and 130 ° C and for Apec HT® between 100 ° C and 160 ° C with a curing time between 30 and 60 minutes.
  • the application and curing conditions of the inorganic coatings depend on the respective binder system.
  • PUR binders and the organically modified, inorganic coating can be applied and hardened one after the other. Wet-on-wet application is also possible, followed by a single hardening in the above-mentioned temperature and time interval. For special applications, curing at ambient temperature may also be sufficient.
  • N- (3-Trimethoxysilylpropyl) aspartic acid diethyl ester is produced, according to the teaching of US Pat. No. 5,364,955, Example 5, by reacting equimolar amounts of 3-aminopropyltrimethoxysilane with maleic acid diethyl ester.
  • Example 2 The same procedure as in Example 2. Table 1 shows the polyisocyanate and alkoxysilane used in the amounts used. The resulting NCO content of the addition product is given in%.
  • IPDI isocyanurate
  • Alkoxysilane 1 N- (3-trimethoxysilylpropyl) aspartic acid diethyl ester from Example 1
  • Alkoxysilane 2 N-butyl-3-amino ⁇ ropyltrimethoxysilane, (Dynasilan® 1189, Degussa-Hüls AG)
  • Alkoxysilane 3 bis (trimethoxysilylpropyl) amine, (Silquest A-l 170, Fa. Wite)
  • Alkoxysilane 4 N-methyl-3-aminopropyltrimethoxysilane, (Dynasilan® 1110, from Degussa-Hüls AG)
  • Alkoxysilane 5 3-mercaptopropyltrimethoxysilane, (Dynasilan® NTNS, from Degussa-Hüls AG) Table 1: Examples 3 to 20
  • Suitable polyols and auxiliaries for the 2-component PU binders used according to the invention are listed in Table 2.
  • Components B1 to B5 are produced by combining the individual components listed in Table 2 in any order and then mixing them at room temperature.
  • Polyol I trimethylol propane
  • Polyol 2 Desmophen® 670 (Bayer AG, Leverkusen), which contains a commercially available, weakly branched, hydroxyl-containing polyester 80% in BA with a hydroxyl content of 3.5%, an acid number of 2 mg KOH / g and a viscosity of 2800 mPas (23 ° C)
  • Polyol 3 Desmophen® 800 (Bayer AG, Leverkusen), which is a commercially available, highly branched, hydroxyl-containing polyester, solvent-free with a hydroxyl content of 8.6%, an acid number of 4 mg KOH / g and a viscosity of 850 mPas ( 23 ° C, 70% MPA)
  • Polyol 4 Desmophen® VPLS 2249/1 (Bayer AG, Leverkusen), which is a commercially available, branched, short-chain, solvent-free polyester with a hydroxyl content of 16%, an acid number of 2 mg KOH / g and a viscosity of 1900 mPas (23 ° C) represents.
  • a silicon-modified polyisocyanate from Table 1 is combined with one of the polyol mixtures B 1 to B 5 from Table 2 and mixed in an NCO: OH ratio of 1.2: 1.
  • the 2-component PUR binder used according to the invention is ready for application.
  • Corresponding combinations of the polyol mixture B1 to B5 and the silicon-modified polyisocyanates from Table 1 are possible.
  • Table 3 contains, by way of example, the production of 2-component PU binders used according to the invention for all possible combinations resulting from Table 1 and Table 2.
  • the 2-component PU binder used according to the invention as an adhesion promoter is coated on a steel sheet coated with a commercially available adhesion promoter (Sigma Universal Primer® 7417, Sigmakalan, NL) and epoxy corrosion protection lacquer (Sigma Multiguard®, Fa. Sigakalan, NL) Example 28 applied in a dry layer thickness of about 15 microns and dried for 24 hours at room temperature.
  • a commercially available adhesion promoter Sigma Universal Primer® 7417, Sigmakalan, NL
  • epoxy corrosion protection lacquer Sigma Multiguard®, Fa. Sigakalan, NL
  • An organically modified inorganic lacquer which is composed of 64.6% by weight of an ethoxy-functional siloxane, is produced on the adhesion promoter. according to Example 2 in WO 98/52992, 12.9% by weight of a 50% dispersion of a polycondensation product of tetraethoxysilane in n-butanol, 15.5% by weight of an ⁇ , ⁇ -hydroxy-functional polydimethylsiloxane with an OH content of approx. 6%, 1.3% by weight of 3-mercaptopropyltriethoxysilane and 5.7% by weight of an approx. 2% solution of para-toluenesulfonic acid in n-butanol, applied in a dry layer thickness of approx. 40 ⁇ m and also dried for 24 hours at room temperature.
  • the resulting protective coating shows very good adhesion to the polymeric substrate. It is weather-resistant and provides effective protection against dirt.
  • the coating is not wetted by a permanent marker from Edding (Edding ® 850). The marker can be removed 24 hours after application with a cloth without the use of cleaning agents.
  • Example 30 The same procedure as in Example 30. However, the 2-component PU binder from Example 23 used as an adhesion promoter according to the invention in Table 3 was spun on in a layer thickness of approximately 0.2 ⁇ m Comparative example 1
  • Ratio of 1.2 1 100 g of polyol component B 2 from Table 2 with 5.1 g of a 75% solution in butyl acetate of an HDI biuret with an average ⁇ CO content of 16.5% and a ⁇ CO functionality of 3 , 8 and a viscosity of 160 mPas (23 ° C) and spun in a layer thickness of approx. 0.2 ⁇ m.
  • Table 4 shows that the 2-component PU binder used according to the invention as an adhesion promoter leads to good adhesion and excellent weathering stability of the organically modified, inorganic coatings on polymers Substrates such as polycarbonate, polymethyl methacrylate or polyurethane leads. 3-aminopropyltrimethoxysilane, a primer for polycarbonate known from the prior art, leads to complete detachment when stored in demineralized water. Adhesion promoters based on polyisocyanates not modified according to the invention either do not have sufficient basic adhesion or show a significantly lower resistance to weathering / water storage than the adhesion promoters according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die Erfindung betrifft die Verwendung lösemittelhaltiger Zweikomponenten-Polyurethanbindemittel, welche eine Härterkomponente, bestehend aus einem Additionsprodukt eines Polyisocyanates mit einem Alkoxysilan und einem gegenüber Isocyantgruppen reaktiven Lackharz enthalten, als Haftvermittler.

Description

Z eikomponenten-Polvurethan-Bindemittel als Haftvermittler
Die Erfindung betrifft die Verwendung von lösemittelhaltigen Zweikomponenten- Polyurethanbindemitteln als Haf vermittler, die auf ein Substrat aufgetragen werden und auf die anschließend eine anorganische oder organische Beschichtung oder eine anorganisch-organische Hydridbeschichtung appliziert wird.
Kunststoffe sind äußerst vielseitige Werkstoffe mit einer Reihe von wünschenswer- ten Eigenschaften. Ein Nachteil dieser Werkstoffe ist jedoch beispielsweise ihre
Empfindlichkeit gegenüber mechanischer Beschädigung an der Oberfläche oder gegenüber Chemikalien, wie Lösemittel.
Eine Methode, die Oberfläche von Kunststoffen vor solchen Beschädigungen zu schützen, besteht im Auftragen einer geeigneten Beschichtung auf das Kunststoff-
Substrat. Die Zusammensetzung der Beschichtung ist in erster Linie davon abhängig, ob die Oberfläche eher vor mechanischer Beschädigung, Strahlung, der Einwirkung von Chemikalien oder weiteren Umwelteinflüssen (z.B. Verschmutzung, etc.) geschützt werden soll. Transparente Kunststoffe, wie z.B. Polycarbonat, sind gegenüber einer oberflächlichen mechanischen Beschädigung besonders empfindlich. Von daher sind zahlreiche Beschichtungsmaterialien bekannt, die insbesondere Polycarbonate effektiv vor mechanischer Beschädigung schützen. Dies sind im wesentlichen organisch modifizierte, anorganische Beschichtungen, die meist kondensations- oder UV- härtend sind. Beispiele finden sich in J. Sol-Gel Sei. Techn. 1998, 11, 153-159, Abstr. 23rd, Annual Conference in Organic Coatings, 1997, 271-279, EP-A 0 263
428, DE-A 29 14427 und DE -A43 38 361.
Der Auftrag von diesen anorganischen Beschichtungen ist jedoch oft mit dem Problem verbunden, dass die Haftung zwischen Kunststoff und Beschichtung unzu- reichend ist. Um dennoch eine ausreichende Haftung zu erhalten, sind im Stand der
Technik bereits eine Reihe von Methoden beschrieben. Als physikalische Methoden sind beispielsweise die Plasma- oder Coronabehandlung zu nennen, als chemische Methode kommt z.B. die Verwendung eines Haftvermittlers (Primer) in Frage.
Viele Haftvermittler reagieren sowohl mit der Kunststoffoberfläche als auch mit der Beschichtung und es werden (kovalente) chemische Bindungen gebildet. Im Falle von Polycarbonaten als Substrat werden z.B. Aminosilane, wie Aminopropyltri- alkoxysilane (z.B. in der DE-A 19 858 998) eingesetzt. Dabei reagiert die Ami- nogruppe mit der Polycarbonatoberfläche und die Alkoxysilylreste mit der organisch modifizierten, siliziumhaltigen anorganischen Beschichtung. Diese N-H-funktio- neuen Haftvermittler haben jedoch den Nachteil, dass das Polycarbonat durch die basische Stickstofffunktion erheblich geschädigt wird, was sich z.B. optisch durch eine deutliche Gelbfärbung bemerkbar macht. Ein weiterer Nachteil ist, dass sich die Haftung der anorganisch-organischen Hybridbeschichtungen bei Auslagerung in Wasser, insbesondere warmen Wasser, rasch vermindert. Der Film wird beispiels- weise trüb, es kommt zur Blasenbildung und schließlich kommt es zur vollständigen
Ablösung des Filmes.
Aufgabe der vorliegenden Erfindung war daher die Bereitstellung eines Haftvermittlers (Primer) für siliziumhaltige Beschichtungen auf polymeren Substraten, der eine gute Haftung zwischen der organisch modifizierten, siliziumhaltigen anorganischen
Beschichtung und der Oberfläche des polymeren Substrats ermöglicht und weder zu optischen Beschädigungen noch zu einer Labilität gegenüber Wasser führt.
Es wurde nun gefunden, dass lösemittelhaltige Zwei-Komponenten-Polyurethanbin- demittel, welche eine Härterkomponente, bestehend aus einem Additionsprodukt eines Polyisocyanates mit einem Alkoxysilan und einem gegenüber Isocyantgruppen reaktiven Lackharz enthalten, als Haftvermittler verwendet werden können. Diese lösemittelhaltigen 2-K-Systeme stellen eine ideale Kombination aus sehr hoher Haftvermittlung zwischen beispielsweise polymerem Untergrund und anorganischer Beschichtung und einer sehr guter Bewitterungsstabilität dar. Additionsprodukte von beispielsweise Polyisocyanaten mit Aminosilanen sind bereits Stand der Technik. Solche feuchtigkeitshärtenden, alkoxysilan-terminierten Polyurethane werden in weichelastischen, bei Raumtemperatur härtenden Dichtungsund Klebmassen eingesetzt (z.B. US-A 5 700 868, US-A 4 625 012, US-A 4474 933, US-A 3 979 344, DE-A 4234 325, DE-A 2 155 259).
Weiterhin wird von H. Ni et al. in „Polymer 41 (2000), S. 57 -71" die Verwendung eines Umsetzungsproduktes von HDI-Isocyanurat mit 3-Ammopropyltriethoxysilan als verbessertes Beschichtungssystem für Flugzeuge beschrieben.
US-A 5 854 338 offenbart eine Bindemittelkombination für wasserverdünnbare Zweikomponenten-Polyurethanbeschichtungen, die aus einer wässrigen hydroxy- und/oder aminofunktionellen Acrylatdispersion und einer Härterkomponente, welche Isocyanat- und Alkoxysilylgruppen in einem bestimmten Verhältnis aufweist, be- steht. Die Alkoxysilylgruppen werden durch eine Reaktion eines unmodifizierten
Polyisocyanates mit entsprechenden aminofunktionellen Alkoxysilylverbindungen hergestellt. Durch den Einbau der Alkoxysilylverbindungen in die Härterkomponente sind Zweikomponenten-Polyurethan-Beschichtungen mit einem verbesserten Eigenschaftsprofil hinsichtlich Härte, Säurebeständigkeit oder Haftung erhältlich.
Gegenstand der vorliegenden Erfindungen ist die Verwendung von lösemittelhaltigen Zweikomponenten-Polyurethan-Bindemitteln enthaltend
1. eine Härterkomponente (A), enthaltend ein Additionsprodukt aus
mindestens einem organischen Polyisocyanat (B) mit einer mittleren NCO- Funktionalität von 2,5 bis 5,0 und einen Isocyanatgehalt von 8 bis 27 Gew.-% und einem Alkoxysilan (C) mit mindestens einer gegenüber Isocyanatgruppen reaktiven Gruppe der allgemeinen Formel (I) Q-Z-SiXaY3-a (I),
in welcher
Q eine gegenüber Isocyanatgruppen reaktive Gruppe, bevorzugt OH, SH oder NHR wobei R für eine -C^-Aϊkylgruppe oder C6-C2o- Arylgruppe oder für -Z-SiXaY3-a steht,
Z eine lineare oder verzweigte -Cπ-Alkylengruppe, bevorzugt eine lineare oder verzweigte C i -C -Alkylengruppe,
X eine hydrolysierbare Gruppe, bevorzugt C1-C4 Alkoxy,
Y gleiche oder verschiedene C1-C4-Alkylgruppen und
a eine ganze Zahl von 1 bis 3 bedeutet,
und
2. ein gegenüber Isocyanatgruppen reaktives Lackharz (D),
als Haftvermittler.
Das Verhältnis der gegenüber Isocyanatgruppen reaktiven Gruppen des Lackharzes (D) zu den Isocyanatgruppen des Härters (A) liegt zwischen 0,5 : 1 bis 2 : 1, bevorzugt zwischen 0,7 : 1 bis 1,3 : 1.
Das in der Härterkomponente (A) enthaltende Polyisocyanat (B) weist bevorzugt eine mittlere NCO-Funktionalität von 2,3 bis 4,5 und bevorzugt einen Isocyanat- gruppen-Gehalt von 11,0 bis 24,0 Gew.-% auf. Der Gehalt an monomeren Dusocyanaten ist kleiner 1 Gew.-%, bevorzugt kleiner 0,5 Gew.-%.
Das Polyisocyanat (B) besteht aus mindestens einem organischen Polyisocyanat mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen Isocyanatgruppen.
Es handelt sich bei den Polyisocyanaten bzw. Polyisocyanatgemischen (B) um beliebige, durch Modifizierung einfacher ahphatischer, cycloahphatischer, araliphatischer und/oder aromatischer Diisocyanate hergestellte, aus mindestens zwei Dusocyanaten aufgebaute Polyisocyanate mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, hni- nooxadiazindion- und/oder Oxadiazintrionstruktur, wie sie beispielsweise in J Prakt. Chem. 336 (1994) 185 - 200 und in der DE-A 16 70 666, DE-A 19 54 093, DE-A 24 14 413, DE-A 24 52 532, DE-A 26 41 380, DE-A 37 00 209, DE-A 39 00 053 und DE-A 39 28 503 oder in der EP-A 336 205, EP-A 339 396 und EP-A 798 299 beispielhaft beschrieben sind.
Geeignete Diisocyanate zur Herstellung solcher Polyisocyanate sind beliebige durch Phosgenierung oder nach phosgenfreien Verfahren, beispielsweise durch thermische Urethanspaltung, zugängliche Diisocyanate des Molekulargewichtsbereichs 140 bis
400 mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen Isocyanatgruppen, wie z. B. 1,4-Diisocyanatobutan, 1,6-Diisocyanatohexan (HDI), 2- Methyl-l,5-diisocyanatopentan, l,5-Diisocyanato-2,2-dimethylpentan, 2,2,4- bzw. 2,4,4-Trimethyl-l,6-diisocyanatohexan, 1,10-Diisocyanatodecan, 1,3- und 1,4-Diiso- cyanatocyclohexan, 1,3- und l,4-Bis-(isocyanatomethyl)-cyclohexan, 1-Isocyanato-
3,3,5-trimethyl-5-isocyanatomethylcyclohexan (Isophorondiisocyanat, IPDI), 4,4'- Diisocyanatodicyclohexy nethan, 1 -Isocyanato- 1 -methyl-4(3)isocyanato-methyl- cyclohexan, Bis-(isocyanatomethyl)-norbornan, 1,3- und l,4-Bis-(l-isocyanato-l- methylethyl)-benzol (TMXDI), 2,4- und 2,6-Diisocyanatotoluol (TDI), 2,4'- und 4,4'- Diisocyanatodiphenylmethan (MDI), 1,5-Diisocyanatonaphthalin oder beliebige
Gemische solcher Diisocyanate. Bevorzugt handelt es sich bei den Ausgangskomponenten (B) um Polyisocyanate oder Polyisocyanatgemische der genannten Art mit ausschließlich aliphatisch und/oder cycloaliphatisch gebundenen Isocyanatgruppen.
Ganz besonders bevorzugte Ausgangskomponenten (B) sind Polyisocyanate bzw. Polyisocyanatgemische mit Biuret- oder Isocyanuratstruktur auf Basis von HDI, EPDI unά7oder 4,4'-Diisocyanatodicyclohexylmethan.
Geeignete Alkoxysilane (C) mit gegenüber Isocyanatgruppen reaktiven funktioneilen
Gruppen der allgemeinen Formel (I) sind beispielsweise Hydroxymethyltri(m)eth- oxysilan und Alkoxysilylverbindungen mit sekundären Aminogruppen oder Mer- captogruppen. Beispiele für sekundäre Aminoalkoxysilane sind N-Methyl-3-amino- propyltri(m)ethoxy silan, N-Phenyl-3 -aminopropyltrimethoxysilan, Bis-(gamma-tri- methoxysilylpropyl)amin, N-Butyl-3-aminopropyltri(m)ethoxysilan, N-Ethyl-3-ami- noisobutyltri(m)ethoxysilan oder N-Ethyl-3-aminoisobutylmethyldi(m)ethoxysilan sowie die analogen C2-C4- Alkoxysilane.
Ebenfalls im Sinne der Erfindung geeignete Alkoxysilane (C) sind aminofunktionelle Alkoxysilylverbindungen, die gemäß der Lehre der US-A 5 364 955 durch die Umsetzung von Aminosilanen der zuvor genannten allgemeinen Formel (I), in welcher Ri = H ist, mit Malein- oder Fumarsäureestern der allgemeinen Formel (II)
R2OOC-CH=CH-COOR3 (II),
in welcher
R2 und R3 für gleiche oder verschiedene (Cyclo)-Alkylreste mit 1 bis 8 Kohlenstoffatomen stehen,
erhalten werden. Bevorzugte Verbindungen der allgemeinen Formel (II) sind Maleinsäuredimethyl- ester und Maleinsäurediethylester.
Weitere Beispiele für Alkoxysilane (C) mit einer gegenüber Isocyanatgruppen reaktiven funktionellen Gruppe der allgemeinen Formel (I) sind 3-Mercaptopropyltri- methoxysilan und 3-Mercaptopropyltriethoxysilan.
Bevorzugte Alkoxysilane (C) sind N-Butyl-3-aminopropyl-tri(m)ethoxysilan und 3- Mercapto-propyltri-(m)ethoxysilan.
Zur Herstellung des in der erfindungsgemäßen Verwendung eingesetzten Härters (A) können selbstverständlich auch Mischungen der genannten Alkoxysilane (C) der allgemeinen Formel (I) eingesetzt werden. Beispielsweise sind Mischungen von Alkoxysilanen (C), die die gleiche gegenüber Isocyanatgruppen reaktive funktionelle Gruppe Q, aber unterschiedliche hydrolysierbare Gruppen X enthalten, möglich.
Geeignet sind auch Mischungen, die Alkoxysilane (C) der allgemeinen Formel (I) mit verschiedenen funktionellen Gruppen Q enthalten.
Die Modifizierung der Polyisocyanatkomponente (B) mit Alkoxysilanen (C) erfolgt in einem molaren NCO/Q- Verhältnis von 1 : 0,01 bis 0,75, bevorzugt in einem molaren NCO/Q- Verhältnis von 1 : 0,05 bis 0,4, wobei Q die in der allgemeinen Formel (I) angegebene Bedeutung hat.
Prinzipiell ist es natürlich auch möglich, Polyisocyanate in einem höheren molaren Verhältnis oder sogar vollständig, d.h. entsprechend bis zu einem NCO/Q-Verhältnis von 1 : 1, mit den in der erfindungsgemäßen Verwendung eingesetzten aminofunktionellen Alkoxsilylverbindungen (Q = NH) umzusetzen.
Als gegenüber Isocyanatgruppen reaktive Lackharze (D) sind Polyhydroxylverbin- düngen, wie beispielsweise tri- und/oder tetrafunktionelle Alkohole und/oder die üblichen Polyetherpolyole, Polyesterpolyole, Polycarbonatpolyole und/oder Poly- acrylatpolyole geeignet.
Prinzipiell sind als Reaktionspartner (D) für den in der erfindungsgemäßen Verwen- düng eingesetzten Härter (A) auch Lackbindemittel oder Lackbindemittelkomponenten mit anderen gegenüber Isocyanaten reaktiven Gruppen als Hydroxylgruppen geeignet. Hierzu zählen beispielsweise auch Polyurethane oder Polyharnstoffe, die aufgrund der in den Urethan- bzw. Harnstoffgruppen vorliegenden aktiven Wasserstoffatome mit Polyisocyanaten vernetzbar sind. Geeignete Reaktionspartner (D) sind beispielsweise auch Polyamine, deren A inogruppen blockiert sind, wie z.B. Poly- ketimine, Polyaldimine oder Oxazolane, aus denen unter dem Einfluss von Feuchtigkeit freie Aminogruppen und, im Falle der Oxazolane, freie Hydroxylgruppen entstehen, die mit den Polyisocyanatgemischen abreagieren können. Bevorzugte Lackharze (D) sind Polyacrylatpolyole und Polyesterpolyole.
In dem erfindungsgemäß verwendeten lösemittelhaltigen 2-K-PUR-Bindemittel kommen die Polyisocyanat- und/oder Bindemittelkomponenten im allgemeinen in mit Lösungsmitteln verdünnter Form zum Einsatz. Bei diesen Lösungsmitteln handelt es sich beispielsweise um Butylacetat, Ethylacetat, l-Methoxy-2-propylacetat, Toluol, 2-Butanon, Xylol, 1,4-Dioxan, Diacetonalkohol, N-Methylpyrrolidon,
Dimethylacetamid, Dimethylfor amid, Dimethylsulfoxid oder beliebige Gemische solcher Lösungsmittel. Bevorzugte Lösungsmittel sind Butylacetat, Ethylacetat und Diacetoalkohol.
Dem erfindungsgemäß verwendeten lösemittelhaltigen 2-K-PUR-Bindemittel können gegebenenfalls als weitere Komponenten, die in der Beschichtungstechnologie üblichen Hilfsstoffe zugesetzt werden. Übliche Hilfsstoffe sind alle zur Herstellung von Lacken und Farben bekannten Zusatzstoffe, wie z.B. anorganische oder organische Pigmente, Lichtschutzmittel, Lackadditive, wie Dispergier-, Verlauf-, Verdickungs-, Entschäumungs- und andere Hilfsmittel, Haftmittel, Fungizide, Bakterizide, Stabili- satoren oder Inhibitoren und Katalysatoren. Es können selbstverständlich auch mehrere der genannten Hilfsstoffe zugegeben werden.
Die Applikation des erfindungsgemäß verwendeten 2-K-PUR-Bindemittels auf ein Substrat erfolgt nach den in der Beschichtungstechnologie üblichen Applikationsverfahren, wie z.B. Spritzen, Fluten, Tauchen, Schleudern oder Rakeln.
Erfindungsgemäß sind als Substrate beispielsweise polymere Substrate, wie z.B. ABS, Polyamid oder Polyurethan, Metalle, die gegebenenfalls eine organische Beschichtung aufweisen können, oder auch Glas geeignet.
Das erfindungsgemäß als Haftvermittler verwendete 2-K-PUR-Bindemittel ist besonders für transparente polymere Substrate, beispielsweise für thermoplastische Polymere, wie Polycarbonate, Polymethylmethacrylate, Polystyrol, Polyvinylcyclo- hexan und dessen Copolymere oder Polyvinylchlorid oder deren Blends geeignet.
Auf die mit dem erfindungsgemäß verwendeten Haftvermittler beschichteten Untergründe können anorganische Beschichtungen, wie beispielsweise rein anorganische Lacksysteme oder auch organisch modifizierte anorganische Lacksysteme oder aber auch über ein Plasmaverfahren abgeschiedene Schichten (z.B. AI2O3, ΗO2, SiOx,
TiC etc.) appliziert werden.
Unter rein anorganischen Lacksystemen sind z.B. solche über den Sol-Gel Prozess hergestellte Beschichtungen zu verstehen, die aus Monomerbausteinen aufgebaut sind, welche keine organischen Gruppen tragen, die bei gegebener Anwesenheit und idealem Netzwerkaufbau als Bestandteile im Netzwerk verbleiben könnten.
Bei derartigen Monomerbausteinen handelt es sich z.B. um Tetraalkoxysilane wie Tetra(m)ethoxysilan oder auch um Metallalkoxide wie z.B. Aluminium-, Titan- oder Zirkoniumalkoxid. Ferner können solche anorganischen Lacksysteme natürlich auch anorganische Füll- stof artikel, z.B. SiO2, Al2O3 oder A1OOH enthalten.
Unter organisch modifizierten anorganischen Lacksystemen sind z.B. solche über den Sol-Gel Prozess hergestellte Beschichtungen zu verstehen, die aus Monomerbausteinen aufgebaut sind, welche organische Gruppen fragen, die als Bestandteile im sich bildenden Netzwerk verbleiben. Diese organischen Gruppen können funktional oder nicht-funktional sein.
Bei Monomerbausteinen mit nicht-funktionalen organischen Gruppen handelt es sich z.B. um Alkylalkoxysilane, wie beispielsweise Methyltri(m)ethoxysilan, Arylalkoxy- silane oder Phenyltri(m)ethoxysilan, sowie auch um Carbosilanverbindungen wie sie z.B. in der US-A 5 679 755, US-A 5 677410, US-A 6 005 131, US-A 5 880305 oder in der EP-A 947 520 beschrieben sind.
Bei Monomerbausteinen mit funktionalen organischen Gruppen handelt es sich z.B. um Vinyl-, Acryl- oder aber auch um Methacrylgruppen-haltige Alkoxysilane, wie Vinyltri(m)ethoxysilan, Acryloxypropyltri(m)ethoxysilan oder Methacryloxypropyl- tri(m)ethoxysilan, sowie um Epoxy-funktionelle Alkoxysilane, beispielsweise Glyci- dyloxypropyltri(m)ethoxysilan, oder auch um NCO-funktionelle Alkoxysilane wie
3-Isocyanatopropyltri(m)ethoxysüan.
Mit derartigen Monomerbausteinen ist es unter anderem möglich, ein quervernetzendes, organisches Polymersystem neben dem bestehenden oder sich bildenden anor- ganischen Netzwerk aufzubauen.
Unter funktionellen organischen Gruppen sind aber auch solche zu verstehen, die nicht notwendiger Weise für den Aufbau einer organischen Quervernetzung dienen, wie beispielsweise Halogene, Säuregruppen, Alkohol- oder Thiolgruppen. Als orga- nische Beschichtungen sind z.B. Polyurethan-, Melaminharz vernetzende Systeme oder auch Alkydharz-Lacksysteme geeignet. Bevorzugt sind neben den anorganischen Beschichtungen auch anorganisch-organische Hybridbeschichtungen. Diese zeichnen sich dadurch aus, dass sie sowohl über ein organisches Polymersystem als auch über ein anorganisches Polymersystem ver- fügen, welche nebeneinander oder verknüpft vorliegen.
Mögliche anorganisch-organische Hybridbeschichtungen sind beispielsweise solche, in denen eine organische Polymermatrix durch Zusatz oder Einbau anorganischer Bausteine modifiziert ist. Anorganische Bausteine können beispielsweise Kieselsol- dispersionen in Wasser oder in organischen Lösemitteln sein und/oder Hydrolysate von (organofunktionellen) Alkoxysilanen.
Eine besonders hohe Abriebbeständigkeit und Kratzfestigkeit sowie eine sehr gute Lösemittelbeständigkeit wird erreicht, wenn auf den mit dem erfindungsgemäß ver- wendeten Haftvermittler beschichteten polymeren Untergrund ein Lacksystem auf der Basis von organofunktionellen Alkoxysilanen und/oder Siloxanen appliziert werden. Ein allgemein bekanntes Verfahren zur Herstellung solcher Lackbindemittel ist der Sol-Gel-Prozess, wie er von C. J. Blinker und W. Scherer in „Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York (1990) ausführlich beschrieben wird. Geeignete Sol-Gel Lacke mit hoher mechanischer Beständigkeit sind Stand der Technik und werden beispielsweise in der US-A 4 624 870, US-A 3 986 997, US-A 4 027 073, EP-A 358 011, US-A 4 324 712, WO 98/52992, WO 94/06 807, US-A 6 005 131, und EP-A 947 520 beschrieben. Hydrophobe und/oder oleophobe anorganisch-organischen Hybridbeschichtungen mit Antihaft- und/oder Antigraffitieigenschaften werden beispielsweise in der DE-A 41
18 184, WO 99 03 941 und EP-A 967 253 beschrieben.
Polymere Substrate können somit wirksam vor mechanischer Beschädigung und/oder vor Umwelteinflüssen, wie UV-Licht und/oder Verschmutzung geschützt werden. Beispielsweise kann eine Polycarbonatplatte, die mit dem erfindungsgemäß als Haftvermittler verwendeten 2-K-PUR-Bindemittel und einer gemäß der Lehre der EP-A 947 520 (Beispiel 14) organisch modifizierten, hergestellten anorganischen Beschichtung beschichtet ist, wirksam vor mechanischer Beschädigung und vor Strahlenschädigung geschützt werden. Die Schutzwirkung bleibt selbst nach intensiver Bewitterung vollständig erhalten. Eine mit dem beschriebenen Beschichtungs- aufbau beschichtete Polycarbonatplatte kann mehrere Tage siedendem vollentsalztem Wasser ausgesetzt werden, ohne dass ein Haftungsverlust oder eine optische Veränderung zu erkennen ist. Nach einer 1000 stündigen Bewitterung in einem UV-A Test mit einer Intensität von 1,35 W/m2 (ASTM G 154-97, Zyklus 4) ist weder am Substrat noch am Primer oder der anorganischen Beschichtung eine optische Veränderung zu beobachten.
Die Trocknung und Härtung des erfindungsgemäß verwendeten 2-K-PUR-Binde- mittels kann zwischen Umgebungstemperatur und Erweichungstemperatur des polymeren Substrates erfolgen. Zum Beispiel für Polycarbonat als Substrat liegt der Härtungstemperaturbereich bevorzugt zwischen 20°C und 130°C (Makrolon®, Bayer AG, Leverkusen, oder Lexan®, GE Plastics, USA) oder 20 bis 160°C für Apec HT® (Bayer AG, Leverkusen) bei einer Härtungsdauer zwischen 1 Minute und 60 Minuten. Besonders bevorzugt liegt der Härtungstemperaturbereich für Makrolon® zwischen 100°C und 130°C und für Apec HT® zwischen 100°C und 160°C bei einer Härtungsdauer zwischen 30 und 60 Minuten.
Die Applikations- und Härtungsbedingungen der anorganischen Beschichtungen sind vom jeweiligen Bindemittelsystem abhängig. Das erfindungsgemäß verwendete 2-K-
PUR-Bindemittel und die organisch modifizierte, anorganische Beschichtung können nacheinander appliziert und ausgehärtet werden. Ebenso ist eine Nass- in Nassapplikation möglich, gefolgt von einer einmaligen Härtung im oben genannten Temperatur und Zeitintervall. Für spezielle Anwendungen kann gegebenenfalls auch eine Aushärtung bei Umgebungstemperatur ausreichend sein.
Beispiele
In den nachfolgend genannten Beispielen beziehen sich alle Prozentangaben auf das Gewicht. Als Lackadditive wurden z.B. Baysilone® OL 17 (Bayer AG, Leverkusen), Tinuvin®
292 (Ciba Spezialitätenchemie GmbH, Lampertheim) und/oder Tinuvin® 1130 (Ciba Spezialitätenchemie GmbH, Lampertheim) verwendet.
Beispiel 1
N-(3-Trimethoxysilylpropyl)asparaginsäurediethylester wird, entsprechend der Lehre aus US-A 5 364 955, Beispiel 5, durch Umsetzung von äquimolaren Mengen 3-Ami- nopropyltrimethoxysilan mit Maleinsäurediethylester hergestellt.
Beispiel 2
In einer Standard-Rührapparatur werden 180 g (1 val NGO) eines 100 %igen HDI- Isocyanurates mit einer Viskosität von 1200 mPas (23°C), einer mittleren NCO- Gehalt von 23 % und einer NCO-Funktionalität von 3,2 vorgelegt. Bei Raumtemperatur werden unter kräftigem Rühren 17,55 g (0,05 mol) N-(3-Trimethoxysilyl- propyl)asparaginsäurediethylester aus Beispiel 1 zugefropft und eine Stunde nachgerührt. Das resultierende Additionsprodukt hat einen NCO-Gehalt von 20 %.
Beispiel 3 bis 20
Gleiches Vorgehen wie in Beispiel 2. Tabelle 1 gibt jeweils das verwendete Polyisocyanat und Alkoxysilan in den jeweils eingesetzten Mengen an. Der sich ergebende NCO-Gehalt des Additionsproduktes ist in % angegeben. Polyisocyanat A HDI-Isocyanurat, 90 %ig in Butylacetat mit einer Viskosität von 600 mPas (23°C), einem mittleren NCO-Gehalt von 19,6 %, einer NCO-Funktionalität von 3,2.
Polyisocyanat B HDI-Biuret, 75 %ig in Butylacetat mit einer Viskosität von
160 mPas (23°C), einem mittleren NCO-Gehalt von 16,5 % und einer NCO-Funktionalität von 3,8.
Polyisocyanat C IPDI-Isocyanurat, 70 %ig in Butylacetat mit einer Viskosität von 700 mPas (23°C), einem mittleren NCO-Gehalt von 11,8 % und einer NCO-Funktionalität von 3,2.
Alkoxysilan 1 : N-(3-Trimethoxysilylpropyl)asparaginsäurediethylester aus Beispiel 1
Alkoxysilan 2: N-Butyl-3-aminoρropyltrimethoxysilan, (Dynasilan® 1189, Fa. Degussa-Hüls AG)
Alkoxysilan 3 : Bis(trimethoxysilylpropyl)amin, (Silquest A-l 170, Fa. Wite)
Alkoxysilan 4: N-Methyl-3-aminopropyltrimethoxysilan, (Dynasilan® 1110, Fa. Degussa-Hüls AG)
Alkoxysilan 5: 3-Mercaptopropyltrimethoxysilan, (Dynasilan® NTNS, Fa. Degussa-Hüls AG) Tabelle 1: Beispiele 3 bis 20
Für die erfindungsgemäß verwendeten 2-K-PUR-Bindemittel geeignete Polyole und Hilfsstoffe sind in Tabelle 2 zusammengestellt. Die Herstellung der Komponenten Bl bis B5 erfolgt durch beliebiges Zusammengeben der in Tabelle 2 aufgeführten Einzelkomponenten in beliebiger Reihenfolge und anschließendem Durchmischen bei Raumtemperatur. Polyol l: Trimethylolpropan
Polyol 2: Desmophen® 670 (Bayer AG, Leverkusen), welches einen handelsüblichen, schwach verzweigten, hydroxylgruppen-haltigen Polyester 80 %ig in BA mit einem Hydroxylgehalt von 3,5 %, einer Säurezahl von 2 mg KOH/g und einer Viskosität von 2800 mPas (23°C) darstellt
Polyol 3: Desmophen® 800 (Bayer AG, Leverkusen), welches einen handelsüblichen, stark verzweigten, hydroxylgruppen-haltigen Polyester, lösemittelfrei mit einem Hydroxylgehalt von 8,6 %, einer Säurezahl von 4 mg KOH/g und einer Viskosität von 850 mPas (23°C, 70 % MPA) darstellt
Polyol 4: Desmophen® VPLS 2249/1 (Bayer AG, Leverkusen), welches einen handelsüblichen, verzweigten, kurzkettigen, Polyester lösemittelfrei mit einem Hydroxylgehalt von 16 %, einer Säurezahl von 2 mg KOH/g und einer Viskosität von 1900 mPas (23°C) darstellt.
DAA: Diacetonalkohol
Tabelle 2: Polyole und Hilfsstoffe (erfindungsgemäß)
Herstellung des erfindungsgemäß als Haftvermittler (Primer) verwendeten 2-K-PUR- Bindemittels (Beispiel 21 bis 27)
Bei Raumtemperatur werden jeweils in einem NCO : OH Verhältnis von 1,2 : 1 ein siHziummodifiziertes Polyisocyanat aus Tabelle 1 mit einer der Polyolmischungen B 1 bis B 5 aus Tabelle 2 zrusammengegeben und gemischt. Das erfindungsgemäß verwendete 2-K-PUR-Bindemittel ist applikationsfertig. Entsprechende Kombinationen der Polyolmischung Bl bis B5 und den siliziummodifizierten Polyisocyanaten aus Tabelle 1 sind möglich. Tabelle 3 enthält beispielhaft für alle sich aus Tabelle 1 und Tabelle 2 ergebenden Kombinationsmöglichkeiten die Herstellung erfindungsgemäße verwendeter 2-K-PUR-Bindemittel.
Tabelle 3: Erfindungsgemäß als Haftvermittler (Primer) verwendeten 2-K-PUR- Bindemittel
Beispiel 28
26,4 g einer 75 %igen Lösung eines hydroxyfunktionellen Polyacrylats in Xylol mit einem Hydroxylgehalt von 2,8 %, einer Säurezahl von 2 mg KOH/g und einer Viskosität von 3500 mPas (23°C) sowie 0,94 g Baysilone Öl OL 17 (10 %ig in Xylol), 0,35 g DBTL (Dibutylzmnlaurat, 10 %ig in Xylol) und 25 g Xylol werden homogen vermischt. In diese Mischung werden 12,5 g der siliziummodifizierten Isocyanat- komponente aus Beispiel 4 eingerührt.
Anwendungsbeispiele
Anhand der folgenden Beispiele wird die Wirksamkeit der erfindungsgemäß als Haftvermittler (Primer) verwendeten 2-K-PUR-Bindemittel demonstriert.
Beispiel 29
Haftvermittler für eine hydrophober/oleophobe siliziumhaltige Beschichtung
Auf ein mit einem handelsüblichen Haftvermittler (Sigma Universal Primer® 7417, Fa. Sigmakalan, NL) und Epoxykorrosionsschutzlack (Sigma Multiguard®, Fa. Sig- makalan, NL) beschichtetes Stahlblech wird das erfindungsgemäß als Haftvermittler verwendete 2-K-PUR-Bindemittel aus Beispiel 28 in einer Trockenschichtdicke von ca. 15 μm aufgetragen und 24 Stunden bei Raumtemperatur getrocknet.
Auf den Haftvermittler wird ein organisch modifizierter anorganischer Lack, der zusammengesetzt ist aus 64,6 Gew.-% eines ethoxyfunktionellen Siloxans, herge- stellt gemäß Beispiel 2 in WO 98/52992, 12,9 Gew.-% einer 50 %igen Dispersion eines Polykondensationsproduktes von Tetraethoxysilan in n-Butanol, 15,5 Gew.-% eines α,ω-hydroxyfunktionellen Polydimethylsiloxans mit einem OH-Gehalt von ca. 6 %, 1,3 Gew.-% 3-Mercaptopropyltriethoxysilan und 5,7 Gew.-% einer ca. 2 %igen Lösung von para-Toluolsulfonsäure in n-Butanol, in einer Trockenschichtdicke von ca. 40 μm aufgetragen und ebenfalls 24 Stunden bei Raumtemperatur getrocknet.
Der resultierende Schutzüberzug zeigt eine sehr gute Haftung auf dem polymeren Untergrund. Er ist bewitterungsstabil und schützt wirksam vor Verschmutzung. Von einem Permanentmarker der Fa. Edding (Edding® 850) wird die Beschichtung nicht benetzt. Der Marker lässt sich 24 Stunden nach Auftragen mit einem Lappen ohne Zuhilfenahme von Reinigungsmittel rückstandslos entfernen.
Haftungseigenschaften des erfindungsgemäß als Haftvermittler (Primer) verwendeten 2-K-PUR-Bindemittels auf Polycarbonat
Beispiel 30
Auf eine Makrolon®-Platte wurde das erfindungsgemäß als Haftvermittler verwen- dete 2-K-PUR-Bindemittel gemäß Beispiel 22 in Tabelle 3 in einer Schichtdicke von ca. 0,2 μm aufgeschleudert und 60 Minuten bei 130°C gehärtet. Anschließend wurde eine in EP-A 0 947 520 Beispiel 14 beschriebene, siliziumhaltige Beschichtung in einer Schichtdicke von 3 μm aufgeschleudert und 60 Minuten bei 130°C ausgehärtet.
Beispiel 31
Gleiches Vorgehen wie in Beispiel 30. Es wurde jedoch das erfindungsgemäß als Haftvermittler verwendete 2-K-PUR-Bindemittel aus Beispiel 23 in Tabelle 3 in einer Schichtdicke von ca. 0,2 μm aufgeschleudert Nergleichbeispiel 1
Gleiches Vorgehen wie in Beispiel 30 und 31. Es wurde statt des erfindungsgemäß als Haftvermittler verwendete 2-K-PUR-Bindemittels 3-Aminopropyltrimethoxysilan als ein aus dem Stand der Technik bekannter Primer für Polycarbonat in einer
Schichtdicke von ca. 0,2 μm aufgeschleudert
Vergleichbeispiel 2
Gleiches Vorgehen wie in Beispiel 30 und 31. Es wurde ein nicht siliziummodifiziertes Polyisocyanat als Vernetzer eingesetzt. Hierzu wurden in einem ΝCO : OH Verhältnis von 1,2 : 1 100 g der Polyolkomponente B 2 aus Tabelle 2 mit 7,2 g einer 70 %igen Lösung in Butylacetat eines IPDI-Isocyanurates einem mittleren ΝCO- Gehalt von 11,8 % und einer ΝCO-Funktionalität von 3,2 und einer Viskosität von 700 mPas (23 °C) verrührt und in einer Schichtdicke von ca. 0,2 μm aufgeschleudert.
Vergleichbeispiel 3
Gleiches Vorgehen wie in Beispiel 30 und 31. Es wurde ein nicht siliziummodifi- ziertes Polyisocyanat als Vernetzer eingesetzt. Hierzu wurden in einem ΝCO : OH
Verhältnis von 1,2 : 1 100 g der Polyolkomponente B 2 aus Tabelle 2 mit 5,1 g einer 75 %igen Lösung in Butylacetat eines HDI-Biurets mit einem mittleren ΝCO-Gehalt von 16,5 % und einer ΝCO-Funktionalität von 3,8 und einer Viskosität von 160 mPas (23 °C) verrührt und in einer Schichtdicke von ca. 0,2 μm aufgeschleudert.
Die gemäß der Beispiele 30 und 31 sowie der Vergleichsbeispiele 1 bis 3 beschichteten Makrolon®-Platten wurden vor und nach Bewitterung auf Haftung überprüft. Hierzu wurde je eine Platte 8 Stunden bei 100°C in demineralisiertem Wasser gelagert. Eine weitere Probe wurde 14 Tage bei 65°C in demineralisiertem Wasser gela- gert. Des weiteren wurde je eine Platte 1000 h gemäß ASTM G 154-97 Zyklus 4 bewittert. Nach der Bewitterung wurde die Haftung mittels Gitterschnitt DIN EN ISO 2409 geprüft. Die Ergebnisse der Gitterschnittprüfung nach Bewitterung sind in Tabelle 4 zusammengestellt.
Tabelle 4: Gitterschnitt gemäß DIN EN ISO 2409 nach Bewitterung
Gitterschnitt-Kennwert: keinerlei Ablösungen (0) vollständige Ablösung (5) nicht durchgeführt ( — )
Aus Tabelle 4 geht hervor, dass das erfindungsgemäß als Haftvermittler verwendete 2-K-PUR-Bindemittel zu einer guten Haftung und ausgezeichneten Bewitterungs- stabilität der organisch modifizierten, anorganischen Beschichtungen auf polymeren Substraten wie z.B. Polycarbonat, Polymethylmethacrylat oder Polyurethan führt. 3- Aminopropyltrimethoxysilan, ein aus dem Stand der Technik bekannter Primer für Polycarbonat, führt bei Lagerung in demineralisiertem Wasser zur' vollständigen Enthaftung. Haftvermittler auf der Basis von nicht erfindungsgemäß modifizierten Polyisocyanaten haben entweder keine ausreichende Grundhaftung oder zeigen eine deutlich geringe Beständigkeit bei Bewitterung/Wasserlagerung als die erfindungsgemäßen Haftvermittler.

Claims

Patentansprtiche
1. Verwendung von lösemittelhaltigen Zwei-Komponenten-Polyurethan-Bindemitteln enthaltend
1. eine Härterkomponente (A), enthaltend ein Additionsprodukt aus mindestens einem organischen Polyisocyanat (B) mit einer mittleren NCO-Funktionalität von 2,5 bis 5,0 und einen Isocyanatgehalt von 8 bis 27 Gew.-% und einem Alkoxysilan (C) mit mindestens einer gegenüber Isocyanatgruppen reaktiven Gruppe der allgemeinen Formel (I)
Q-Z-SiXaY3-a (I), in welcher
Q eine gegenüber Isocyanatgruppen reaktive Gruppe,
Z eine lineare oder verzweigte C\ - C12-Alkylengruppe,
X eine hydrolysierbare Gruppe, bevorzugt Ci - C4 Alkoxy,
Y gleiche oder verschiedene C — C4-Alkylgruppen und
a eine ganze Zahl von 1 bis 3 bedeutet,
und
2. ein gegenüber Isocyanatgruppen reaktives Lackharz (D),
als Haftvermittler.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis der gegenüber Isocyanatgruppen reaktiven Gruppen des Lackharzes (D) zu den Isocyanatgruppen des Härters (A) zwischen 0,5 : 1 bis 2 : 1 liegt.
3. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass das in der Härterkomponente (A) enthaltende Polyisocyanat (B) eine mittlere NCO-Funktionalität von 2,3 bis 4,5 und einen Isocyanatgruppen-Gehalt von 11,0 bis 24,0 Gew.-% aufweist.
4. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass das organische
Polyisocyanat (B) für Polyisocyanate oder Polyisocyanatgemische mit ausschließlich aliphatisch und/oder cycloaliphatisch gebundenen Isocyanatgruppen steht.
5. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass das organische
Polyisocyanat (B) für Polyisocyanate oder Polyisocyanatgemische mit Biuret- oder Isocyanuratstruktur auf Basis von HDI, IPDI und oder 4,4'-Diisocyana- todicyclohexylmethan steht.
6. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass organische
Polyisocyanate (B) mit Alkoxysilanen (C) in einem molaren NCO/Q-Verhält- nis von 1 : 0,01 bis 0,75 umgesetzt wird, wobei Q die in allgemeiner Formel (I) beschriebene Bedeutung hat.
7. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass Alkoxysilane
(C) Verbindungen der allgemeinen Formel (I)
Q-Z-SiXaY3-a (I), in welcher Q OH, SH oder NHRl5 wobei Rx für eine CrC12-Alkylgruρpe oder C6- C2o-Arylgruppe oder für -Z-SiXaY3_a steht,
Z eine lineare oder verzweigte C1-C4-Alkylengruppe,
X eine - Alkoxygruppe,
Y gleiche oder verschiedene C1-C4-Alkylgruppen und
a eine ganze Zahl von 1 bis 3 bedeutet,
sind.
8. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass der Haftver- mittler auf ein Subsfrat aufgefragen wird und anschließend eine Beschichtung appliziert wird.
9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass das Subsfrat ausgewählt ist aus der Gruppe der polymeren Substrate, Metall- oder Glas- Substrate.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass das polymere Substrat ausgewählt ist aus der Gruppe Polycarbonat, Polymethylmethacrylat, Polystyrol, Polyvinylcyclohexan und dessen Copolymere, Polyvinylchlorid oder deren Blends.
11. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass die Beschichtung ausgewählt ist aus der Gruppe der anorganischen Beschichtungen, organischen Beschichtungen oder anorganisch-organischen Hydridbeschichtun- gen.
2. Verwendung nach Anspruch 11, dadurch gekennzeichnet, dass die anorganische Beschichtung sihziumhaltig ist.
EP02708272A 2001-01-24 2002-01-11 Zweikomponenten-polyurethan-bindemittel als haftvermittler Withdrawn EP1356004A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10103027 2001-01-24
DE10103027A DE10103027A1 (de) 2001-01-24 2001-01-24 Zweikomponenten-Polyurethan-Bindemittel als Haftvermittler
PCT/EP2002/000205 WO2002059224A1 (de) 2001-01-24 2002-01-11 Zweikomponenten-polyurethan-bindemittel als haftvermittler

Publications (1)

Publication Number Publication Date
EP1356004A1 true EP1356004A1 (de) 2003-10-29

Family

ID=7671531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02708272A Withdrawn EP1356004A1 (de) 2001-01-24 2002-01-11 Zweikomponenten-polyurethan-bindemittel als haftvermittler

Country Status (14)

Country Link
US (1) US6756464B2 (de)
EP (1) EP1356004A1 (de)
JP (1) JP2004525213A (de)
KR (1) KR20040030494A (de)
CN (1) CN1243808C (de)
CA (1) CA2435430C (de)
CZ (1) CZ20032033A3 (de)
DE (1) DE10103027A1 (de)
HK (1) HK1064697A1 (de)
HU (1) HUP0302795A3 (de)
MX (1) MXPA03006536A (de)
PL (1) PL205153B1 (de)
SK (1) SK9182003A3 (de)
WO (1) WO2002059224A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10103026A1 (de) * 2001-01-24 2002-07-25 Bayer Ag Schutzüberzug mit zweischichtigem Beschichtungsaufbau
EP1502927A1 (de) * 2003-07-31 2005-02-02 Sika Technology AG Isocyanatfreie Primerzusammensetzung für Glas und Glaskeramiken
US20050238899A1 (en) * 2004-04-27 2005-10-27 Isao Nagata High solids clearcoat compositions containing silane functional compounds
DE102004050746A1 (de) * 2004-10-19 2006-04-20 Basf Coatings Ag Hochkratzfeste und hochelastische Beschichtungsmittel auf Basis von Alkoxysilan-funktionellen Komponenten
DE102006006656A1 (de) * 2005-08-26 2007-03-01 Degussa Ag Silan enthaltendes Bindemittel für Verbundwerkstoffe
CN101096472A (zh) * 2006-06-26 2008-01-02 上海飞凯光电材料有限公司 辐射固化材料粘接性能促进剂
BRPI0721292A2 (pt) * 2006-12-19 2014-03-25 Basf Coatings Ag Agentes de revestimento com alta resistência ao risco e estabilidade à intempérie
CN101050223B (zh) * 2007-05-14 2010-12-01 张群朝 含硅烷或功能聚硅氧烷改性的异氰酸酯类三聚体及其制备方法
DE102007061854A1 (de) 2007-12-19 2009-06-25 Basf Coatings Ag Beschichtungsmittel mit hoher Kratzbeständigkeit und Witterungsstabilität
DE102007061855A1 (de) 2007-12-19 2009-06-25 Basf Coatings Ag Beschichtungsmittel mit hoher Kratzbeständigkeit und Witterungsstabilität
DE102007061856A1 (de) 2007-12-19 2009-06-25 Basf Coatings Ag Beschichtungsmittel mit hoher Kratzbeständigkeit und Witterungsstabilität
CA2707792A1 (en) * 2007-12-27 2009-07-09 E. I. Du Pont De Nemours And Company Adhesion-promoting agent for protective coatings
DE102008030304A1 (de) * 2008-06-25 2009-12-31 Basf Coatings Ag Verwendung teilsilanisierter Verbindungen auf Polyisocyanatbasis als Vernetzungsmittel in Beschichtungszusammensetzungen und Beschichtungszusammensetzung enthaltend die Verbindungen
DE102008050916A1 (de) * 2008-10-10 2010-04-15 Basf Coatings Ag Zweikomponenten-Polyurethan-Lack enthaltend silanisierte Polyisocyanathärter, Verfahren zur Herstellung von silanisierten Polyisocyanathärtern und nach dem Verfahren hergestellte Härter
DE102010005994B4 (de) * 2010-01-27 2022-07-28 Tianjin Shenglong Fibre Co., Ltd. Verfahren zur Hestellung eines Hybrid-Polsterelements, insbesondere eines Sitz- und Lehnenpolsterelements zur Verwendung in einem Kraftfahrzeug, ein Polsterelement und ein Fahrzeugsitz mit einem Polsterelement.
US8133964B2 (en) * 2010-06-29 2012-03-13 Science Applications International Corporation Single-component coating having alkoxysilane-terminated N-substituted urea resins
CN102416373B (zh) * 2011-09-22 2014-03-12 东莞广泽汽车饰件有限公司 一种塑胶基材的表面高光涂装工艺
EP2602109A3 (de) 2011-12-06 2013-07-10 Alporit AG Styrolpolymerschaumstoff-Verbundkörper
US9353210B2 (en) * 2012-09-04 2016-05-31 Covestro Deutschland Ag Silane functional binder with thiourethane structure
EP2871194B1 (de) 2013-11-12 2016-08-03 nolax AG Zwei-Komponenten-Klebstoff
KR101688938B1 (ko) * 2014-09-29 2016-12-23 한경대학교 산학협력단 인을 포함하는 환경친화형 난연성 폴리우레탄수지의 제조방법
US10190020B2 (en) 2014-10-22 2019-01-29 The United States Of America, As Represented By The Secretary Of The Navy Siloxane-based coatings containing polymers with urea linkages and terminal alkoxysilanes
US9587143B2 (en) * 2014-10-22 2017-03-07 The United States Of America, As Represented By The Secretary Of The Navy Two-component siloxane-based coatings containing polymers with urea linkages and terminal alkoxysilanes
JP6712314B2 (ja) 2015-09-09 2020-06-17 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 耐引掻性水性2k puコーティング
KR102555281B1 (ko) * 2015-09-09 2023-07-14 코베스트로 도이칠란트 아게 스크래치-내성 2-성분 폴리우레탄 코팅
FR3054837B1 (fr) 2016-08-08 2020-06-19 Bostik Sa Procede de synthese de polyurethanes silyles et composition de polyurethanes silyles
EP3505549A1 (de) * 2017-12-28 2019-07-03 Covestro Deutschland AG Silanmodifizierte polyharnstoffverbindungen auf basis isocyanurat- und allophanatgruppen aufweisender polyisocyanate
KR102659220B1 (ko) * 2018-04-30 2024-04-23 다우 글로벌 테크놀로지스 엘엘씨 이소시아네이트-말단 실란계 2액형 접착제 조성물 및 이의 제조 방법
EP3760658A1 (de) * 2019-07-03 2021-01-06 Covestro Deutschland AG Beständige 2k-pur-beschichtungen
CN111363460B (zh) * 2020-03-18 2021-11-26 深圳飞扬骏研新材料股份有限公司 喷涂用环保免烘烤罩光清漆、制备方法及固化材料
WO2023117034A1 (en) * 2020-12-17 2023-06-29 Akzo Nobel Coatings International B.V. Multi-layer coating system for polycarbonate substrates
CN114479626B (zh) * 2022-01-26 2023-07-07 广州市捷晟智谷颜料有限公司 一种涂料组合物

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1954093C3 (de) 1968-11-15 1978-12-21 Mobay Chemical Corp., Pittsburgh, Pa. (V.St.A.) Verfahren zur Herstellung von polymeren organischen Isocyanaten
BE790977A (fr) 1971-11-06 1973-05-07 Bayer Ag Procede de preparation de produits de poly-addition silicies
GB1458564A (en) 1973-06-27 1976-12-15 Bayer Ag Process for the preparation of solutions of polyisocyanates
US3979344A (en) 1974-11-19 1976-09-07 Inmont Corporation Vulcanizable silicon terminated polyurethane polymer composition having improved cure speed
DE2641380C2 (de) 1976-09-15 1989-11-23 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Polyisocyanaten mit Isocyanuratstruktur
DE2845514A1 (de) * 1978-10-19 1980-04-30 Bayer Ag Isocyanatgemisch und seine verwendung als bindemittel in einkomponenten-lacken
DE2914427A1 (de) 1979-04-10 1980-10-23 Bayer Ag Beschichtung fuer thermoplasten
DE3119151A1 (de) * 1981-05-14 1982-12-02 Bayer Ag, 5090 Leverkusen Verfahren zur splittersicheren beschichtung von glasoberflaechen
DE3220866A1 (de) 1982-06-03 1983-12-08 Dynamit Nobel Ag, 5210 Troisdorf Vernetzbare harzmischungen
US4625012A (en) 1985-08-26 1986-11-25 Essex Specialty Products, Inc. Moisture curable polyurethane polymers
JPH0784574B2 (ja) * 1986-04-22 1995-09-13 ナトコペイント株式会社 塗料組成物
IL84025A0 (en) 1986-10-03 1988-02-29 Ppg Industries Inc Organosiloxane/metal oxide coating compositions and their production
DE3700209A1 (de) 1987-01-07 1988-07-21 Bayer Ag Verfahren zur herstellung von polyisocyanaten mit biuretstruktur
DE3811350A1 (de) 1988-04-02 1989-10-19 Bayer Ag Verfahren zur herstellung von isocyanuratpolyisocyanaten, die nach diesem verfahren erhaltenen verbindungen und ihre verwendung
DE3814167A1 (de) 1988-04-27 1989-11-09 Bayer Ag Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung
JP2772002B2 (ja) 1988-11-28 1998-07-02 サンスター技研株式会社 プライマー組成物
DE3900053A1 (de) 1989-01-03 1990-07-12 Bayer Ag Verfahren zur herstellung von uretdion- und isocyanuratgruppen aufweisenden polyisocyanaten, die nach diesem verfahren erhaeltlichen polyisocyanate und ihre verwendung in zweikomponenten-polyurethanlacken
DE3928503A1 (de) 1989-08-29 1991-03-07 Bayer Ag Verfahren zur herstellung von loesungen von isocyanuratgruppen aufweisenden polyisocyanaten in lackloesungsmitteln und ihre verwendung
EP0489688B1 (de) * 1990-12-04 1996-03-06 Ciba-Geigy Ag Haftvermittler
JPH04239537A (ja) * 1991-01-23 1992-08-27 Nissan Motor Co Ltd 耐擦傷性を向上させた透明樹脂基板
DE4234325A1 (de) 1992-10-12 1994-04-14 Basf Magnetics Gmbh Magnetische Aufzeichnungsträger
DE4338361A1 (de) 1993-11-10 1995-05-11 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von Zusammensetzungen auf der Basis von Epoxidgruppen-haltigen Silanen
US5677410A (en) 1995-05-16 1997-10-14 Bayer Ag Carbosilane-dendrimers, carbosilane-hybrid materials, methods for manufacturing them and a method for manufacturing coatings from the carbosilane-dendrimers
DE19517838A1 (de) 1995-05-16 1996-11-21 Bayer Ag Carbosilan-Dendrimere, ein Verfahren zur Herstellung und deren Verwendung
US5700868A (en) * 1995-07-25 1997-12-23 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Back-side coating formulations for heat-sensitive recording materials and heat-sensitive recording materials having a back layer coated therewith
US6005131A (en) 1996-01-30 1999-12-21 Bayer Aktiengesellschaft Multi-functional, cyclic organosiloxanes, process for the production thereof and use thereof
DE19611849A1 (de) 1996-03-26 1997-10-02 Bayer Ag Neue Isocyanattrimerisate und Isocyanattrimerisatmischungen, deren Herstellung und Verwendung
CA2219610A1 (en) * 1996-11-18 1998-05-18 Takeda Chemical Industries, Ltd. Primer composition
DE19711650C1 (de) 1997-03-20 1998-06-10 Bayer Ag Verfahren zur Herstellung SiOH-funktioneller Carbosilan-Dendrimere
DE19715427A1 (de) 1997-04-14 1998-10-15 Bayer Ag Wäßrige 2-Komponenten Bindemittel und deren Verwendung
DE19814060A1 (de) 1998-03-30 1999-10-07 Bayer Ag Borhaltige Mischungen, Hybridmaterialien und Beschichtungen
DE19818998B4 (de) 1998-04-28 2008-12-24 Giesecke & Devrient Gmbh Verfahren zum Schutz vor Angriffen auf den Authentifizierungsalgorithmus bzw. den Geheimschlüssel einer Chipkarte
AU2001261335A1 (en) * 2000-06-22 2002-01-02 Basf Corporation Coating compositions having improved adhesion to aluminum substrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02059224A1 *

Also Published As

Publication number Publication date
KR20040030494A (ko) 2004-04-09
CA2435430C (en) 2011-12-13
WO2002059224A1 (de) 2002-08-01
CA2435430A1 (en) 2002-08-01
CN1487982A (zh) 2004-04-07
HUP0302795A2 (hu) 2003-11-28
JP2004525213A (ja) 2004-08-19
MXPA03006536A (es) 2004-06-25
US20020142169A1 (en) 2002-10-03
HUP0302795A3 (en) 2012-09-28
PL361766A1 (en) 2004-10-04
DE10103027A1 (de) 2002-07-25
US6756464B2 (en) 2004-06-29
HK1064697A1 (en) 2005-02-04
SK9182003A3 (en) 2003-11-04
CN1243808C (zh) 2006-03-01
PL205153B1 (pl) 2010-03-31
CZ20032033A3 (cs) 2003-10-15

Similar Documents

Publication Publication Date Title
EP1356004A1 (de) Zweikomponenten-polyurethan-bindemittel als haftvermittler
WO2002058569A1 (de) Schutzüberzug mit zweischichtigem beschichtungsaufbau
EP2225300B1 (de) Beschichtungsmittel mit hoher kratzbeständigkeit und witterungsstabilität
EP1923412B1 (de) Nanopartikelmodifizierte polyisocyanate
EP1006131B1 (de) Hybridlack-Zubereitungen
EP2134798B1 (de) Beschichtungsmittel enthaltend addukte mit silanfunktionalität und daraus hergestellte hochkratzfeste beschichtungen mit verbesserter rissbeständigkeit
EP0872499B1 (de) Wässrige 2-Komponenten Bindemittel und deren Verwendung
EP2137269B1 (de) Hochkratzfeste beschichtungen mit guter witterungs- und rissbeständigkeit
EP2058349A1 (de) Nanopartikelmodifizierte Polyisocyanate
WO2003037947A2 (de) Härtbare mischung aus hydrolyseprodukten von organosilanen und blockierten polyisocyanaten
EP1645601B1 (de) Hybride Decklacke
US20090008613A1 (en) Hybrid polyisocyanates
DE10331787A1 (de) NCO-haltige Verbindungen mit kovalent gebundenen polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten
US20080281025A1 (en) Hybrid polyisocyanates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOBUSCH, CLAUS

Inventor name: HOVESTADT, WIELAND

Inventor name: MECHTEL, MARKUS

Inventor name: HOFACKER, STEFFEN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

17Q First examination report despatched

Effective date: 20090112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20111202