EP1339952B1 - Drehkolben-verbrennungsmotor - Google Patents
Drehkolben-verbrennungsmotor Download PDFInfo
- Publication number
- EP1339952B1 EP1339952B1 EP01993746A EP01993746A EP1339952B1 EP 1339952 B1 EP1339952 B1 EP 1339952B1 EP 01993746 A EP01993746 A EP 01993746A EP 01993746 A EP01993746 A EP 01993746A EP 1339952 B1 EP1339952 B1 EP 1339952B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- working
- wheel
- air
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C11/00—Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
- F01C11/006—Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle
- F01C11/008—Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle and of complementary function, e.g. internal combustion engine with supercharger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/12—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
- F01C1/14—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F01C1/20—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with dissimilar tooth forms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/06—Heating; Cooling; Heat insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B53/00—Internal-combustion aspects of rotary-piston or oscillating-piston engines
- F02B2053/005—Wankel engines
Definitions
- the invention relates to a rotary piston internal combustion engine.
- the Invention a rotary piston internal combustion engine with a housing, at least a work wheel rotatable about an axis of rotation in the housing, at least a working piston provided on the working wheel for suction and compression of air or a fuel-air mixture and for the implementation of the Combustion of a fuel-air mixture resulting gas pressure in mechanical Energy, at least one counter wheel with at least one working piston recess, a number of rotatably drivable first air blades for the pre-compression of air or a fuel-air mixture and at least one combustion chamber Combustion of a fuel-air mixture.
- axis of rotation around which the The working wheel and the piston or pistons rotate, not one physically trained axis (such is hereinafter referred to as “shaft”), but understood the physical line through the center of the rotary motion becomes.
- Internal combustion engines are based on the type of movement of the working piston, that is of the moving part caused by the combustion of a fuel-air mixture emerging gas pressure is pushed away in reciprocating engines and Differentiated rotary lobe motors.
- rotary piston internal combustion engines come without translational moved pistons and connecting rods, and the piston or pistons move in the Operation on a circular path always in the same direction so that it doesn't like Pistons are continuously braked and accelerated in the opposite direction have to.
- the best-known representative of the type of rotary piston internal combustion engine is the Wankel engine named after its inventor.
- a piston rotates on the Wankel engine with a triangular cross section in a specially shaped cylinder. Due to sealing problems and the resulting high fuel consumption the engine was not able to assert itself despite the design-related advantages.
- a rotary lobe internal combustion engine is known from German Offenlegungsschrift 29 31 943 A1 known in which rotatably mounted in a housing Working wheel two working pistons are arranged, the working wheel in its Broken area near the axis of rotation and by means of attached webs as Fan wheel is formed so that the work wheel is advantageously cooled from the inside.
- the combustion of the fuel-air mixture takes place in one with this engine separate combustion chamber, which leads to a complex construction of the engine.
- a rotary piston internal combustion engine is known from German published patent application 31 31 258 A1 known with a work wheel and a compression wheel that are arranged on a common shaft.
- the compression wheel carries several Compression piston for compressing a fuel-air mixture, which is then in a combustion chamber formed between the compression wheel and the impeller is pressed where the ignition takes place. From the combustion chamber, the Combustion gases are fed to the working wheel, where they act on the working pistons can. Inlet and outlet into the combustion chamber take place via a relatively complex Valve control. In addition, the cooling of the working wheel and the working pistons is problematic with this engine.
- a rotary piston internal combustion engine which has a housing, at least one work wheel rotatable in the housing about an axis of rotation, at least one working piston provided on the working wheel for compressing Air or a fuel-air mixture and for the implementation of the combustion a gas-pressure mixture resulting in gas pressure into mechanical energy, at least one counter wheel with at least one working piston recess, a number of rotatable first air blades for pre-compression of air or one Fuel-air mixture and at least one combustion chamber for the combustion of a Has fuel-air mixture, wherein the at least one combustion chamber in operation continuously newly formed between the working piston, working wheel, counter wheel and housing will and form the first air blades like spokes part of the working wheel and in operation the fuel-air mixture or the air substantially parallel to Suction the axis of rotation of the work wheel through the work wheel.
- the invention has a number of advantages. So the one sucked through the work wheel cools gaseous medium, which will usually be air, which it but it can also be a fuel-air mixture, the working wheel from the inside.
- gaseous medium which will usually be air, which it but it can also be a fuel-air mixture, the working wheel from the inside.
- the working piston or pistons act twice in each case: when they approach the counter wheel move, compress the air that is already pre-compressed, if necessary already formed fuel-air mixture, after passing through the corresponding working piston recess in the counter wheel they act as "movable Wall "of the combustion chamber caused by the gas pressure generated during combustion is pushed away.
- the work wheel with the air blades and one or more working pistons even performs three functions: pre-compacting, compacting, working.
- the output takes place in the center of the Work wheel arranged output shaft, the axis of rotation of which is then identical to that Rotation axis of the work wheel is.
- the first air blades can then be advantageous attack directly or indirectly (via a gearbox) on the output shaft and so that of mechanical energy absorbed by the piston or pistons on the output shaft transmitted from where it is then forwarded in a manner known per se and e.g. to the Drive of a vehicle can be used.
- a gearbox so that of mechanical energy absorbed by the piston or pistons on the output shaft transmitted from where it is then forwarded in a manner known per se and e.g. to the Drive of a vehicle can be used.
- an output shaft the axis of rotation of which is not coincides with the axis of rotation of the working piston.
- the drive of the Output shaft then e.g. over a sprocket provided on the work wheel take place, which drives the output shaft directly or indirectly.
- a number of second air blades that can be driven in rotation can be provided for further pre-compression of air or a fuel-air mixture his.
- These second air blades can be part of a ring gear like a spoke and also attack the output shaft.
- These spoke-like blades have then a profile that rotates as in the usual compressor stages of a turbine causes a compression of the conveyed medium about the axis of rotation.
- the ring gear with the second air blades firmly connected to the work wheel. If such a ring gear is provided, it can this ring gear with the second air blades with one at least partially complementary ring gear on the counter gear in meshing engagement. To this This results in a reliable positive control of the counter wheel.
- the work wheel can move over the ring gear be set. Because the engine is actively filled in the combustion chamber area and none Has suction function, can via a rotation caused by the starter Working wheel the first filling to start the engine.
- a reservoir can be used to hold the working piston in operation compressed gaseous medium (air or fuel-air mixture) when Passage of the working piston through the counter wheel
- the Reservoir e.g. semi-cylindrical or toroidal and part of the housing or can be a separate component attached to the housing.
- the counter gear can Openings and corresponding valves have, in particular, spring elements or can be hydraulically controlled. That from a working piston at the Movement of the gaseous medium compressed on the counter wheel is converted into one in the counter wheel formed, serving as a reservoir and pressed after passage of the piston left out again.
- the rotary piston internal combustion engine at least two arranged on a common work wheel Has working pistons
- the inlet and the outlet are open at the same time, which enables purge air to lead through the inlet into the space between the two neighboring ones Working piston, the housing and the working wheel is formed. This may still be Exhaust gases present in the room are reliably pushed out.
- purge air it can be advantageous for the first and possibly the second air scoop sucked in gaseous medium, the medium being this In this case, of course, it is not about a fuel-air mixture, but about air should act.
- the fuel or a fuel-air mixture then becomes later added, in particular by means of one arranged after the counter wheel Injector.
- the compressor stage which is formed by the first and second air blades, is in a preferred embodiment, an exhaust gas turbocharger connected downstream of the ambient air drawn in can also compress.
- This exhaust gas turbocharger can be designed as a so-called soft turbocharger that continuously with the Speed increasing boost pressure generated.
- the working pistons can be designed as a solid component, they are preferred provided with cooling. In one configuration, this cooling can be performed by a Charge air cooling takes place, which is the ambient air drawn in by the compressor stage cools.
- Another preferred embodiment has active piston cooling, at which the first air blades are arranged centrally below the working piston, wherein the working pistons have a U-shaped cooling channel.
- This cooling channel is In terms of flow technology, one end is arranged in front of the compressor stage Intake side and with the opposite end with that behind the compressor stage arranged pressure side connected. Due to the pressure drop along the In this embodiment, the compressor axis will have an air flow through it Form cooling channel. This is a simple and efficient cooling of the Working piston guaranteed.
- the work wheel can also drive the counter wheel via other drive means.
- This can be, for example, a drive chain which, in the manner of a timing chain conventional reciprocating engines in the ring gear of the work wheel with the complementary ring gear of the counter wheel instead of an immediate toothing combines.
- the only important thing here is the correct interpretation of the Translation ratio, since it must be guaranteed at all times that the Engage the working piston in the working piston recess, which is due to this required speed ratio is realized.
- FIG. 1 to 3 show a rotary piston internal combustion engine in which in a working wheel 2 with a housing 1 provided with a plurality of cooling fins is rotatably mounted.
- the working wheel carries four working pistons 3, which are in operation continuously on a counter wheel 4 run to and away from this, with a 4 in the counter gear Working piston recess 5 is provided so that the working piston 3 with the Combing counter gear 4 in the manner of gears.
- the working pistons 3 engage in the working piston recess 5, which is designed so that there is a rolling of the front and outer edge of the piston on the inner contour of the working piston recess results.
- Counter wheel 4 which is arranged such that the outer running surface of the counter wheel 4 and the working wheel 2 each roll on each other, so here the counter wheel 4 rotates clockwise while the work wheel 2 rotates counterclockwise.
- This combustion chamber is limited by the inner facing the counter wheel 4 Side of the working piston 3, part of the tread of the counter wheel 4 and the inner wall of the working wheel 2 and the wall of the housing 1.
- This housing 1 is designed on its side facing the work wheel 2 so that there is a fine tread like a cylinder liner for the Piston 3 results.
- the housing 1 either in the be processed according to the quality or have a standard, which in the Housing 1 is used and the required type of cylinder liner Offers surface quality and tread.
- the housing 1 or the standard of the Housing 1 offer a receptacle for the counter wheel 4, which also has a tread for the largely gas-tight system of the counter wheel 4 on the side wall of the Housing 1 offers. Under the counter wheel 4, a reservoir 12 is arranged, the Operation will be described below.
- an advance outlet and an inlet 13 for the Purge air and an outlet 14 for a mixture of exhaust gas and purge air When viewed in the direction of rotation, an advance outlet and an inlet 13 for the Purge air and an outlet 14 for a mixture of exhaust gas and purge air. Further in Seen in the direction of rotation is an air inlet or an inlet for a fuel-air mixture provided on the for the renewed combustion process compressing gas can be sucked.
- the work wheel 2 consists essentially of a pulley-like Construction shown in section in the figures.
- the working piston 3 are arranged equidistantly, which here from flat webs are formed, the annular channel of the working wheel 2 in here divide four segments.
- the inner wall of the housing 1 or a standard of the housing 1 results in a closed space in each case Shape of a toroidal segment with a rectangular cross section, which is caused by the rotation of the Working wheel 2 is moved around the axis of rotation.
- the Specification does not preclude that through inlet or outlet openings a gas exchange with the outside can take place.
- the work wheel 2 has first air blades 6, so that it inner area is designed in the manner of a turbine wheel. These air blades 6 are with their outer ends with the groove-shaped outer area and with inner Ends connected to an inner hub.
- the first air blades 6 are preferred arranged concentrically and symmetrically to the axis of rotation R. About in the case of used first air blades 6 and their position relative to medium flowing through the compression ratio, that is behind the Working wheel in the housing prevailing pressure can be set.
- the operation of the first air blades is best shown in FIG. 2 and 3 too detect.
- the air from the left side of the housing 1 passes through the rotation of the drive wheel 2 sucked air through an inner Flow channel flows through.
- the air drawn in and compressed in this way collects in an air collection container (not shown here), which is fluidically connected an air inlet of the housing 1 into the channel of the working wheel 2 near the combustion chamber connected is.
- compressed air can be provided without the need for additional components for compression.
- the motor has a second compressor stage which is operated by a Gear ring 10 is formed, which is placed on the shaft holding the drive wheel 2 is.
- This ring gear 10 actually has the function of driving the counter wheel 4 and similar to the drive wheel 2, has an inner area which is connected to the second Air blades 9 is provided and can be flowed through by gaseous medium.
- FIG. 1 to 3 shown embodiment is only a principle Representation of a single cylinder, but is already fully functional.
- Prefers However, several work wheels are used, both on a common Output shaft 8 as well as be arranged side by side on several shafts can. In this way, multi-row or multi-stage motors with one Multiple combustion chambers possible.
- a motor can also be formed, which has two combustion chambers per working wheel 2.
- the only important thing here is The fact that behind the counter gear 4, the functional areas described here for Expulsion and flushing of the combustion residues and in front of the counter wheel 4 Precautions for filling with ambient air and compressing the Combustion air are provided.
- Behind the counter wheel 4 is one Injection nozzle arranged, for example, diesel fuel or kerosene can be injected into the combustion chamber.
- FIG. 4 shows that Working wheel 2 in a position in the pre-compressed ambient air in the later Combustion chamber, i.e. has entered the groove of the work wheel 2.
- This gas volume which is under increased pressure relative to the ambient pressure, becomes now by further rotation of the work wheel 2 in the direction of the counter wheel 4 transported and by further collision of the working piston 3 on the counter wheel 4 increasingly reduced in size.
- the compression of the Gas volume on so that in a preferred embodiment, for example builds up a pressure of approx. 40 bar due to a compression ratio of 1:20.
- the side Pressure reservoir opened so that the compressed medium is in this reservoir can flow in easier relaxation.
- this torus segment fills with the while relaxing compressed medium, which now have a pressure of 30 bar, for example can.
- a further rotation of the work wheel 2 by a few angular degrees causes Moving the lateral inlet opening away from the outlet of the pressure reservoir 12, that the torus segment completely to form a closed combustion chamber is closed.
- Ignition device can already be ignited provided the enclosed medium is a fuel-air mixture.
- a diesel engine is preferred
- Direct injection used there is an injection nozzle behind the counter wheel 4 provided, for example in FIG. 1 is shown. In the case of direct injection in the case shown, the gasoline becomes tangential along the surface of the counter wheel 4 injected.
- the shape of the side walls and the Bottom of the groove-shaped channel according to the flow requirements be modified. So it is possible, for example, that instead of here shown planes on surfaces of counter wheel 4 and groove base of drive wheel 2 a slightly spherical configuration of the counter wheel 4 and a corresponding one negative shape of the groove base of the drive wheel 2 is selected. Also the Injection angle relative to the two directions perpendicular to the axis of rotation R des Drive wheel 2 can be modified depending on the requirement to a possible to guarantee 100 percent and therefore low-pollution combustion.
- the drive wheel 2 is rotated further, so that initially a side pollutant outlet comes into flow contact with the combustion chamber. hereby
- the first exhaust gases already escape, which are the usual exhaust gas cleaning and exhaust systems can be supplied.
- a further rotation of the work wheel 2 causes the chamber volume possibly still filled with residual gases is congruent with a Inlet 13 is brought to which a pressurized ambient air volume is created. When the chamber comes into contact with flow, this inlet 13 flows Ambient air then enters the chamber and can pass through an outlet 14 below Exit the gas residues to flush them out completely.
- the working pistons 3 are designed with their outer contour so that in the upper Area is a large expansion, which is an automatic seal with the inner running surface of the housing 1 results. Additional sealants such as Piston rings in the case of a reciprocating piston engine are not required.
- the work wheel 2 is mounted in the housing 1 via slide bearing 11.
- the pre-compressed gaseous media can be compressed by the work wheel itself.
- the work wheel has one within the toroidal work area Design according to the shape of a turbine wheel.
- This turbine wheel is made by first air blades 6 are formed, which suck ambient air from the environment and provide compressed in a chamber volume.
- a second compressor stage can be provided which additionally compresses the air, the chamber volume is both with the purge air inlet 13 and with the inlet connected for the gaseous medium to be compressed.
- the gaseous medium is under a pressure of, for example 2.5 bar relative to the environment. This causes a quick and safe inflow of the Ambient air into the respective volumes of the annular body without being long Opening times of the valves would be required.
- FIG. 10 shows a schematic diagram of a single-engine with only one drive wheel 2 and a counter wheel 4.
- FIG. 11 shows an expansion of the engine with two Drive wheels 2, which use a common counter wheel 4 for building the function.
- FIG. 12 shows a star-shaped structure of a three-barrel motor, which also uses a common counter gear. This structure is particularly advantageous because the Compensate for the axial load on the bearing of the counter wheel 4. In in this case, the bending stress on the bearing of the counter wheel 4 is minimized, which has positive effects on both wear and bearing losses Has.
- a common Rotation shaft also several drive wheels can be arranged one behind the other, so that there is a multi-stage motor with several drive wheels 2, which by one common axis of rotation R are rotatably mounted.
- each of the Drive wheels 2 interact with a counter wheel 4, but it is also possible that instead of several counter wheels 4 a roller-like configuration of the Counter wheel 4 is used, this one counter wheel 4 then used with all Driving wheels works together.
- the latter configuration is of course only possible when the angular position of the working piston 3 for all drive wheels 2 each is identical.
- a rotation of the drive wheels 2 relative to one another leads to a rounder running of the engine and so the higher effort for storage justify the different counter wheels 4.
- FIG. 13, 14 and 15 show a multi-row engine like the one above has been described. All drive wheels are flowed through and point one turbine wheel each.
- the one available behind the turbine wheel Overpressure can either be directly to the respective openings of the drive wheels be guided or behind the turbine wheel stack in a common reservoir be directed from where it can be fed from the corresponding openings.
- FIG. 18 shows the housing without the drive wheel 2, so that the reservoir 12 and the opposite exhaust gas discharge can be seen. At the center of the The second compressor stage with the second air blades 9 can be seen in the housing.
- FIG. 19 shows, on the other hand, that shown in FIG. 18 not shown part of the engine with the Counter gear 4 and drive gear 2.
- the counter gear 4 rotates twice as fast here like the drive wheel 2, so that engagement of the working piston 3 in the Piston recesses 5 is securely guaranteed.
- FIG. 20 shows a side view of the device shown in FIGS. 18 and 19 shown motor, at the reservoir 12 is particularly well recognizable.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Supercharger (AREA)
- Valve Device For Special Equipments (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Toys (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
- Transmission Devices (AREA)
Description
- Fig. 1
- zeigt einen senkrecht zur Rotationsachse des Arbeitskolbens geführten Schnitt durch ein erstes Ausführungsbeispiel eines Drehkolben-Verbrennungsmotors, wobei das Arbeitsrad vier Arbeitskolben trägt und ein Gegenrad mit einer Arbeitskolbenausnehmung vorgesehen ist,
- Fig. 2
- zeigt einen entlang der Linie A-A in Fig. 1 durch den Drehkolben-Verbrennungsmotor gemäß Fig. 1 geführten Schnitt,
- Fig. 3
- zeigt einen entlang der Linie B-B in Fig. 1 durch den Drehkolben-Verbrennungsmotor gemäß Fig. 1 geführten Schnitt,
- Fig. 4
- zeigt schematisch den ersten Arbeitsschritt beim Betrieb eines erfindungsgemäßen Drehkolben-Verbrennungsmotors, nämlich das Zuführen von vorverdichteter Luft in den zwischen zwei Arbeitskolben, dem Gehäuse und dem Arbeitsrad gebildeten Raum,
- Fig. 5
- zeigt schematisch den zweiten Arbeitsschritt beim Betrieb eines erfindungsgemäßen Drehkolben-Verbrennungsmotors, nämlich das Verdichten der Luft und Einleiten der verdichteten Luft in ein hier nicht dargestelltes Reservoir,
- Fig. 6
- zeigt schematisch den dritten Arbeitsschritt beim Betrieb eines erfindungsgemäßen Drehkolben-Verbrennungsmotors, nämlich das Zünden eines Kraftstoff-Luft-Gemischs,
- Fig. 7
- zeigt schematisch den vierten Arbeitsschritt beim Betrieb eines erfindungsgemäßen Drehkolben-Verbrennungsmotors, nämlich das Expandieren der von Gegenrad, Arbeitskolben, Arbeitsrad und Gehäuse gebildeten Brennraum durch Drehen des Arbeitskolbens,
- Fig. 8
- zeigt schematisch den fünften Arbeitsschritt beim Betrieb eines erfindungsgemäßen Drehkolben-Verbrennungsmotors, nämlich das Ausleiten der Abgase aus dem Brennraum durch einen im Gehäuse gebildeten ersten Auslass,
- Fig. 9
- zeigt schematisch den sechsten Arbeitsschritt beim Betrieb eines erfindungsgemäßen Drehkolben-Verbrennungsmotors, nämlich das Spülen des Raumes, in dem zuvor die Verbrennung stattgefunden hat, durch Einleitung von vorverdichteter Luft,
- Fig. 10
- zeigt rein schematisch eine mögliche Anordnung von Gegenrad, Arbeitsrad und einem gesonderten Abtrieb, gesehen in Richtung der Rotationsachse des Arbeitsrades,
- Fig. 11
- zeigt rein schematisch eine, ein Gegenrad, zwei Arbeitsräder und einen gesonderten Abtrieb umfassende Anordnung, gesehen in Richtung der Rotationsachse der Arbeitsräder,
- Fig. 12
- zeigt rein schematisch eine, ein Gegenrad und drei Arbeitsräder umfassende Anordnung, gesehen in Richtung der Rotationsachse der Arbeitsräder,
- Fig. 13
- zeigt rein schematisch einen Drehkolben-Verbrennungsmotor mit einem Arbeitsrad, gesehen senkrecht zur Richtung der Rotationsachse des Arbeitsrades,
- Fig. 14
- zeigt rein schematisch einen Drehkolben-Verbrennungsmotor mit zwei entlang einer gemeinsamen Rotationsachse angeordneten Arbeitsrädern, gesehen senkrecht zur Richtung der Rotationsachse der Arbeitsräder,
- Fig. 15
- zeigt rein schematisch einen Drehkolben-Verbrennungsmotor mit drei entlang einer gemeinsamen Rotationsachse angeordneten Arbeitsrädern, gesehen senkrecht zur Richtung der Rotationsachse der Arbeitsräder,
- Fig. 16
- zeigt schematisch die Zuführung von Luft in die und die Ableitung von Luft aus den zwischen Arbeitsrad, Gehäuse und Arbeitskolben gebildeten Räumen, gesehen in Richtung der Rotationsachse des Arbeitsrades,
- Fig. 17
- zeigt schematisch die Zuführung von Luft durch das Arbeitsrad und die Ableitung von Luft aus einem zwischen Arbeitsrad, Gehäuse und Arbeitskolben gebildeten Raum, gesehen senkrecht zur Richtung der Rotationsachse der Arbeitsräder,
- Fig. 18
- zeigt eine Draufsicht auf ein zweites Ausführungsbeispiel eines erfindungsgemäßen Drehkolben-Verbrennungsmotors mit einem nur schematisch angedeuteten gesonderten Abtrieb, gesehen in Richtung der Rotationsachse des Laufrades,
- Fig. 19
- zeigt einen quer zur Rotationsachse des Laufrades geführten Schnitt durch den Drehkolben-Verbrennungsmotor gemäß Fig. 18 und
- Fig. 20
- zeigt eine schematisierte Seitenansicht des Drehkolben-Verbrennungsmotors gemäß Fig. 18.
- 1
- Gehäuse
- 2
- Arbeitsrad
- 3
- Arbeitskolben
- 4
- Gegenrad
- 5
- Arbeitskolbenausnehmung
- 6
- Erste Luftschaufeln
- 7
- Brennraum
- 8
- Abtriebswelle
- 9
- Zweite Luftschaufel
- 10
- Zahnkranz
- 11
- Gleitlager
- 12
- Reservoir
- 13
- Einlass
- 14
- Auslass
- 15
- Einspritzdüse
- R
- Rotationsachse
Claims (10)
- Drehkolben-Verbrennungsmotor miteinem Gehäuse (1 ),wenigstens einem um eine Rotationsachse (R) in dem Gehäuse (1) drehbaren Arbeitsrad (2),wenigstens einem an dem Arbeitsrad (2) vorgesehenen Arbeitskolben (3) zum Ansaugen und Verdichten von Luft oder eines Kraftstoff-Luft-Gemischs und zur Umsetzung des bei der Verbrennung eines Kraftstoff-Luft-Gemischs entstehenden Gasdrucks in mechanische Energie,wenigstens einem Gegenrad (4) mit wenigstens einer Arbeitskolbenausnehmung (5),wenigstens einem Brennraum (7) zur Verbrennung eines Kraftstoff-Luft-Gemischs,wobei der wenigstens eine Brennraum (7) im Betrieb fortwährend neu zwischen Arbeitskolben (3), Arbeitsrad (2), Gegenrad (4) und Gehäuse (1) gebildet wird undwobei die ersten Luftschaufeln (6) nach Art von Speichen Teil des Arbeitsrades sind und im Betrieb das Kraftstoff-Luft-Gemisch oder die Luft durch das Arbeitsrad (2) saugen,daß das Arbeitsrad (2) riemenscheibenartig ausgebildet ist und über wenigstens einen durch den oder die Arbeitskolben (3) unterbrochenen, ansonsten ringförmig umlaufenden Kanal verfügt unddaß jeder Arbeitskolben fest in einem solchen Kanal eines Arbeitsrades angeordnet ist.
- Drehkolben-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß jeder Arbeitskolben (3) als flacher Steg ausgebildet ist.
- Drehkolben-Verbrennungsmotor nach Anspruch 1 oder 2, wobei wenigstens zwei Arbeitskolben an einem Arbeitsrad angeordnet sind, dadurch gekennzeichnet, daß die Arbeitskolben (3) äquidistant in dem ringförmig umlaufenden Kanal des Arbeitsrades (2) angeordnet sind und den Kanal in gleich große Segmente unterteilen.
- Drehkolben-Verbrennungsmotor nach Anspruch 3, dadurch gekennzeichnet, daß das Gegenrad derart ausgebildet ist, daß beim Betrieb des Motors seine Winkelgeschwindigkeit höher ist als die Winkelgeschwindigkeit des zugehörigen Arbeitsrades.
- Drehkolben-Verbrennungsmotor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Abtriebswelle (8) vorgesehen ist, deren Rotationsachse (R) identisch mit der Rotationsachse (R) des Arbeitsrades (2) ist.
- Drehkolben-Verbrennungsmotor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß eine Anzahl drehantreibbarer zweiter Luftschaufeln (9) zur weiteren Vorverdichtung der Luft oder des Kraftstoff-Luft-Gemischs vorgesehen sind.
- Drehkolben-Verbrennungsmotor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein Reservoir (12) zur Aufnahme der im Betrieb von einem der Arbeitskolben (3) komprimierten Luft bzw. des komprimierten Kraftstoff-Luft-Gemischs beim Durchgang des Arbeitskolbens (3) durch das Gegenrad (4) vorgesehen ist.
- Drehkolben-Verbrennungsmotor nach Anspruch 7, dadurch gekennzeichnet, daß das Reservoir (12) im Gegenrad angeordnet ist.
- Drehkolben-Verbrennungsmotor nach einem der Ansprüche 1 bis 8 mit wenigstens zwei an einem gemeinsamen Arbeitsrad (2) angeordneten Arbeitskolben (3), dadurch gekennzeichnet, daß in dem Gehäuse (1) wenigstens ein Einlaß (13) und ein Auslaß (14) derart ausgebildet sind, daß sie in bestimmten Rotationsstellungen zweier benachbarter Arbeitskolben (3) gleichzeitig geöffnet sind, so daß Spülluft durch den Einlaß (13) in den zwischen den beiden benachbarten Arbeitskolben (3), dem Gehäuse (1) und dem Arbeitsrad (2) gebildeten Raum geleitet werden und evtl. in dem Raum vorhandene Abgase aus dem Auslaß (14) drücken kann.
- Drehkolben-Verbrennungsmotor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß er als mehrreihiger Motor mit wenigstens zwei, hintereinander und um eine gemeinsame Rotationsachse (R) drehbar gelagerten Arbeitsrädern (2) ausgebildet ist, denen jeweils ein Gegenrad (4) zugeordnet ist.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10055906 | 2000-11-10 | ||
DE10055906 | 2000-11-10 | ||
DE10119146 | 2001-04-19 | ||
DE10119146 | 2001-04-19 | ||
PCT/DE2001/004173 WO2002038917A1 (de) | 2000-11-10 | 2001-11-08 | Drehkolben-verbrennungsmotor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1339952A1 EP1339952A1 (de) | 2003-09-03 |
EP1339952B1 true EP1339952B1 (de) | 2004-10-06 |
Family
ID=26007630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01993746A Expired - Lifetime EP1339952B1 (de) | 2000-11-10 | 2001-11-08 | Drehkolben-verbrennungsmotor |
Country Status (7)
Country | Link |
---|---|
US (1) | US6672274B2 (de) |
EP (1) | EP1339952B1 (de) |
AT (1) | ATE278868T1 (de) |
AU (2) | AU1690502A (de) |
CA (1) | CA2428565C (de) |
DE (2) | DE50104043D1 (de) |
WO (1) | WO2002038917A1 (de) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8272854B2 (en) * | 2004-05-03 | 2012-09-25 | Castronovo Charles A | Vacuum cleaners especially quiet vacuum cleaners, pumps, and engines |
US7059294B2 (en) * | 2004-05-27 | 2006-06-13 | Wright Innovations, Llc | Orbital engine |
US7398757B2 (en) * | 2004-08-04 | 2008-07-15 | Bowley Ryan T | Toroidal engine method and apparatus |
US6860251B1 (en) | 2004-09-11 | 2005-03-01 | Tommey Reed | Rotary piston engine |
US7621255B2 (en) | 2005-08-03 | 2009-11-24 | E3P Technologies, Inc. | Toroidal engine method and apparatus |
US20070137609A1 (en) * | 2005-12-21 | 2007-06-21 | Morse Dewey J | True rotary internal combustion engine |
WO2008014586A1 (en) * | 2006-08-03 | 2008-02-07 | Arthur Isbrecht | Rotary internal combustion engine with a circular rotor |
US8151759B2 (en) * | 2006-08-24 | 2012-04-10 | Wright Innovations, Llc | Orbital engine |
US20100050981A1 (en) * | 2008-09-04 | 2010-03-04 | Ivas Richard T | Rotary internal combustion engine |
TWI391558B (zh) * | 2010-09-06 | 2013-04-01 | qin hao Zhu | 轉輪內燃機 |
US9309765B2 (en) * | 2012-03-14 | 2016-04-12 | Lumenium Llc | Rotary machine |
WO2018037197A1 (en) * | 2016-08-25 | 2018-03-01 | Sullivan Peter John | Engine |
US11384684B2 (en) | 2019-08-09 | 2022-07-12 | Astron Aerospace Llc | Rotary engine, parts thereof, and methods |
WO2022026777A2 (en) | 2020-07-29 | 2022-02-03 | Astron Aerospace Llc | Rotary engine, parts thereof, and methods |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1446079A (en) * | 1921-03-12 | 1923-02-20 | Shirley S Ford | Rotary engine |
US1507979A (en) * | 1922-01-26 | 1924-09-09 | Werner I Staaf | Rotary engine |
US2215096A (en) * | 1937-09-02 | 1940-09-17 | Clemons J Z Fanberg | Rotary internal combustion motor |
US2742882A (en) * | 1951-02-27 | 1956-04-24 | Leo F Porter | Rotary-turbine-explosion type engine |
GB992060A (en) * | 1960-11-02 | 1965-05-12 | Henry Samuel Gilbert | Improvements in or relating to rotary piston internal combustion engines and pumps |
FR1320880A (fr) * | 1962-02-01 | 1963-03-15 | Moteur à explosion à piston rotatif | |
US3401676A (en) * | 1967-09-06 | 1968-09-17 | Fritz W. Wanzenberg | Ballistic internal-combustion turbine engine |
US3940924A (en) * | 1974-10-02 | 1976-03-02 | Thomas Sanfran Miyada | Rotary engine |
DE2931943A1 (de) | 1979-08-07 | 1981-02-19 | Ernst Henkel | Aussenachsige drehkolbenmaschine |
DE3131258A1 (de) | 1981-08-07 | 1983-03-03 | Peter 2800 Bremen Scheffold | Drehkolben-verbrennungsmotor |
DE3429867A1 (de) * | 1984-08-14 | 1985-10-31 | Roland 4100 Duisburg Sonnenberg | Drehkolbengasturbine |
DE4325454C2 (de) | 1993-07-29 | 1997-02-06 | Josef Lipinski | Rotationskolben-Verbrennungsmotor |
DE4417915A1 (de) | 1994-05-21 | 1995-11-23 | Kuntzsch Volker Dr | Verbrennungsmotor mit mindestens einem drehend bewegten Kolben |
DE19606541A1 (de) * | 1996-02-22 | 1996-07-11 | Kurt Huber | Drehverschluß-Bogenverbrennungsraum-Kolbenrotor-Motor (DBK-Motor) |
-
2001
- 2001-11-08 DE DE50104043T patent/DE50104043D1/de not_active Expired - Lifetime
- 2001-11-08 AU AU1690502A patent/AU1690502A/xx active Pending
- 2001-11-08 DE DE10194849T patent/DE10194849D2/de not_active Expired - Fee Related
- 2001-11-08 WO PCT/DE2001/004173 patent/WO2002038917A1/de not_active Application Discontinuation
- 2001-11-08 CA CA002428565A patent/CA2428565C/en not_active Expired - Fee Related
- 2001-11-08 AT AT01993746T patent/ATE278868T1/de not_active IP Right Cessation
- 2001-11-08 AU AU2002216905A patent/AU2002216905B2/en not_active Ceased
- 2001-11-08 EP EP01993746A patent/EP1339952B1/de not_active Expired - Lifetime
-
2003
- 2003-05-09 US US10/249,816 patent/US6672274B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AU1690502A (en) | 2002-05-21 |
CA2428565C (en) | 2007-08-28 |
US6672274B2 (en) | 2004-01-06 |
WO2002038917A1 (de) | 2002-05-16 |
EP1339952A1 (de) | 2003-09-03 |
US20030159674A1 (en) | 2003-08-28 |
DE50104043D1 (de) | 2004-11-11 |
CA2428565A1 (en) | 2002-05-16 |
ATE278868T1 (de) | 2004-10-15 |
DE10194849D2 (de) | 2003-12-04 |
AU2002216905B2 (en) | 2005-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1339952B1 (de) | Drehkolben-verbrennungsmotor | |
EP1987232B1 (de) | Schwenkkolbenmaschine | |
DE3145783A1 (de) | Verbrennungsmotor | |
WO2006089576A1 (de) | Schwenkkolbenmaschine | |
EP1499799B1 (de) | Rotationskolbenmaschine | |
EP0011762B1 (de) | Rotationskolbenmotor | |
DE2143345A1 (de) | Kreiskolbenbrennkraftmaschine | |
DE2449008A1 (de) | Drehkolbenverbrennungskraftmaschine | |
EP0154205A1 (de) | Explosions-Turbinen-Motor | |
DE3331636A1 (de) | Aggregat bestehend aus einer hubkolbenmaschine und einem getriebe | |
EP0087746A1 (de) | Abgasbetriebener Rotationskolbenlader | |
DE3347859A1 (de) | Zweitakt-kolben-brennkraftmaschine | |
EP0602272B1 (de) | Rotationskolbenmaschine | |
DE20180295U1 (de) | Drehkolben-Verbrennungsmotor | |
EP1873352A1 (de) | Aufladeeinrichtung für Verbrennungskraftmaschinen | |
DE2429553A1 (de) | Kreiskolbenmotor | |
EP3084128B1 (de) | Verbrennungsmotor | |
WO2005017319A1 (de) | Ringförmige drehkolbenmaschine | |
DE885023C (de) | Brennkraftmaschine mit Zylindern, deren Achsen sich parallel zur Achse der Maschinenwelle erstrecken | |
AT408786B (de) | Kolbenverdichtervielstoffturbinenmotor | |
DE1146698B (de) | Brennkraftkolbenmaschine mit sternfoermig angeordneten umlaufenden Zylindern | |
EP3292276B1 (de) | Schwenkkolbenmaschine | |
DE2934377A1 (de) | Drehkolbenmotor | |
DE1809564A1 (de) | Kolben-Verbrennungsmotor | |
DE3237157A1 (de) | Rotationskolbenmotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030626 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041108 |
|
REF | Corresponds to: |
Ref document number: 50104043 Country of ref document: DE Date of ref document: 20041111 Kind code of ref document: P |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20041125 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050106 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050117 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050116 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20041006 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: WINTERPACHT, HUBERT Effective date: 20041130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20050707 |
|
BERE | Be: lapsed |
Owner name: *WINTERPACHT HUBERT Effective date: 20041130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050306 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20090924 Year of fee payment: 9 Ref country code: CH Payment date: 20091124 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20101126 Year of fee payment: 10 Ref country code: GB Payment date: 20101123 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101108 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111108 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20131119 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20141027 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50104043 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160601 |