EP1330597A1 - Procede de nettoyage de la face amont d'un filtre a particules - Google Patents

Procede de nettoyage de la face amont d'un filtre a particules

Info

Publication number
EP1330597A1
EP1330597A1 EP01976429A EP01976429A EP1330597A1 EP 1330597 A1 EP1330597 A1 EP 1330597A1 EP 01976429 A EP01976429 A EP 01976429A EP 01976429 A EP01976429 A EP 01976429A EP 1330597 A1 EP1330597 A1 EP 1330597A1
Authority
EP
European Patent Office
Prior art keywords
flow
filter
particle filter
cleaning
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01976429A
Other languages
German (de)
English (en)
Inventor
Jean-Philippe Zilliox
Bertrand Figueras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Systemes dEchappement SAS
Original Assignee
Faurecia Systemes dEchappement SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0014023A external-priority patent/FR2815884B1/fr
Priority claimed from FR0103179A external-priority patent/FR2821763B3/fr
Application filed by Faurecia Systemes dEchappement SAS filed Critical Faurecia Systemes dEchappement SAS
Publication of EP1330597A1 publication Critical patent/EP1330597A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0233Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles periodically cleaning filter by blowing a gas through the filter in a direction opposite to exhaust flow, e.g. exposing filter to engine air intake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D41/00Regeneration of the filtering material or filter elements outside the filter for liquid or gaseous fluids
    • B01D41/02Regeneration of the filtering material or filter elements outside the filter for liquid or gaseous fluids of loose filtering material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the present invention relates to a method for cleaning the upstream face of a particulate filter of an exhaust line of a heat engine, the filter being arranged in an envelope having an exhaust gas outlet, the method comprising a step of circulating a flow of liquid through the particle filter from its downstream face to its upstream face by considering the direction of flow of the exhaust gases in the filter.
  • Such a particulate filter is received inside a metal casing having an inlet for introducing the exhaust gases and an outlet for discharging the exhaust gases.
  • the particulate filter is formed from a filtration substrate such as silicon carbonate.
  • a filtration substrate such as silicon carbonate.
  • this substrate is delimited a succession of adjacent parallel channels, the channels being closed alternately at one or the other of their ends. The gases thus circulate through the side walls separating two adjacent channels.
  • the particle filter traps particles of. soot on its upstream surface considering the direction of flow of the exhaust gases in the exhaust line.
  • the soot particles gradually accumulate on this upstream face, thus causing a clogging of the filter.
  • metallic additives making it possible to lower the combustion temperature of the soot.
  • non-combustible residues accumulate on the upstream face of the particulate filter. These non-combustible residues are mainly composed of oxides, sulfates, and phosphates of cerium, zinc and calcium. In order to maintain engine performance and restore the filtration capacity of the particulate filter, periodic mechanical cleaning of the particulate filter is necessary.
  • a nozzle delivering a water jet of small section is introduced inside the envelope facing the downstream surface of the particle filter considering the direction d gas flow.
  • the nozzle is moved perpendicular to the downstream end surface of the particle filter, following a rosette path in order to cover the entire surface of the filter.
  • the object of the invention is to propose a method and an installation for cleaning a particulate filter which does not have the drawbacks mentioned above and which, in particular, allow rapid and efficient cleaning of the filter.
  • the subject of the invention is a method of cleaning the upstream face of a particulate filter of an exhaust line of a heat engine the flow of liquid circulated through the particulate filter a a flow rate greater than 50 liters / minute and is distributed over most of the downstream surface of the particulate filter.
  • the flow of liquid circulated through the particle filter has a flow rate between 200 l / min and 600 l / min;
  • the pressure of the liquid upstream of the downstream surface of the particulate filter is between 5 and 50 bars, and preferably between 15 and 25 bars;
  • the liquid has a temperature between 30 ° C and 70 ° C;
  • the liquid is water; - It comprises, before said step of circulating a flow of liquid through the particle filter, a step of immersing the particle filter in a bath subjected to ultrasonic vibrations;
  • the gas flow is distributed over most of the downstream surface of the particle filter; - during the step * of circulating a gas flow through the particle filter, the gas flow has a flow rate greater than 3,000 l / min and a static pressure greater than 2 bars;
  • It includes a succession of alternating stages of circulating a flow of liquid through the particle filter and stages of circulating a gaseous flow through the particle filter, of its surface downstream to its upstream surface;
  • a shutter is attached to a reduced part of the upstream face of the particle filter.
  • the invention further relates to an installation for cleaning the upstream face of a particulate filter of an exhaust line of a heat engine, characterized in that it comprises means for circulating through the particulate filter of a liquid flow having a flow rate greater than 50 liters / minute, and in that said means for circulating tion are adapted to distribute the liquid flow over most of the downstream surface of the particulate filter.
  • FIG. 1 is a schematic view of a soot regeneration equipment on the upstream face of a particulate filter shown in section;
  • FIG. 2 is a schematic view of an installation for cleaning the upstream face of a particulate filter shown in section during a first cleaning phase
  • Figure 3 is a view identical to that of Figure 1 during a second cleaning phase.
  • a particulate filter 10 of a motor vehicle disposed inside a metal casing 12.
  • the filter 10 and its casing 12 have been previously removed from the exhaust line in which they are normally installed.
  • the particulate filter 10 consists of a porous substrate in which adjacent parallel channels are delimited alternately closed on one side and the other.
  • the length of the particulate filter 10 is for example 254 mm and its diameter of 144 mm. Its volume is 4.1 I for a mass of 3,300 g.
  • the particulate filter 10 has an upstream face 14 by considering the normal direction of flow of the gases in the exhaust line.
  • the upstream face 14 designates the upstream end surface of the filter and the surface of the channels opening onto this surface.
  • the upstream face 14 of the particle filter is accessible through an open end 16 of the casing 12.
  • This open end 16 has a section substantially identical to that of the particle filter 14.
  • unburnt soot during an earlier regeneration phase may also be present on the upstream face of the filter.
  • the mass of ash, that is to say non-combustible residues on the upstream face of the filter, before cleaning, is at least 100 g.
  • the filter 10 has a downstream face 18 opposite the upstream face 14, considering the normal direction of flow of the exhaust gases in the exhaust line.
  • the envelope 12 comprises, opposite the downstream face 18 of the particle filter , a converging section 19 from the downstream face 18 of the particle filter to an outlet 20 normally used for the evacuation of the exhaust gases from of the particle filter.
  • the outlet 20 has a section corresponding substantially to that of the pipes constituting the exhaust line.
  • the unburnt soot during an earlier regeneration phase must be removed from the upstream surface 14 of the filter after it has been dismantled.
  • the regeneration equipment illustrated in Figure 1 is used.
  • This comprises a tank 21 comprising an air intake inlet equipped with a fan 22.
  • a burner 23 is disposed on a wall of the tank 21 in order to create a flame inside the tank .
  • an opening 24 is provided in the tank 21. This opening is adapted to allow connection of the envelope 12 of the particle filter from its end. open 16. Thus, the upstream face 14 of the particle filter is exposed facing the inside of the tank 21.
  • the air taken outside by the fan 22 is introduced inside the tank and is caused to circulate through the particulate filter after having been heated in contact with the flame produced by the burner 23.
  • a flow of hot air is established through the filter from its upstream face 14 to its downstream face 18. This flow of hot air is evacuated by the outlet 20 of the filter.
  • the fan 22 is suitable for an air flow of the order of 250 kg / h with a pressure between 1 and 2 bars.
  • the burner 23 is dimensioned so that the temperature of the gases on the upstream face of the particle filter is between 550 ° C and 650 ° C and is rather less than 600 ° C.
  • the flow of hot air through the particulate filter is maintained for a period of between 2 and 20 minutes, preferably 5 to 10 minutes.
  • the circulation of hot air through the filter increases the temperature of the soot present on the upstream face, causing it to burn.
  • the envelope 12 containing the particle filter 10 is removed from the tank 21.
  • the particulate filter 10 is then freed from the non-combustible residues deposited on its upstream face in the installation 25 illustrated in FIG. 2.
  • the installation intended for cleaning the particle filter 10, comprises means 25 for supplying cleaning fluid.
  • These include a reservoir 26 consisting for example of a tank containing water.
  • Means 28 for heating water of any suitable type are installed in the tank 26.
  • the outlet of the tank 26 is connected to a pump 30 advantageously consisting of a piston pump.
  • the outlet of the pump is connected to a sleeve 32 adapted to convey the flow of cleaning liquid from the reservoir 26 to the outlet 20 of the particle filter.
  • the sleeve 32 has, at its end, a connector 34 allowing the direct and sealed connection of the sleeve to the outlet 20 of the particle filter.
  • the sleeve 32 and its connector 34 have a section substantially identical to that of the outlet 20.
  • a stop valve 36 is provided at the outlet of the pump 30.
  • Air inlet means 38 under pressure are also connected to the sleeve 32, downstream of the valve 36.
  • These means 38 comprise an air compressor 40 whose outlet is connected to " an air tank 42 at variable pressure, this pressure being between 2 and 6 bars.
  • a pressure regulator 44 is interposed between the outlet of the compressor and the inlet of the tank 42.
  • the outlet of the tank 42 is connected to the sleeve 32 through a stop valve 46.
  • valves 36 and 46 are connected to control means in order to alternately connect the sleeve 32 to the water supply means 25 or to the air supply means 38.
  • the outlet 20 of the filter is connected to the sleeve 32, as illustrated in FIG. 1.
  • a flow of cleaning liquid, and advantageously of water is then circulated through the particle filter 10 from its downstream surface 18 to its upstream surface 14.
  • the flow of liquid is circulated through the filter with a flow rate greater than 50 liters / minute, the pump 30 being adapted for such a flow rate.
  • this flow rate is between 200 liters / minute and 600 liters / minute. It is preferably substantially equal to 300 liters / minute.
  • the liquid flow is distributed over most of the downstream surface 18 of the particle filter, le. volume between the downstream face 18 and the outlet 20 of the filter being completely filled with liquid.
  • the pressure of the liquid, upstream of the downstream surface 18 of the particle filter is advantageously between 5 and 50 bars. This is preferably substantially equal to 20 bars.
  • the pump 30 is adapted to impose such a pressure.
  • the liquid used for sweeping the particulate filter is water, this water being advantageously heated to a temperature between- be 30 ° C and 70 ° C. Preferably, this temperature is substantially equal to 50 ° C.
  • the water comes from the reservoir 26 fitted with the heating means 28.
  • the water can come from a running water supply network and in particular from a mixer ensuring mixing hot and cold water from two separate water supply networks at different temperatures.
  • a first step of circulating the cleaning liquid is carried out while the upstream face 14 of the particle filter is left free. This first step lasts for example 20 seconds. During this stage, the flow of liquid is permanently maintained with a flow rate and a pressure as indicated above.
  • the circulation of the flow of cleaning liquid is interrupted by means of the valve 36 illustrated in FIG. 2.
  • the valve 46 is then opened.
  • an air flow is established through the particle filter 10 from its downstream surface 18 to its upstream surface 14. This second step lasts for example 5 seconds.
  • the blowing means 60 are adapted to provide an air flow having a flow rate between 50 liters / second and 300 liters / second and preferably substantially equal to 150 liters / second.
  • the pressure upstream of the downstream surface 18 of the particle filter is between 2 and 10 bars, and is advantageously equal to substantially 5 bars.
  • a succession of stages for sweeping the water and air filter is then implemented.
  • a water sweep step and an air sweep step form a cleaning cycle.
  • a cycle of the cleaning process according to the invention advantageously lasts from 30 seconds to 50 seconds and preferably 40 seconds.
  • a cleaning cycle is repeated between 1 and 10 times and preferably about 5 times.
  • an additional cleaning step as illustrated in FIG. 3 is implemented.
  • the liquid or gas flows are maintained under the same conditions as above.
  • a shutter 50 consisting for example of a flat disc, is fitted against part of the upstream surface 14 of the particle filter.
  • This shutter 50 is carried for example by a crosspiece 52 allowing the flow of flows on either side of the shutter.
  • the shutter 50 is placed only in the extension of the outlet 20 through which the cleaning flows are introduced.
  • the shutter is advantageously attached to the central part of the upstream surface 14 of the particle filter.
  • This additional step lasts for example 20 seconds.
  • the particle filter is reassembled on the vehicle.
  • the presence of the shutter 50 causes a priority flow of the liquid at the periphery of the central region of the filter aligned with the outlet 20.
  • the regions of the upstream surface 14 of the particulate filter not covered by the shutter 50 are then firstly freed of non-combustible residues, most of the liquid flow passing through these regions of the upstream surface.
  • This additional step is preferably implemented. However, it can be deleted. ⁇
  • the latter after dismantling, is immersed with its envelope 12 in a bath subjected to ultrasonic vibrations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

L'invention concerne un procédé de nettoyage de la face amont (14) d'un filtre à particules (10) d'une ligne d'échappement d'un moteur thermique, le filtre (20) étant disposé dans une enveloppe (12) présentant une sortie (22) des gaz d'échappement. Le procédé comporte une étape de mise en circulation d'un flux de liquede au travers du filtre à particules (10) de sa face aval (18) vers sa face amont (14) en considérant le sens d'écoulement des gaz d'échappement dans le filtre. Le flux de liquide mis en circulation au travers du filtre à particules (10) a un débit supérieur à 50 litres/minute et est réparti sur l'essentiel de la surface aval (118) du filtre à particules.

Description

Procédé de nettoyage de la face amont d'un filtre à particules.
La présente invention concerne un procédé de nettoyage de la face amont d'un filtre à particules d'une ligne d'échappement d'un moteur thermique le filtre étant disposé dans une enveloppe présentant une sortie des gaz d'échappement, le procédé comportant une étape de mise en circulation d'un flux de liquide au travers du filtre à particules de sa face aval vers sa face amont en considérant le sens d'écoulement des gaz d'échappement dans le filtre.
De nos jours, il est connu dans les véhicules automobiles à moteur thermique, et notamment dans les véhicules à moteur Diesel, de prévoir un filtre à particules dans la ligne d'échappement.
Un tel filtre à particules est reçu à l'intérieur d'une enveloppe métallique présentant une entrée d'introduction des gaz d'échappement et une sortie d'évacuation des gaz d'échappement.
Le filtre à particules est formé d'un substrat de filtration tel que du carbonate de silicium. Dans ce substrat est délimitée une succession de canaux parallèles adjacents, les canaux étant obturés alternativement à l'une ou l'autre des leurs extrémités. Les gaz circulent ainsi au travers des parois latérales séparant deux canaux adjacents.
Lors du fonctionnement du moteur, le filtre à particules retient des particules de. suies sur sa surface amont en considérant le sens d'écoulement des gaz d'échappement dans la ligne d'échappement.
Les particules de suies s'accumulent progressivement sur cette face amont, provoquant ainsi un colmatage du filtre. Afin de décolmater le filtre et de garantir un fonctionnement optimal du moteur, il est connu de régénérer le filtre, ceci à intervalles réguliers. A cet effet, on provoque une combustion des suies sur la face amont du filtre à particules. Afin de favoriser la combustion des suies sur le filtre à particules, il est connu d'ajouter, dans le combustible alimentant le moteur, des additifs métalliques permettant d'abaisser la température de combustion des suies. A l'issue de régénérations successives du filtre à particules, des résidus non combustibles s'accumulent sur la face amont du filtre à particules. Ces résidus non combustibles sont composés majoritairement d'oxydes, de sulfates, et de phosphates de cérium, de zinc et de calcium. Afin de conserver les performances du moteur et de restaurer la capacité de filtration du filtre à particules, il est nécessaire de procéder à un nettoyage mécanique périodique du filtre à particules.
A cet effet, il est connu de démonter le filtre à particules et son enve- loppe de la ligne d'échappement et de procéder au nettoyage du filtre.
Suivant un procédé connu, une buse délivrant un jet d'eau de faible section, celle-ci étant de quelques millimètres, est introduite à l'intérieur de l'enveloppe en regard de la surface aval du filtre à particules en considérant le sens d'écoulement des gaz. Sous la commande de moyens de déplace- ment automatiques, la buse est déplacée perpendiculairement à la surface d'extrémité aval du filtre à particules, suivant une trajectoire en rosace afin de couvrir toute la surface du filtre.
Ce procédé nécessite le déplacement de la buse suivant toute la surface du filtre. Ce déplacement peut être malaisé voire impossible, lorsque l'enveloppe du filtre à particules présente en sortie un tronçon convergent, dont le profil est rendu irrégulier du fait des contraintes d'encombrement imposées à l'enveloppe pour son implantation sur le véhicule. De plus, le temps de nettoyage du filtre est très long puisque la buse doit parcourir toute la surface aval du filtre à particules. L'invention a pour but de proposer un procédé et une installation de nettoyage d'un filtre à particules ne présentant pas les inconvénients mentionnés ci-dessus et qui, en particulier, permettent un nettoyage rapide et efficace du filtre.
A cet effet, l'invention a pour objet un procédé de nettoyage de la face amont d'un filtre à particules d'une ligne d'échappement d'un moteur thermique le flux de liquide mis en circulation au travers du filtre à particules a un débit supérieur à 50 litres/minute et est réparti sur l'essentiel de la surface aval du filtre à particules.
Suivant des modes particuliers de mise en œuvre du procédé, celui-ci comporte l'une ou plusieurs des caractéristiques suivantes :
- le flux de liquide mis en circulation au travers du filtre à particules a un débit compris entre 200 l/min et 600 l/min ; - la pression du liquide en amont de la surface aval du filtre à particules est comprise entre 5 et 50 bars, et de préférence entre 15 et 25 bars ;
- le liquide a une température comprise entre 30°C et 70°C ;
- le liquide est de l'eau ; - il comporte, avant ladite étape de mise en circulation d'un flux de liquide au travers du filtre à particules, une étape d'immersion du filtre à particules dans un bain soumis à des vibrations ultrasonores ;
- il comporte, après ladite étape de mise en circulation d'un flux de liquide au travers du filtre à particules, une étape de mise en circulation d'un flux gazeux au travers du filtre à particules, de sa surface aval vers sa surface amont ;
- lors de l'étape de mise en circulation d'un flux gazeux au travers du filtre à particules, le flux gazeux est réparti sur l'essentiel de la surface aval du filtre à particules ; - lors de l'étape* de mise en circulation d'un flux gazeux au travers du filtre à particules, le flux gazeux a un débit supérieur à 3 000 l/min et une pression statique supérieure à 2 bars ;
- il comporte une succession d'alternances d'étapes de mise en circulation d'un flux de liquide au travers du filtre à particules et d'étapes de mise en circulation d'un flux gazeux au travers du filtre à particules, de sa surface aval vers sa surface amont ;
- on introduit le flux de liquide dans ladite enveloppe par une manche connectée à la sortie des gaz d'échappement de l'enveloppe, et en ce que la section de la manche est sensiblement égale à la section de la sortie des gaz d'échappement de l'enveloppe ; et
- pendant une partie de ladite étape de mise en circulation d'un flux de liquide au travers du filtre à particules, un obturateur est rapporté sur une partie réduite de la face amont du filtre à particules .
L'invention a en outre pour objet une installation de nettoyage de la face amont d'un filtre à particules d'une ligne d'échappement d'un moteur thermique caractérisée en ce qu'elle comporte des moyens de mise en circulation au travers du filtre à particules d'un flux de liquide ayant un débit supérieur à 50 litres/minute, et en ce que lesdits moyens de mise en circula- tion sont adaptés pour répartir le flux de liquide sur l'essentiel de la surface aval du filtre à particules.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux des- sins sur lesquels :
- la figure 1 est une vue schématique d'un équipement de régénération des suies sur la face amont d'un filtre à particules représenté en coupe ;
- la figure 2 est une vue schématique d'une installation de nettoyage de la face amont d'un filtre à particules représenté en coupe lors d'une pre- mière phase de nettoyage ; et
- la figure 3 est une vue identique à celle de la figure 1 lors d'une deuxième phase de nettoyage.
Sur les figures est représenté un filtre à particules 10 de véhicule automobile disposé à l'intérieur d'une enveloppe métallique 12. Le filtre 10 et son enveloppe 12 ont été préalablement démontés de la ligne d'échappement dans laquelle ils sont normalement installés.
Le filtre à particules 10 est constitué d'un substrat poreux dans lequel sont délimités des canaux parallèles adjacents obturés alternativement d'un côté et de l'autre. La longueur du filtre à particules 10 est par exemple de 254 mm et son diamètre de 144 mm. Son volume est de 4,1 I pour une masse de 3 300 g.
Avec un tel filtre, lorsque celui-ci est propre, la contre-pression mesurée pour une vitesse du flux égale à 12,7 m/s est de 10 kPa. Les valeurs numériques données dans la suite de la description correspondent à un tel filtre.
Elles sont applicables pour des filtres ayant des caractéristiques adaptées pour traiter un débit de gaz d'échappement de 25 à 700 kg/heure.
Le filtre à particules 10 présente une face amont 14 en considérant le sens d'écoulement normal des gaz dans la ligne d'échappement. La face amont 14 désigne la surface d'extrémité amont du filtre et la surface des ca- naux débouchant sur cette surface. La face amont 14 du filtre à particules est accessible au travers d'une extrémité ouverte 16 de l'enveloppe 12. Cette extrémité ouverte 16 présente une section sensiblement identique à celle du filtre à particules 14. Lorsque le filtre à particules est monté sur une ligne d'échappement, l'enveloppe 12 est prolongée en amont de son extrémité 16 par l'enveloppe d'un organe de purification catalytique. Après une utilisation prolongée du véhicule, la face amont 14 du filtre à particules est chargée de résidus non combustibles, dont le filtre doit être débarrassé lors de l'opération de nettoyage. En outre, des suies non brûlées lors d'une phase antérieure de régénération peuvent également être présentes sur la face amont du filtre. La masse de cendres, c'est-à-dire de résidus non combustibles sur la face amont du filtre, avant nettoyage, est d'au moins 100 g.
Le filtre 10 présente une face aval 18 opposée à la face amont 14, en considérant le sens d'écoulement normal des gaz d'échappement dans la ligne d'échappement. L'enveloppe 12 comporte, en regard de la face aval 18 du filtre à particules,, un tronçon convergent 19 depuis la face aval 18 du filtre à particules jusqu'à une sortie 20 servant normalement à l'évacuation des gaz d'échappement issu du filtre à particules.
La sortie 20 a une section correspondant sensiblement à celle des conduites constituant la ligne d'échappement.
Avant de procéder au nettoyage proprement dit du filtre, consistant en l'évacuation des résidus non combustibles, les suies non brûlées lors d'une phase antérieure de régénération doivent être éliminées de la surface amont 14 du filtre après que celui a été démonté. A cet effet, l'équipement de régénération illustré sur la figure 1 est utilisé.
Celui-ci comporte une cuve 21 comportant une entrée d'admission d'air équipée d'un ventilateur 22. En outre, un brûleur 23 est disposé sur une paroi de la cuve 21 afin de créer une flamme à l'intérieur de la cuve. Au voisinage de la flamme formée par le brûleur 23 est prévue une ouverture 24 dans la cuve 21. Cette ouverture est adaptée pour permettre une connexion de l'enveloppe 12 du filtre à particules depuis son extrémité ouverte 16. Ainsi, la face amont 14 du filtre à particules se trouve exposée en regard de l'intérieur de la cuve 21.
Pour la régénération des suies sur la face amont 14 du filtre à particules, l'air prélevé à l'extérieur par le ventilateur 22 est introduit à l'intérieur de la cuve et se trouve amené à circuler au travers du filtre à particules après avoir été chauffé au contact de la flamme produite par le brûleur 23. Ainsi, un flux d'air chaud est établi à travers le filtre de sa face amont 14 vers sa face aval 18. Ce flux d'air chaud est évacué par la sortie 20 du filtre.
Le ventilateur 22 est adapté pour un débit d'air de l'ordre de 250 kg/h avec une pression comprise entre 1 et 2 bars. Le brûleur 23 est dimensionné pour que la température des gaz sur la face amont du filtre à particules soit comprise entre 550°C et 650°C et soit plutôt inférieure à 600°C.
Le flux d'air chaud au travers du filtre à particules est entretenu pendant une durée comprise entre 2 et 20 minutes, de préférence 5 à 10 minu- tes.
La circulation d'air chaud au travers du filtre augmente la température des suies présentes sur la face amont, provoquant une combustion de celles-ci.
Après combustion complète des suies, l'enveloppe 12 contenant le filtre à particules 10 est démontée de la cuve 21.
Le filtre à particules 10 est ensuite débarrassé des résidus non combustibles déposés sur sa face amont dans l'installation 25 illustrée sur la figure 2.
L'installation, destinée au nettoyage du filtre à particules 10, comporte des moyens d'alimentation 25 en fluide de nettoyage. Ceux-ci comprennent un réservoir 26 constitué par exemple d'une citerne contenant de l'eau. Des moyens 28 de chauffage de l'eau de tout type adapté sont installés dans la citerne 26. La sortie de la citerne 26 est reliée à une pompe 30 constituée avantageusement d'une pompe à pistons. La sortie de la pompe est reliée à une manche 32 adaptée pour acheminer le flux de liquide de nettoyage issu du réservoir 26 jusqu'à la sortie 20 du filtre à particules. La manche 32 comporte, à son extrémité, un raccord 34 permettant la connexion directe et étanche de la manche à la sortie 20 du filtre à particules. La manche 32 et son raccord 34 ont une section sensiblement identique à celle de la sortie 20.
En outre, une vanne d'arrêt 36 est prévue en sortie de la pompe 30.
Des moyens d'arrivée d'air 38 sous pression sont en outre connectés à la manche 32, en aval de la vanne 36.
Ces moyens 38 comportent un compresseur d'air 40 dont la sortie est reliée à "une citerne d'air 42 à pression variable, cette pression étant comprise entre 2 et 6 bars.
Un régulateur de pression 44 est interposé entre la sortie du com- presseur et l'entrée de la citerne 42.
La sortie de la citerne 42 est reliée à la manche 32 au travers d'une vanne d'arrêt 46.
Les vannes 36 et 46 sont reliées à des moyens de commande afin de connecter alternativement la manche 32 au moyen d'alimentation en eau 25 ou au moyen d'alimentation en air 38.
A l'issue de la phase de régénération effectuée sur l'équipement de la figure 1 , la sortie 20 du filtre est reliée à la manche 32, comme illustré sur la figure 1. Un flux de liquide de nettoyage, et avantageusement d'eau, est alors mis en circulation au travers du filtre à particules 10 de sa surface aval 18 vers sa surface amont 14.
Le flux de liquide est mis en circulation au travers du filtre avec un débit supérieur à 50 litres/minute, la pompe 30 étant adaptée pour un tel débit. Avantageusement, ce débit est compris entre 200 litres/minute et 600 litres/minutes. Il est de préférence sensiblement égal à 300 litres/minute. Le flux de liquide est réparti sur l'essentiel de la surface aval 18 du filtre à particules, le. volume compris entre la face aval 18 et la sortie 20 du filtre étant intégralement rempli de liquide.
Lors de la mise en circulation du flux de liquide, la pression du liquide, en amont de la surface aval 18 du filtre à particules, est comprise avanta- geusement entre 5 et 50 bars. Celle-ci est de préférence sensiblement égale à 20 bars. La pompe 30 est adaptée pour imposer une telle pression.
Le liquide utilisé pour le balayage du filtre à particules est de l'eau, cette eau étant chauffée avantageusement à une température comprise en- tre 30°C et 70°C. De préférence, cette température est sensiblement égale à 50°C.
Dans le mode de réalisation illustré, l'eau est issue du réservoir 26 équipé des moyens de chauffage 28. Toutefois, l'eau peut être issue d'un réseau d'alimentation en eau courante et en particulier d'un mélangeur assurant un mélange d'eau chaude et d'eau froide issues de deux réseaux d'alimentation distincts en eau à des températures différentes.
Une première étape de mise en circulation du liquide de nettoyage est effectuée alors que la face amont 14 du filtre à particules est laissée libre. Cette première étape dure par exemple 20 secondes. Au cours de cette étape, le flux de liquide est maintenu en permanence avec un débit et une pression tels qu'indiqués ci-dessus.
Avantageusement, au cours de cette étape, la circulation du flux de liquide de nettoyage est interrompue au moyen de la vanne 36 illustrée sur la figure 2. La vanne 46 est alors ouverte. A partir des moyens d'alimentation en air 38, un flux d'air est établi au travers du filtre à particules 10 de sa surface aval 18 vers sa surface amont 14. Cette deuxième étape dure par exemple 5 secondes.
Les moyens de soufflage 60 sont adaptés pour fournir un flux d'air ayant un débit compris entre 50 litres/seconde et 300 litres/seconde et de préférence sensiblement égal à 150 litres/seconde. La pression en amont de la surface aval 18 du filtre à particules est comprise entre 2 et 10 bars, et est avantageusement égale à sensiblement 5 bars.
Une succession d'étapes de balayage du filtre à l'eau et à l'air est alors mise en œuvre. Une étape de balayage à l'eau et une étape de balayage à l'air forment un cycle de nettoyage.
Un cycle du procédé- de nettoyage selon l'invention dure avantageusement de 30 secondes à 50 secondes et de préférence 40 secondes.
Avantageusement, pour le nettoyage d'un même filtre, un cycle de nettoyage est répété entre 1 et 10 fois et de préférence environ 5 fois.
Avantageusement, une étape supplémentaire de nettoyage telle qu'illustrée sur la figure 3 est mise en œuvre. Lors de cette étape, les flux de liquide ou de gaz sont maintenus dans les mêmes conditions que précé- demment. Toutefois, un obturateur 50, constitué par exemple d'un disque plat, est rapporté contre une partie de la surface amont 14 du filtre à particules. Cet obturateur 50 est porté par exemple par une traverse 52 permettant l'écoulement des flux de part et d'autre de l'obturateur. Avantageusement, l'obturateur 50 est placé seulement dans le prolongement de la sortie 20 au travers de laquelle sont introduits les flux de nettoyage. En particulier, l'obturateur est rapporté avantageusement dans la partie centrale de la surface amont 14 du filtre à particules.
Cette étape supplémentaire dure par exemple 20 secondes. A l'issue des différentes étapes de nettoyage, le filtre à particules est remonté sur le véhicule.
On conçoit que la circulation d'eau et éventuellement d'air avec un débit et une pression élevés au travers du filtre à particules provoque un décrochage et une évacuation des résidus non combustibles déposés sur la surface amont 14 du filtre à particules. En particulier, ce décrochage s'effectue prioritairement dans le prolongement de la sortie 20 par laquelle le liquide de nettoyage est introduit.
Lors de l'étape supplémentaire illustrée sur la figure 3, la présence de l'obturateur 50 provoque un écoulement prioritaire du liquide à la périphérie de la région centrale du filtre alignée avec la sortie 20. Ainsi, les régions de la surface amont 14 du filtre à particules non couvertes de l'obturateur 50 sont alors prioritairement débarrassées des résidus non combustibles, l'essentiel du flux de liquide traversant ces régions de la surface amont.
Cette étape supplémentaire est de préférence mise en œuvre. Toute- fois, celle-ci peut être supprimée. ~
On constate que, lors de ces différentes étapes, le débit élevé de liquide établi au travers du filtre à particules associé à une pression élevée de celui-ci assure un décollage et une évacuation satisfaisante des résidus. De plus, la température supérieure à la température ambiante du liquide favo- rise ce décrochement.
Par ailleurs, avantageusement, avant toute circulation du liquide de nettoyage au travers du filtre à particules, celui-ci, après démontage, est immergé avec son enveloppe 12 dans un bain soumis à des vibrations ultrasonores.

Claims

REVENDICATIONS
1.- Procédé de nettoyage de la face amont (14) d'un filtre à particules
(10) d'une ligne d'échappement d'un moteur thermique, le filtre (10) étant disposé dans une enveloppe (12) présentant une sortie (22) des gaz d'échappement, le procédé comportant une étape de mise en circulation d'un flux de nettoyage au travers du filtre à particules (10) de sa face aval
(18) vers sa face amont (14) en considérant le sens d'écoulement des gaz d'échappement dans le filtre, caractérisé en ce que le flux de nettoyage mis en circulation au travers du filtre à particules (10) est réparti sur l'essentiel de la surface aval (18) du filtre à particules.
2.- Procédé selon la revendication 1 , caractérisé en ce que le flux de nettoyage est un flux de liquide dont le débit est supérieur à 50 l/min.
3.- Procédé selon la revendication 2, caractérisé en ce que le flux de liquide mis en circulation au travers du filtre à particules (10) a un débit com- pris entre 200 l/min et 600 l/min.
4.- Procédé selon la revendication 2 ou 3, caractérisé en ce que la pression du liquide en amont de la surface aval (18) du filtre à particules (10) est comprise entre 5~et"5O bars, et de préférence entre 15 et 25 bars.
5.- Procédé selon l'une quelconque des revendications 2 à 4, caracté- risé en ce que le liquide a une température comprise entre 30°C et 70°C.
6.- Procédé selon l'une quelconque des revendications 2 à 5, caractérisé en ce que le liquide est de l'eau.
7.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte, avant ladite étape de mise en circulation d'un flux de nettoyage au travers du filtre à particules (10), une étape d'immersion du filtre à particules (10) dans un bain soumis à des vibrations ultrasonores.
8.- Procédé selon l'une quelconque des revendications 2 à 7, caractérisé en ce qu'il comporte, après ladite étape de mise en circulation d'un flux de liquide au travers du filtre à particules (10), une étape de mise en circulation d'un flux gazeux au travers du filtre à particules (10), de sa surface aval (18) vers sa surface amont (14).
9.- Procédé selon la revendication 8, caractérisé en ce que, lors de l'étape de mise en circulation d'un flux gazeux au travers du filtre à particules (10), le flux gazeux est réparti sur l'essentiel de la surface aval (18) du filtre à particules (10).
10.- Procédé selon la revendication 8 ou 9, caractérisé en ce que, lors de l'étape de mise en circulation d'un flux gazeux au travers du filtre à particules (10), le flux gazeux a un débit supérieur à 3 000 l/min et une pression statique supérieure à 2 bars.
11.- Procédé selon l'une quelconque des revendications 8 à 10, ca- ractérisé en ce qu'il comporte une succession d'alternances d'étapes de mise en circulation d'un flux de liquide au travers du filtre à particules (10) et d'étapes de mise en circulation d'un flux gazeux au travers du filtre à particules (10), de sa surface aval (18) vers sa surface amont (14).
12.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on introduit le flux de nettoyage dans ladite enveloppe (12) par une manche (32) connectée à la sortie (22) des gaz d'échappement de l'enveloppe, et en ce que la section de la manche (32) est sensiblement égale à la section de la sortie (22) des gaz d'échappement de l'enveloppe.
13.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, pendant une partie de ladite étape de mise en circulation d'un flux de nettoyage au travers du filtre à particules (10), un obturateur (50) est rapporté sur une partie réduite de la face amont (14) du filtre à particules (10).
14.- Installation de nettoyage de la face amont d'un filtre à particules d'une ligne d'échappement d'un moteur thermique, caractérisée en ce qu'elle comporte des moyens (25) de mise en circulation au travers du filtre à particules (10) d'un flux de liquide ayant un débit supérieur à 50 l/min, et en ce que lesdits moyens de mise en circulation sont adaptés pour répartir le flux de liquide sur l'essentiel de la surface aval (18) du filtre à particules.
EP01976429A 2000-10-31 2001-10-12 Procede de nettoyage de la face amont d'un filtre a particules Withdrawn EP1330597A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0014023A FR2815884B1 (fr) 2000-10-31 2000-10-31 Procede de nettoyage de la face amont d'un filtre a particules
FR0014023 2000-10-31
FR0103179A FR2821763B3 (fr) 2001-03-08 2001-03-08 Procede de nettoyage de la face amont d'un filtre a particules
FR0103179 2001-03-08
PCT/FR2001/003177 WO2002036943A1 (fr) 2000-10-31 2001-10-12 Procede de nettoyage de la face amont d'un filtre a particules

Publications (1)

Publication Number Publication Date
EP1330597A1 true EP1330597A1 (fr) 2003-07-30

Family

ID=26212710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01976429A Withdrawn EP1330597A1 (fr) 2000-10-31 2001-10-12 Procede de nettoyage de la face amont d'un filtre a particules

Country Status (8)

Country Link
US (1) US7326265B2 (fr)
EP (1) EP1330597A1 (fr)
JP (1) JP4197943B2 (fr)
AU (1) AU2001295704A1 (fr)
CZ (1) CZ300623B6 (fr)
HU (1) HUP0302423A3 (fr)
PL (1) PL212112B1 (fr)
WO (1) WO2002036943A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ300623B6 (cs) * 2000-10-31 2009-07-01 Faurecia Systemes D'echappement Zpusob cištení prívodní plochy filtru na zachycování cástic a zarízení k provádení tohoto zpusobu
JP2004156500A (ja) * 2002-11-05 2004-06-03 Nisshin Kiko Kk フィルタ洗浄装置
US8057608B1 (en) 2008-09-26 2011-11-15 Research International, Inc Extraction device and methods
FR2945960B1 (fr) * 2009-06-02 2012-12-07 Faurecia Sys Echappement Procede et installation de nettoyage d'un filtre a particules d'une ligne d'echappement d'un moteur thermique
DE102009025598A1 (de) * 2009-06-19 2010-12-23 Tunap Industrie Chemie Gmbh & Co. Produktions Kg Verfahren und Vorrichtung zur Reinigung von Partikelfiltern in Abgasanlagen von Verbrennungsmotoren
GB2472104B (en) 2009-07-25 2011-09-07 Eminox Ltd Cleaning a vehicle exhaust filter
US20120266918A1 (en) * 2009-10-26 2012-10-25 Stockforsa Invest Aktiebolag Method for cleaning of particle filters
ITMI20101476A1 (it) * 2010-08-03 2012-02-04 Ecospray Technologies S R L Apparato e metodo per la rigenerazione di filtri antiparticolato per motori a combustione interna
IT1403687B1 (it) 2011-02-07 2013-10-31 Rizzitano Apparato e metodo per la rigenerazione di filtri antiparticolato usati.
WO2012155292A1 (fr) * 2011-05-16 2012-11-22 苏州派格力减排系统有限公司 Dispositif de stockage intégré pour agent réducteur scr
CA2852998A1 (fr) * 2011-10-20 2013-04-25 Mark TEVELY Procede et appareil pour le nettoyage de filtres a particules diesel
GB2511772B (en) 2013-03-12 2019-01-30 Ceramex Ltd Testing catalytic efficiency of an exhaust component
DE102015112939A1 (de) * 2015-08-06 2017-02-09 Mack Gmbh Dieselpartikelfilter-Reinigungsverfahren und -vorrichtung
KR20170133694A (ko) * 2016-05-26 2017-12-06 세메스 주식회사 유체 공급 유닛, 이를 가지는 기판 처리 장치 및 방법
KR101770686B1 (ko) * 2017-01-24 2017-08-23 박종언 자동차의 dpf 세척장치
IT201700052411A1 (it) * 2017-05-15 2018-11-15 Eugenio Rinaldo Speroni Apparato per il lavaggio di filtri antiparticolato.
KR20190020967A (ko) * 2017-08-22 2019-03-05 이재근 자동차 매연여과장치 전용 수공압 세척기
CN110947220A (zh) * 2018-09-27 2020-04-03 杭州科百特过滤器材有限公司 一种过滤器
CN111561373B (zh) 2019-02-14 2023-01-03 康明斯有限公司 用于清洁颗粒过滤器的系统和方法
DE102020133470B4 (de) 2020-12-15 2023-12-21 Mack Gmbh Reinigungsvorrichtung und Verfahren zum Reinigen einer Filteranordnung

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555466A (en) * 1978-06-27 1980-01-16 Shimizu Constr Co Ltd Exhaust gas purifier for diesel engine
JPH01159408A (ja) * 1987-09-25 1989-06-22 Asahi Glass Co Ltd ディーゼルエンジンの排気ガスの処理装置および処理方法
JPH0299112A (ja) * 1988-10-04 1990-04-11 Babcock Hitachi Kk ディーゼルエンジン排ガス処理用フィルタの再生方法
JPH0357760A (ja) * 1989-07-25 1991-03-13 Toyota Motor Corp 液圧ブースタ装置
US5065574A (en) * 1990-05-29 1991-11-19 Caterpillar Inc. Particulate trap regeneration apparatus and method
DE4134949C2 (de) * 1991-10-23 1993-12-16 Daimler Benz Ag Vorrichtung zur Wartung und Regenerierung eines Rußfilters
DE4313132C2 (de) 1993-04-22 1995-04-13 Mtu Friedrichshafen Gmbh Verfahren zur Reinigung von Partikelfiltern und Partikelfilter
JPH08260942A (ja) * 1995-03-28 1996-10-08 Hideo Yoshikawa 排気浄化装置
JP3257949B2 (ja) * 1996-05-24 2002-02-18 日野自動車株式会社 排気黒煙除去装置のフィルタ再生機構
DE19624483A1 (de) * 1996-06-19 1998-01-02 Mecana Umwelttechnik Ag Filtertuch, Filtrierverfahren und Filtriervorrichtung für die Flüssigkeitsfiltration
DE19713930C2 (de) * 1997-04-04 1999-07-29 Martin Huber Vorrichtung zur Abgasreinigung bei Verbrennungskraftmaschinen
US6010547A (en) 1998-01-13 2000-01-04 Korea Institute Of Machinery And Materials Counterflow type particulate matter filter trap system having metal fiber filter
FR2787137B1 (fr) * 1998-12-14 2001-02-23 Ecia Equip Composants Ind Auto Dispositif de depollution des gaz d'echappement
FR2794992B1 (fr) * 1999-06-17 2003-04-04 Peugeot Citroen Automobiles Sa Procede et dispositif de nettoyage d'un filtre a particules et procede de traitement d'effluents produits lors du nettoyage
CZ300623B6 (cs) * 2000-10-31 2009-07-01 Faurecia Systemes D'echappement Zpusob cištení prívodní plochy filtru na zachycování cástic a zarízení k provádení tohoto zpusobu
DE10055210A1 (de) * 2000-11-07 2002-05-08 Deutz Ag Verfahren zur Reinigung eines Partikelfilters
DE20117862U1 (de) * 2001-11-06 2003-04-10 Daimler Chrysler Ag Dieselpartikelfilter sowie Dieselmotor mit einem Dieselpartikelfilter
US7025811B2 (en) * 2002-08-23 2006-04-11 Cleaire Advanced Emission Controls Apparatus for cleaning a diesel particulate filter with multiple filtration stages
US6835224B2 (en) * 2003-01-03 2004-12-28 General Motors Corporation Open end diesel particulate trap
US20050011357A1 (en) * 2003-07-14 2005-01-20 Crawley Wilbur H. Method and system for flushing ash from a diesel particulate filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0236943A1 *

Also Published As

Publication number Publication date
JP2004513285A (ja) 2004-04-30
PL361593A1 (en) 2004-10-04
US20040045439A1 (en) 2004-03-11
AU2001295704A1 (en) 2002-05-15
JP4197943B2 (ja) 2008-12-17
CZ300623B6 (cs) 2009-07-01
HUP0302423A3 (en) 2004-07-28
US7326265B2 (en) 2008-02-05
WO2002036943A1 (fr) 2002-05-10
CZ20031196A3 (cs) 2003-10-15
PL212112B1 (pl) 2012-08-31
HUP0302423A2 (hu) 2003-10-28

Similar Documents

Publication Publication Date Title
EP1330597A1 (fr) Procede de nettoyage de la face amont d'un filtre a particules
EP1502014B1 (fr) Dispositif nettoyable de depollution des gaz d'echappement d'un moteur
WO2012052672A1 (fr) Ligne d'échappement pour véhicule automobile.
FR2787137A1 (fr) Dispositif de depollution des gaz d'echappement
FR2850704A1 (fr) Procede de post-injection de gazole pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel
WO2002066801A1 (fr) Dispositif nettoyable de depollution des gaz d'echappement d'un moteur
CA2658216A1 (fr) Bruleur et procede pour la regeneration de cartouches de filtration et dispositifs equipes d'un tel bruleur
FR2771449A1 (fr) Procede et dispositif de regeneration d'un filtre a particules
EP1836380B1 (fr) Procede et dispositif de regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur a combustion interne
EP2076659A1 (fr) Ligne d'echappement munie d'un injecteur de carburant et de moyens d'homogeneisation des gaz brules
EP1672194B1 (fr) Procédé de régénération d'un filtre à particules avec dispositif à combustion catalytique et installation de filtration utilisant un tel procédé
FR2815884A1 (fr) Procede de nettoyage de la face amont d'un filtre a particules
WO2002094415A1 (fr) Procede de nettoyage de la face amont d'un filtre a particules
WO2003093659A1 (fr) Procede de nettoyage de la face amont d'un filtre a particules
FR2821763A1 (fr) Procede de nettoyage de la face amont d'un filtre a particules
FR2829180A1 (fr) Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour un moteur diesel et dispositif de mise en oeuvre
EP1448882B1 (fr) Dispositif de filtration des gaz d echappement pour moteur diesel comprenant un support de catalyseur integre dans le moyen de filtration
WO2006077312A1 (fr) Dispositif de depollution incorporant un filtre a particules
FR2945960A1 (fr) Procede et installation de nettoyage d'un filtre a particules d'une ligne d'echappement d'un moteur thermique
WO2008034982A1 (fr) Agencement pour la depollution d'un moteur thermique comportant un conduit muni d'un element en saillie
FR2829183A1 (fr) Ligne d'echappement d'un vehicule automobile comportant un dispositif de depollution a reglage thermique
FR2853008A1 (fr) Dispositif pour le traitement des gaz issus du fonctionnement d'un moteur de vehicule automobile
FR3124220A1 (fr) Ligne d’echappement equipee d’une chambre de stockage de gaz d’echappement
FR2909708A1 (fr) Dispositif d'homogeneisation de carburant dans le gaz d'une ligne d'echappement
FR2941490A1 (fr) Ligne d'echappement de moteur a combustion interne equipee d'un systeme d'isolation thermique du filtre a particules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030501

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FIGUERAS, BERTRAND

Inventor name: ZILLIOX, JEAN-PHILIPPE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20061021