EP1307639B1 - VERFAHREN UND STEUERGERÄT ZUM BETREIBEN EINES STICKOXID (NOx)-SPEICHERKATALYSATORS - Google Patents

VERFAHREN UND STEUERGERÄT ZUM BETREIBEN EINES STICKOXID (NOx)-SPEICHERKATALYSATORS Download PDF

Info

Publication number
EP1307639B1
EP1307639B1 EP01956310A EP01956310A EP1307639B1 EP 1307639 B1 EP1307639 B1 EP 1307639B1 EP 01956310 A EP01956310 A EP 01956310A EP 01956310 A EP01956310 A EP 01956310A EP 1307639 B1 EP1307639 B1 EP 1307639B1
Authority
EP
European Patent Office
Prior art keywords
nox
msnonk
catalytic converter
storage catalytic
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01956310A
Other languages
English (en)
French (fr)
Other versions
EP1307639A1 (de
Inventor
Eberhard Schnaibel
Klaus Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1307639A1 publication Critical patent/EP1307639A1/de
Application granted granted Critical
Publication of EP1307639B1 publication Critical patent/EP1307639B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • F02D41/1465Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Definitions

  • the present invention relates to a method for operating a nitrogen oxide (NOx) storage catalytic converter of an internal combustion engine, in particular of a motor vehicle, according to claim 1, part 1.
  • nitrogen oxides generated by the internal combustion engine are stored in the storage catalytic converter in a first operating phase and nitrogen oxides stored in the storage catalytic converter are stored out of the storage catalytic converter in a second operating phase.
  • the beginning of the second operating phase is determined on the basis of a nitrogen oxide (NOx) level of the NOx storage catalytic converter wherein the NOx level is modeled using a nitrogen oxide (NOx) storage model.
  • the invention also relates to a control device for an internal combustion engine, in particular of a motor vehicle, according to claim 7, part 1.
  • the internal combustion engine can be switched back and forth by the control unit between a first operating phase, in which nitrogen oxides produced by the internal combustion engine are stored in the nitrogen oxide (NOx) storage catalytic converter, and a second operating phase, in which stored nitrogen oxides are expelled from the NOx storage catalytic converter become.
  • the control unit has first means for determining the start of the second operating phase on the basis of a nitrogen oxide (NOx) level modeled by means of a nitrogen oxide (NOx) storage model of the NOx storage catalyst on.
  • the present invention relates to a control, in particular a read-only memory or a flash memory, for such a control device.
  • the present invention relates to an internal combustion engine, in particular a motor vehicle according to the first part of claim 8.
  • the internal combustion engine has a control unit and a nitrogen oxide (NOx) storage catalytic converter.
  • the internal combustion engine can be switched back and forth by the control unit between a first operating phase, in which nitrogen oxides generated by the internal combustion engine are stored in the NOx storage catalytic converter, and a second operating phase, in which stored nitrogen oxides are expelled from the NOx storage catalytic converter.
  • the internal combustion engine has first means for determining the start of the second operating phase on the basis of a nitrogen oxide (NOx) level of the NOx storage catalytic converter modeled by means of a nitrogen oxide (NOx) storage model.
  • the invention relates to a control according to claim 6.
  • nitrogen oxide (NOx) storage catalysts are used to store the nitrogen oxide (NOx) emissions emitted by the internal combustion engine during a first operating phase (lean operation) .
  • This first operating phase of the NOx storage catalyst is also referred to as Ein untilphase.
  • Ein Grandephase With increasing duration of Ein Grandephase the efficiency of the NOx storage catalyst decreases, which leads to an increase in NOx emissions downstream of the NOx storage catalyst.
  • the cause of the decrease in efficiency is the increase in the nitrogen oxide (NOx) level of the NOx storage catalyst.
  • the NOx level can be monitored and after exceeding a predetermined threshold, the second phase of operation of the NOx storage catalyst (Aus Grande Listephase) are initiated.
  • a nitrogen oxide (NOx) storage model can be used for determining the NOx level of the NOx storage catalytic converter.
  • a reducing agent is added to the exhaust gas of the internal combustion engine, which reduces stored nitrogen oxides to nitrogen and oxygen.
  • the reducing agent for example, hydrocarbon (HC) and / or carbon monoxide (CO) can be used, which can be generated by a rich adjustment of the fuel / air mixture in the exhaust gas.
  • urea may also be added to the exhaust gas as the reducing agent. It is used to reduce the nitrogen oxide to oxygen and nitrogen ammonia from the urea. The ammonia can be obtained by hydrolysis from a urea solution.
  • the NOx level of the NOx storage catalyst depending on, inter alia, the NOx mass flow upstream of the NOx storage catalytic converter, the NOx mass flow downstream of the NOx storage catalytic converter and the temperature of the NOx storage catalytic converter. From these quantities, an efficiency of the NOx storage catalytic converter is determined, which multiplied by the NOx mass flow upstream of the NOx storage catalytic converter integrally supplies the current NOx level. As soon as the NOx level exceeds the predefinable threshold value, the second operating phase is initiated. The efficiency of the NOx storage catalyst decreases at constant boundary conditions with increasing NOx level.
  • the amount of stored NOx is regulated in a storage catalytic converter 5 of an internal combustion engine, wherein a storage model is provided with a controlled parameter Alpha.
  • This parameter alpha is integrally changed with a controller when the measured (oxygen) sensor voltage V downstream of the memory 5 during the emptying of the memory 5 at a time t ⁇ t3 (not) reaches the threshold for a rich mixture.
  • the present invention has for its object to be able to determine the NOx level of a NOx storage catalytic converter with the help of a NOx Ein headingmodells and thus the beginning and end of the second phase of operation (Aus emergephase) as accurately and reliably as possible to ensure optimum exhaust quality.
  • This object is achieved with the features according to the independent claims.
  • the invention it is therefore proposed to correct the NOx injection model by a measured value. From the measured value, a correction factor for the NOx injection model can be obtained, which can be used for diagnostic purposes. Due to the measured value of the NOx level, the with
  • the NOx injection model modeled NOx level corrected and thus the beginning and the end of the second phase of operation can be determined with a much higher accuracy. This in turn allows to go to the limit of the storage capacity of the NOx storage catalyst, d. H. make full use of the storage capacity of the NOx storage tank without exceeding it, which leads to a significantly improved exhaust gas quality.
  • the NOx storage model or the start and the end of the second operating phase are adapted to the actual emissions of the internal combustion engine.
  • the first value of the NOx mass flow downstream of the NOx storage catalytic converter be measured by means of a NOx sensor.
  • a second value of the NOx mass flow downstream of the NOx storage catalytic converter is taken from the NOx storage model and the NOx storage model is corrected as a function of the two values of the NOx mass flow.
  • a difference between the two values of the NOx mass flows is formed and the NOx injection model is corrected as a function of the difference.
  • the NOx level is determined by integrating the product of the NOx mass flow upstream of the NOx storage catalyst and an efficiency of the NOx storage catalyst in the NOx storage model.
  • the efficiency of the NOx storage catalytic converter becomes, for example, dependent on the NOx mass flow upstream of the NOx storage catalytic converter and on the temperature of the NOx storage catalytic converter determined.
  • the difference between the two values of the NOx mass flow downstream of the NOx storage catalytic converter is supplied to a controller and the NOx storage model is corrected as a function of a control variable of the controller.
  • the controller is preferably designed as an integrating (I) controller.
  • the output signal of the NOx sensor arranged downstream of the NOx storage catalytic converter is therefore not evaluated directly, for example via the absolute value, the gradient or the like, but serves to regulate the NOx injection model by means of the I controller.
  • the NOx injection model is corrected as a function of the efficiency of the NOx storage catalytic converter as the manipulated variable of the controller.
  • control element which is provided for a control unit of an internal combustion engine, in particular of a motor vehicle.
  • a program is stored on the control, which is executable on a computing device, in particular on a microprocessor, and suitable for carrying out the method according to the invention.
  • the invention is realized by a program stored on the control program, so that this provided with the program control in the same way is the invention as the method to whose execution the program is suitable.
  • an electrical storage medium can be used as the control, for example a read-only memory or a flash memory.
  • control unit proposes second means for detecting a first value of the nitrogen oxide (NOx) mass flow downstream of the NOx storage catalytic converter and third means for correcting the NOx storage model as a function of the detected first value having.
  • NOx nitrogen oxide
  • the internal combustion engine second means for detecting a first value of the nitrogen oxide (NOx) mass flow behind the NOx storage catalyst and third means for correcting the NOx Ein headingmodells in response to the detected first value.
  • NOx nitrogen oxide
  • FIG. 1 shows a direct-injection internal combustion engine 1 of a motor vehicle is shown, in which a piston 2 in a cylinder 3 back and forth.
  • the cylinder 3 is provided with a combustion chamber 4, which u.a. is limited by the piston 2, an inlet valve 5 and an outlet valve 6.
  • an intake valve 5 With the intake valve 5, an intake pipe 7 and the exhaust valve 6, an exhaust pipe 8 is coupled.
  • a fuel injection valve 9 and a spark plug 10 protrude in the combustion chamber 4. Via the injection valve 9, fuel can be injected into the combustion chamber 4. With the spark plug 10, the fuel in the combustion chamber 4 can be ignited.
  • a rotatable throttle valve 11 is housed, via which the intake pipe 7 air can be supplied.
  • the amount of air supplied is dependent on the angular position of the throttle valve 11.
  • a catalyst 12 is housed, which cleans the exhaust gases resulting from the combustion of the fuel.
  • the catalyst 12 is a nitrogen oxide (NOx) storage catalyst 12 'coupled to a 3-way catalyst 12 "as an oxygen storage.
  • NOx nitrogen oxide
  • a control unit 18 is acted upon by input signals 19, which represent operating variables of the internal combustion engine 1 measured by means of sensors.
  • the control unit 18 generates output signals 20 with which the behavior of the internal combustion engine 1 can be influenced via actuators or actuators.
  • the controller 18 is to intended to control the operating variables of the internal combustion engine 1 and / or to regulate.
  • the control unit 18 is provided with a microprocessor which has stored in a storage medium, in particular in a flash memory, a program which is adapted to perform said control and / or regulation.
  • a so-called homogeneous operation of the internal combustion engine 1 the throttle valve 11 is partially opened or closed depending on the desired torque.
  • the fuel is injected from the injection valve 9 during a suction phase caused by the piston 2 into the combustion chamber 4.
  • the throttle valve 11 air By simultaneously sucked on the throttle valve 11 air, the injected fuel is swirled and thus substantially uniformly distributed in the combustion chamber 4.
  • the fuel-air mixture is compressed during the compression phase to be ignited by the spark plug 10. Due to the expansion of the ignited fuel, the piston 2 is driven.
  • the resulting torque depends in homogeneous operation u.a. from the position of the throttle valve 11 from.
  • a so-called shift operation of the internal combustion engine 1 the throttle valve 11 is opened wide.
  • the fuel is injected from the injection valve 9 during a caused by the piston 2 compression phase in the combustion chamber 4, locally in the immediate vicinity of the spark plug 10 and in time at a suitable distance before the ignition.
  • we ignited with the help of the spark plug 10 of the fuel so that the piston 2 in the now following working phase by the expansion of the inflamed Fuel is driven.
  • the resulting torque largely depends on the injected fuel mass during shift operation.
  • the stratified operation is provided for the idle operation and the partial load operation of the internal combustion engine 1.
  • lambda is usually> 1.
  • a first operating phase the internal combustion engine 1 is operated in stratified operation and the storage catalytic converter 12 'is charged with nitrogen oxides and the 3-way catalyst 12 "with oxygen (injection phase)
  • a second operating phase the storage catalytic converter 12' and the third Pathway catalyst 12 "discharged again so that they can again absorb nitrogen oxides or oxygen in a subsequent shift operation (Aus shallphase).
  • a reducing agent is added to the exhaust gas upstream of the catalyst 12.
  • the reducing agent for example, hydrocarbons (HC), carbon monoxide (CO) or urea can be used. Hydrocarbons and carbon monoxide are generated in the exhaust gas by a rich mixture adjustment (operation of the internal combustion engine in homogeneous operation).
  • Urea can be metered controlled from a reservoir to the exhaust gas.
  • the reducing agent reduces the stored nitrogen oxides to nitrogen and oxygen. These substances exit from the catalyst 12, so that there is an excess of oxygen behind the catalyst 12 during the regeneration phase, although the internal combustion engine 1 is operated with a rich fuel / air mixture (lack of oxygen).
  • an oxygen (02) sensor 13 and after the catalyst 12 a nitrogen (NOx) sensor 14 in the exhaust pipe 8 is arranged.
  • the O2 sensor 13 reacts virtually instantaneously. Due to the prevailing excess oxygen during the shift operation in the exhaust gas, the oxygen storage locations of the catalytic converter 12 are initially almost all occupied. After switching to lack of oxygen at the beginning of the regeneration phase, the oxygen storage sites are successively freed of oxygen, which then emerges from the catalyst 12. After the catalyst 12 therefore prevails after switching to the Regeneratonsphase initially further excess oxygen.
  • FIG. 2 schematically shows a NOx storage model 30.
  • the NOx mass flow msnovk upstream of the catalytic converter 12 and an efficiency eta_sp of the NOx storage catalytic converter 12 ' are applied to the NOx injection model 30.
  • the efficiency eta_sp is dependent on u.a. the NOx mass flow msnovk before the NOx storage catalytic converter 12 ', a NOx mass flow msnonk behind the NOx storage catalytic converter 12' and the temperature of the NOx storage catalytic converter 12 'determined.
  • the efficiency eta_sp is a non-linear function of the NOx filling level mnosp of the NOx storage catalytic converter 12 'and decreases as the NOx level increases.
  • a product mnsospe of the NOx mass flow msnovk and the efficiency eta_sp is formed.
  • the product mnsospe is stored in an integrator 32 integrated.
  • the integrator 32 supplies the NOx filling level mnosp of the NOx storage catalytic converter 12 '. This is compared in a comparator 33 with a predefinable threshold schw. If the NOx level mnosp exceeds the threshold value schw, the regeneration phase of the NOx storage catalytic converter 12 'is initiated by means of a regeneration signal B_denox.
  • FIG. 3 schematically shows a method according to the invention.
  • an output signal msnonk_s of the arranged behind the catalyst 12 NOx sensor 14 is used to control the NOx injection model 30.
  • the beginning and end of the second phase of operation (regeneration phase) of the NOx storage catalyst 12 ' can be determined much more accurate and reliable , which leads to a significantly improved exhaust quality.
  • a modeled NOx mass flow msnonk_m after the catalyst 12 is modeled.
  • the modeled NOx mass flow msnonk_m results from the difference of the NOx mass flow msnovk before the catalyst 12 and the product of the NOx mass flow msnovk and the efficiency eta_sp, d. H. from msnovk ⁇ (1 - eta_sp).
  • the NOx mass flow msnovk upstream of the catalyst 12 may be measured by a NOx sensor (not shown) or taken from the NOx model.
  • control difference 34 of the control circuit shown in Figure 3 is formed.
  • the control difference 34 is supplied to an integrating I-controller 35.
  • I-controller 35 any other suitable regulators can also be used.
  • a manipulated variable 36 of the I-controller 35 is passed to an actuator 37, which varies a manipulated variable 38 in order to act in a controlled manner on the NOx injection model 30.
  • the manipulated variable 38 is the efficiency eta_sp of the NOx storage catalytic converter 12 '.

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Stickoxid (NOx)-Speicherkatalysators (12') einer Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs. Dabei werden von der Brennkraftmaschine (1) erzeugte Stickoxide (NOx) in einer ersten Betriebsphase in den Speicherkatalysator (12') eingespeichert und in den Speicherkatalysator (12') eingespeicherte Stickoxide in einer zweiten Betriebsphase aus dem Speicherkatalysator (12') ausgespeichert. Der Beginn der zweiten Betriebsphase wird anhand eines Stickoxid (NOx)-Füllstandes (mnosp) des Nox-Speicherkatalysators (12') bestimmt, der anhand eines Stickoxid (NOx)-Einspeichermodells (30) modelliert wird. Um den Anfang und das Ende der zweiten Betriebsphase möglichst genau und zuverlässig ermitteln zu können, wird vorgeschlagen, dass ein erster Wert des Stickoxid (NOx)-Massentroms (msnonk_s) hinter dem Nox-Speicherkatalysator (12') erfasst und das Nox_Einspeichermodell (30) in Abhängigkeit von dem erfassten ersten Wert (msnonk_s) korrigiert wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Stickoxid (NOx)-Speicherkatalysators einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, gemäß Anspruch 1, 1.Teil. Dabei werden von der Brennkraftmaschine erzeugte Stickoxide in einer ersten Betriebsphase in den Speicherkatalysator eingespeichert und in den Speicherkatalysator eingespeicherte Stickoxide in einer zweiten Betriebsphase aus dem Speicherkatalysator ausgespeichert..Der Beginn der zweiten Betriebsphase wird anhand eines Stickoxid (NOx)-Füllstandes des NOx-Speicherkatalysators bestimmt, wobei der NOx-Füllstand anhand eines Stickoxid (NOx)-Einspeichermodells modelliert wird.
  • Die Erfindung betrifft außerdem ein Steuergerät für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs, gemäß Anspruch 7, 1.Teil. Die Brennkraftmaschine kann von dem Steuergerät zwischen einer ersten Betriebsphase, in der von der Brennkraftmaschine erzeugte Stickoxide in den Stickoxid (NOx)-Speicherkatalysator eingespeichert werden, und einer zweiten Betriebsphase, in der eingespeicherte Stickoxide aus dem NOx-Speicherkatalysator ausgespeichert werden, hin- und hergeschaltet werden. Das Steuergerät weist erste Mittel zum Bestimmen des Beginns der zweiten Betriebsphase anhand eines mittels eines Stickoxid (NOx)-Einspeichermodells modellierten Stickoxid (NOx)-Füllstandes des NOx-Speicherkatalysators auf. Des Weiteren betrifft die vorliegende Erfindung ein Steuerelement, insbesondere ein Read-Only-Memory oder ein Flash-Memory, für ein derartiges Steuergerät.
  • Schließlich betrifft die vorliegende Erfindung eine Brennkraftmaschine, insbesondere eines Kraftfahrzeugs gemäß dem ersten Teil nach Anspruch 8. Die Brennkraftmaschine weist ein Steuergerät und einen Stickoxid (NOx)-Speicherkatalysator auf. Die Brennkraftmaschine kann zwischen einer ersten Betriebsphase, in der von der Brennkraftmaschine erzeugte Stickoxide in den NOx-Speicherkatalysator eingespeichert werden, und einer zweiten Betriebsphase, in der eingespeicherte Stickoxide aus dem NOx-Speicherkatalysator ausgespeichert werden, von dem Steuergerät hin- und hergeschaltet werden. Die Brennkraftmaschine weist erste Mittel zum Bestimmen des Beginns der zweiten Betriebsphase anhand eines mittels eines Stickoxid (NOx)-Einspeichermodells modellierten Stickoxid (NOx)-Füllstandes des NOx-Speicherkatalysators auf.
  • Außerdem betrifft die Erfindung ein Steuerelement gemäß Anspruch 6.
  • Stand der Technik
  • Bei Brennkraftmaschinen, die mit einem mageren Kraftstoff/Luft-Gemisch (Lambda > 1) betrieben werden können, werden Stickoxid (NOx)-Speicherkatalysatoren eingesetzt, um die von der Brennkraftmaschine während einer ersten Betriebsphase (Magerbetrieb) ausgestoßenen Stickoxid (NOx)-Emissionen einzuspeichern. Diese erste Betriebsphase des NOx-Speicherkatalysators wird auch als Einspeicherphase bezeichnet. Mit zunehmender Dauer der Einspeicherphase nimmt der Wirkungsgrad des NOx-Speicherkatalysators ab, was zu einem Anstieg der NOx-Emissionen hinter dem NOx-Speicherkatalysator führt. Die Ursache für die Abnahme des Wirkungsgrads liegt in der Zunahme des Stickoxid (NOx)-Füllstands des NOx-Speicherkatalysators. Der NOx-Füllstand kann überwacht und nach Überschreiten eines vorgebbaren Schwellenwertes die zweite Betriebsphase des NOx-Speicherkatalysators (Ausspeicherphase) eingeleitet werden. Zum Ermitteln des NOx-Füllstands des NOx-Speicherkatalysators kann ein Stickoxid (NOx)-Einspeichermodell eingesetzt werden.
  • Während der zweiten Betriebsphase wird dem Abgas der Brennkraftmaschine ein Reduktionsmittel hinzugegeben, das eingespeicherte stickoxide zu Stickstoff und Sauerstoff reduziert. Als Reduktionsmittel können bspw. Kohlenwasserstoff (HC) und/oder Kohlenmonoxid (CO) verwendet werden, die durch eine fette Einstellung des Kraftstoff/Luft-Gemisches in dem Abgas erzeugt werden können. Alternativ kann als Reduktionsmittel auch Harnstoff zu dem Abgas hinzugegeben werden. Dabei wird zur Reduktion des Stickoxids zu Sauerstoff und Stickstoff Ammoniak aus dem Harnstoff verwendet. Der Ammoniak kann per Hydrolyse aus einer Harnstofflösung gewonnen werden.
  • Gegen Ende der Ausspeicherphase ist ein Großteil des eingespeicherten Stickoxids reduziert und immer weniger des Reduktionsmittels trifft auf Stickoxid, das es zu Sauerstoff und Stickstoff reduzieren kann. In der Folge steigt gegen Ende der Ausspeicherphase der Anteil an Reduktionsmittel in dem Abgas hinter dem NOx-Speicherkatalysator an, der Anteil an Sauerstoff in dem Abgas hinter dem NOx-Speicherkatalysator nimmt ab. Durch eine Analyse des Abgases hinter dem NOx-Speicherkatalysator durch geeignete Abgassensoren kann das Ende der Ausspeicherphase dann eingeleitet werden, wenn der Großteil des Stickoxids aus dem NOx-Speicherkatalysator ausgespeichert worden ist.
  • Bei einem aus dem Stand der Technik bekannten NOx-Einspeichermodell wird der NOx-Füllstand des NOx-Speicherkatalysators in Abhängigkeit von u.a. dem NOx-Massenstrom vor dem NOx-Speicherkatalysator, dem NOx-Massenstrom hinter dem NOx-Speicherkatalysator und der Temperatur des NOx-Speicherkatalysators bestimmt. Aus diesen Größen wird ein Wirkungsgrad des NOx-Speicherkatalysators bestimmt, der multipliziert mit dem NOx-Massenstrom vor dem NOx-Speicherkatalysator aufintegriert den aktuellen NOx-Füllstand liefert. Sobald der NOx-Füllstand den vorgebbaren Schwellenwert überschreitet, wird die zweite Betriebsphase eingeleitet. Der Wirkungsgrad des NOx-Speicherkatalysators nimmt bei konstanten Randbedingungen mit zunehmendem NOx-Füllstand ab.
  • Nach der EP-A-0 997 626 wird die Menge des gespeicherten NOx in einem Speicherkatalysator 5 einer Brennkraftmaschine geregelt, wobei ein Einspeichermodell mit einem geregelten Parmeter Alpha vorgesehen ist. Dieser Parameter Alpha wird mit einem Regler integrierend verändert wenn die gemessen (Sauerstoff -) Sensor- Spannung V stromab des Speichers 5 während der Entleerung des Speichers 5 zu einem Zeitpunkt t < t3 (nicht) den Schwellwert für ein fettegt Gemisch erreicht.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, den NOx-Füllstand eines NOx-Speicherkatalysators mit Hilfe eines NOx-Einspeichermodells und damit Anfang und Ende der zweiten Betriebsphase (Ausspeicherphase) möglichst genau und zuverlässig bestimmen zu können, um eine optimale Abgasqualität zu gewährleisten. Diese Aufgabe wird gelöst mit den Merkmalen gemäß den unabängigen Ansprüchen.
  • Vorteile der Erfindung
  • Erfindungsgemäß wird also vorgeschlagen, das NOx-Einspeichermodell durch einen gemessenen Wert zu korrigieren. Aus dem gemessenen Wert kann ein Korrekturfaktor für das NOx-Einspeichermodell gewonnen werden, der zu Diagnosezwecken herangezogen werden kann. Durch den gemessenen Wert des NOx-Füllstands kann der mit
  • Hilfe des NOx-Einspeichermodells modellierte NOx-Füllstand korrigiert und damit auch der Anfang und das Ende der zweiten Betriebsphase mit einer wesentlich höheren Genauigkeit bestimmt werden. Das wiederum erlaubt es, an die Grenze der Speicherfähigkeit des NOx-Speicherkatalysators zu gehen, d. h. die Speicherfähigkeit des NOx-Speichers voll auszunutzen ohne sie zu überschreiten, was zu einer deutlich verbesserten Abgasqualität führt. Mit Hilfe des erfindungsgemäßen Verfahrens wird das NOx-Einspeichermodell bzw. der Anfang und das Ende der zweiten Betriebsphase den tatsächlichen Emissionen der Brennkraftmaschine angepaßt.
  • Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass der erste Wert des NOx-Massenstroms hinter dem NOx-Speicherkatalysator mittels eines NOx-Sensors gemessen wird.
  • Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird vorgeschlagen, dass ein zweiter Wert des NOx-Massenstroms hinter dem NOx-Speicherkatalysator dem NOx-Einspeichermodell entnommen wird und das NOx-Einspeichermodell in Abhängigkeit der beiden Werte des NOx-Massenstroms korrigiert wird.
  • Vorteilhafterweise wird eine Differenz der beiden Werte der NOx-Massenströme gebildet und das NOx-Einspeichermodell in Abhängigkeit der Differenz korrigiert.
  • Vorteilhafterweise wird der NOx-Füllstand durch Integration des Produkts aus dem NOx-Massenstrom vor dem NOx-Speicherkatalysator und einem Wirkungsgrad des NOx-Speicherkatalysators in dem NOx-Einspeichermodell, ermittelt. Der Wirkungsgrad des NOx-Speicherkatalysators wird bspw. in Abhängigkeit des NOx-Massenstroms vor dem NOx-Speicherkatalysator und von der Temperatur des NOx-Speicherkatalysators ermittelt.
  • Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird vorgeschlagen, dass die Differenz der beiden Werte des NOx-Massenstroms hinter dem NOx-Speicherkatalysator einem Regler zugeführt wird und das NOx-Einspeichermodell in Abhängigkeit einer Stellgröße des Reglers korrigiert wird. Der Regler ist vorzugsweise als integrierender (I)-Regler ausgebildet. Das Ausgangssignal des nach dem NOx-Speicherkatalysator angeordneten NOx-Sensors wird also nicht direkt, bspw. über den Absolutwert, die Steigung o.ä., ausgewertet, sondern dient zur Regelung des NOx-Einspeichermodells mittels des I-Reglers.
  • Schließlich wird vorgeschlagen, dass das NOx-Einspeichermodell in Abhängigkeit von dem Wirkungsgrad des NOx-Speicherkatalysators als der Stellgröße des Reglers korrigiert wird.
  • Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in Form eines Steuerelements, das für ein Steuergerät einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs vorgesehen ist. Dabei ist auf dem Steuerelement ein Programm abgespeichert, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor, ablauffähig und zur Ausführung des erfindungsgemäßen Verfahrens geeignet ist. In diesem Fall wird also die Erfindung durch ein auf dem Steuerelement abgespeichertes Programm realisiert, so dass dieses mit dem Programm versehene Steuerelement in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Programm geeignet ist. Als Steuerelement kann insbesondere ein elektrisches Speichermedium zur Anwendung kommen, bspw. ein Read-Only-Memory oder ein Flash-Memory.
  • Als eine weitere Lösung der Aufgabe der vorliegenden Erfindung wird ausgehend von dem Steuergerät der eingangs genannten Art vorgeschlagen, dass das Steuergerät zweite Mittel zum Erfassen eines ersten Werts des Stickoxid (NOx)-Massenstroms hinter dem NOx-Speicherkatalysator und dritte Mittel zur Korrektur des NOx-Einspeichermodells in Abhängigkeit von dem erfassten ersten Wert aufweist.
  • Schließlich wird zur Lösung der Aufgabe der vorliegenden Erfindung ausgehend von der Brenrikraftmaschine der eingangs genannten Art vorgeschlagen, dass die Brennkraftmaschine zweite Mittel zum Erfassen eines ersten Werts des Stickoxid (NOx)-Massenstroms hinter dem NOx-Speicherkatalysator und dritte Mittel zur Korrektur des NOx-Einspeichermodells in Abhängigkeit von dem erfassten ersten Wert aufweist.
  • Zeichnungen
  • Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung. Es zeigen:
  • Figur 1
    ein schematisches Blockschaltbild einer erfindungsgemäßen Brennkraftmaschine gemäß einer bevorzugten Ausführungsform;
    Figur 2
    einen schematischen Signallaufplan eines NOx-Einspeichermodells; und
    Figur 3
    einen schematischen Signallaufplan eines erfindungsgemäßen Verfahrens gemäß einer bevorzugten Ausführungsform.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist eine direkteinspritzende Brennkraftmaschine 1 eines Kraftfahrzeugs dargestellt, bei der ein Kolben 2 in einem Zylinder 3 hin- und herbewegbar ist. Der Zylinder 3 ist mit einem Brennraum 4 versehen, der u.a. durch den Kolben 2, ein Einlassventil 5 und ein Auslassventil 6 begrenzt ist. Mit dem Einlassventil 5 ist ein Ansaugrohr 7 und mit dem Auslassventil 6 ein Abgasrohr 8 gekoppelt.
  • Im Bereich des Einlassventils 5 und des Auslassventils 6 ragen ein Kraftstoffeinspritzventil 9 und eine Zündkerze 10 in dem Brennraum 4. Über das Einspritzventil 9 kann Kraftstoff in dem Brennraum 4 eingespritzt werden. Mit der Zündkerze 10 kann der Kraftstoff in dem Brennraum 4 entzündet werden.
  • In dem Ansaugrohr 7 ist eine drehbare Drosselklappe 11 untergebracht, über die dem Ansaugrohr 7 Luft zuführbar ist. Die Menge der zugeführten Luft ist abhängig von der Winkelstellung der Drosselklappe 11. In dem Abgasrohr 8 ist ein Katalysator 12 untergebracht, der die durch die Verbrennung des Kraftstoffs entstehenden Abgase reinigt. Bei dem Katalysator 12 handelt es sich um einen Stickoxid (NOx)-Speicherkatalysator 12', der mit einem 3-Wege-Katalysator 12" als Sauerstoffspeicher gekoppelt ist.
  • Ein Steuergerät 18 ist von Eingangssignalen 19 beaufschlagt, die mittels Sensoren gemessene Betriebsgrößen der Brennkraftmaschine 1 darstellen. Das Steuergerät 18 erzeugt Ausgangssignale 20, mit denen über Aktoren bzw. Steller das Verhalten der Brennkraftmaschine 1 beeinflusst werden kann. Unter anderem ist das Steuergerät 18 dazu vorgesehen, die Betriebsgrößen der Brennkraftmaschine 1 zu steuern und/oder zu regeln. Zu diesem Zweck ist das Steuergerät 18 mit einem Mikroprozessor versehen, der in einem Speichermedium, insbesondere in einem Flash-Memory, ein Programm abgespeichert hat, das dazu geeignet ist, die genannte Steuerung und/oder Regelung durchzuführen.
  • In einer ersten Betriebsart, einem sogenannten Homogenbetrieb der Brennkraftmaschine 1, wird die Drosselklappe 11 in Abhängigkeit von dem erwünschten Drehmoment teilweise geöffnet bzw. geschlossen. Der Kraftstoff wird von dem Einspritzventil 9 während einer durch den Kolben 2 hervorgerufenen Ansaugphase in den Brennraum 4 eingespritzt. Durch die gleichzeitig über die Drosselklappe 11 angesaugte Luft wird der eingespritzte Kraftstoff verwirbelt und damit in dem Brennraum 4 im Wesentlichen gleichmäßig verteilt. Danach wird das Kraftstoff Luft-Gemisch während der Verdichtungsphase verdichtet, um dann von der Zündkerze 10 entzündet zu werden. Durch die Ausdehnung des entzündeten Kraftstoffs wird der Kolben 2 angetrieben. Das entstehende Drehmoment hängt im Homogenbetrieb u.a. von der Stellung der Drosselklappe 11 ab. Im Hinblick auf eine geringe Schadstofentwicklung wird das Kraftstoff Luft-Gemisch möglichst auf Lambda=1 eingestellt.
  • In einer zweiten Betriebsart, einem sogenannten Schichtbetrieb der Brennkraftmaschine 1, wird die Drosselklappe 11 weit geöffnet. Der Kraftstoff wird von dem Einspritzventil 9 während einer durch den Kolben 2 hervorgerufenen Verdichtungsphase in den Brennraum 4 eingespritzt, und zwar örtlich in die unmittelbare Umgebung der Zündkerze 10 sowie zeitlich in geeignetem Abstand vor dem Zündzeitpunkt. Dann wir mit Hilfe der Zündkerze 10 der Kraftstoff entzündet, so dass der Kolben 2 in der nunmehr folgenden Arbeitsphase durch die Ausdehnung des entzündeten Kraftstoffs angetrieben wird. Das entstehende Drehmoment hängt im Schichtbetrieb weitgehend von der eingespritzten Kraftstoffmasse ab. Im Wesentlichen ist der Schichtbetrieb für den Leerlaufbetrieb und den Teillastbetrieb der Brennkraftmaschine 1 vorgesehen. Im Schichtbetrieb ist Lambda üblicherweise > 1.
  • Während einer ersten Betriebsphase wird die Brennkraftmaschine 1 im Schichtbetrieb betrieben und der Speicherkatalysator 12' wird mit Stickoxiden und der 3-Wege-Katalysator 12" mit Sauerstoff beladen (Einspeicherphase). In einer zweiten Betriebsphase (Regenerationsphase) werden der Speicherkatalysator 12' und der 3-Wege-Katalysator 12" wieder entladen, so dass sie in einem nachfolgenden Schichtbetrieb erneut Stickoxide bzw. Sauerstoff aufnehmen können (Ausspeicherphase). Während der Regenerationsphase wird vor dem Katalysator 12 ein Reduktionsmittel in das Abgas gegeben. Als Reduktionsmittel können bspw. Kohlenwasserstoffe (HC), Kohlenmonoxid (CO) oder Harnstoff verwendet werden. Kohlenwasserstoffe und Kohlenmonoxid werden im Abgas durch eine fette Gemischeinstellung (Betrieb der Brennkraftmaschine im Homogenbetrieb) erzeugt. Harnstoff kann aus einem Vorratsbehälter dem Abgas gesteuert zudosiert werden. Während der Regenerationsphase des Katalysators 12 laufen folgende Prozesse ab: Das Reduktionsmittel reduziert die gespeicherten Stickoxide zu Stickstoff und Sauerstoff. Diese Stoffe treten aus dem Katalysator 12 heraus, so dass sich hinter dem Katalysator 12 während der Regenerationsphase ein Sauerstoffüberschuss ergibt, obwohl die Brennkraftmaschine 1 mit einem fetten Kraftstoff/Luft-Gemisch (Sauerstoffmangel) betrieben wird.
  • Vor dem Katalysator 12 ist ein Sauerstoff (02)-Sensor 13 und nach dem Katalysator 12 ein Stickstoff (NOx)-Sensor 14 in dem Abgasrohr 8 angeordnet. Nach dem Umschalten auf Sauerstoffmangel (Betrieb der Brennkraftmaschine 1 mit fettem Gemisch) vor dem Katalysator 12 zu Beginn der Regenerationsphase reagiert der O2-Sensor 13 praktisch verzögerungslos. Aufgrund des während des Schichtbetriebs vorherrschenden Sauerstoffüberschusses in dem Abgas sind die.Sauerstoffspeicherplätze des Katalysators 12 zunächst nahezu alle besetzt. Nach dem Umschalten auf Sauerstoffmangel zu Beginn der Regenerationsphase werden die Sauerstoffspeicherplätze sukzessive von Sauerstoff befreit, der dann aus dem Katalysator 12 heraustritt. Hinter dem Katalysator 12 herrscht daher nach dem Umschalten in die Regeneratonsphase zunächst weiter Sauerstoffüberschuss. Nach einer von der Sauerstoffspeicherfähigkeit des Katalysators 12 abhängigen Zeitspanne ist das gesamte in dem Speicherkatalysator 12' eingespeicherte Stickoxid reduziert und der gesamte in dem Sauerstoffspeicher 12" eingespeicherte Sauerstoff entfernt, so dass auch hinter dem Katalysator 12 Sauerstoffmangel auftritt.
  • In Figur 2 ist ein NOx-Einspeichermodell 30 schematisch dargestellt. Als Eingangsgrößen liegen an dem NOx-Einspeichermodell 30 der NOx-Massenstrom msnovk vor dem Katalysator 12 und ein Wirkungsgrad eta_sp des NOx-Speicherkatalysators 12' an. Der Wirkungsgrad eta_sp wird in Abhängigkeit von u.a. dem NOx-Massenstrom msnovk vor dem NOx-Speicherkatalysator 12', einem NOx-Massenstrom msnonk hinter dem NOx-Speicherkatalysator 12' und der Temperatur des NOx-Speicherkatalysators 12' bestimmt. Der Wirkungsgrad eta_sp ist eine nichtlineare Funktion des NOx-Füllstands mnosp des NOx-Speicherkatalysators 12' und nimmt mit zunehmendem NOx-Füllstand ab.
  • In einem Multiplikator 31 wird ein Produkt mnsospe des NOx-Massenstroms msnovk und des Wirkungsgrads eta_sp gebildet. Das Produkt mnsospe wird in einem Integrator 32 aufintegriert. Als Ausgangssignal liefert der Integrator 32 den NOx-Füllstand mnosp des NOx-Speicherkatalysators 12'. Dieser wird in einem Vergleicher 33 mit einem vorgebbaren Schwellwert schw verglichen. Übersteigt der NOx-Füllstand mnosp den Schwellwert schw, wird mittels eines Regenerationssignals B_denox die Regenerationsphase des NOx-Speicherkatalysators 12' eingeleitet.
  • In Figur 3 ist ein erfindungsgemäßes Verfahren schematisch dargestellt. Bei dem Verfahren dient ein Ausgangsignal msnonk_s des hinter dem Katalysator 12 angeordneten NOx-Sensors 14 zur Regelung des NOx-Einspeichermodells 30. Dadurch kann der Anfang und das Ende der zweiten Betriebsphase (Regenerationsphase) des NOx-Speicherkatalysators 12' wesentlich genauer und zuverlässiger bestimmt werden, was zu einer deutlich verbesserten Abgasqualität führt.
  • Es wird ein modellierter NOx-Massenstrom msnonk_m nach dem Katalysator 12 modelliert. Der modellierte NOx-Massenstrom msnonk_m ergibt sich aus der Differenz des NOx-Massenstroms msnovk vor dem Katalysator 12 und dem Produkt des NOx-Massenstroms msnovk und dem Wirkungsgrad eta_sp, d. h. aus msnovk · (1 - eta_sp). Der NOx-Massenstrom msnovk vor dem Katalysator 12 kann durch einen NOx-Sensor (nicht dargestellt) gemessen oder dem NOx-Modell entnommen werden.
  • Aus einer Differenz des modellierten NOx-Massenstroms msnonk_m nach dem Katalysator 12 und des durch den NOx-Sensor 14 gemessenen NOx-Massenstroms msnonk_s nach dem Katalysator 12 wird eine Regeldifferenz 34 des in Figur 3 dargestellten Regelkreises gebildet. Die Regeldifferenz 34 wird einem integrierenden I-Regler 35 zugeführt. Statt eines I-Reglers 35 können auch beliebig andere geeignete Regeler eingesetzt werden.
  • Eine Stellgröße 36 des I-Reglers 35 wird an ein Stellglied 37 geleitet, das eine Stellgröße 38 variiert, um auf das NOx-Einspeichermodell 30 gezielt regelnd einzuwirken. Als Stellgröße 38 wird der Wirkungsgrad eta_sp des NOx-Speicherkatalysators 12' herangezogen.

Claims (8)

  1. Verfahren zum Betreiben eines Stickoxid (NOx)-Speicherkatalysators (12') einer Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, wobei von der Brennkraftmaschine (1) erzeugte Stickoxide (NOx) in einer ersten Betriebsphase in den NOx-Speicherkatalysator (12') eingespeichert und in den NOx-Speicherkatalysator (12') eingespeicherte Stickoxide in einer zweiten Betriebsphase aus dem Nox-Speicherkatalysator (12') ausgespeichert werden, der Beginn der zweiten Betriebsphase anhand eines Stickoxid (NOx)-Füllstandes (mnosp) des NOx-Speicherkatalysators (12') bestimmt wird, der NOx-Füllstand (mnosp) anhand eines Stickoxid (NOx)-Einspeichermodells (30) modelliert wird und ein erster Wert eines Stickoxid (NOx)-Massenstroms (msnonk_s) hinter dem NDx-Speicherkatalysator (12') erfasst und das NOx-Einspeichermodell (30) in Abhängigkeit von dem erfassten ersten Wert korrigiert wird, dadurch gekennzeichnet, dass ein zweiter Wert des NOx-Masseristroms (msnonk-m) hinter dem NOx-Speicherkatalysator (12') dem NOx-Einspeichermodell (30) entnommen und eine Differenz der beiden Werte der NOx-Massenströme (msnonk_m - msnonk_s) gebildet und das NOx-Einspeichermodell (30) in Abhängigkeit der Differenz (msnonk_m - msnonk_s) korrigiert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Differenz (msnonk_m - msnonk_s) der beiden Werte (msnonk_m, msnonk_s) einem Regler (35) zugeführt wird und das NOx-Einspeichermodell (30) in Abhängigkeit einer Stellgröße (38) des Reglers (35) korrigiert wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der NOx-Füllstand (mnosp) durch Integration des Produkts aus dem NOx-Massenstrom (msnovk) vor dem NOx-Speicherkatalysator (12') und einem Wirkungsgrad (eta_sp) des NOx-Speicherkatalysators (12') in dem NOx-Einspeichermodell (30) ermittelt wird.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das NOx-Einspeichermodell (30) in Abhängigkeit von dem Wirkungsgrad (eta_sp) des NOx-Speicherkatalysators (12') als der Stellgröße (38) des Reglers (35) korrigiert wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der erste Wert des NOx-Massenstroms (msnonk_s) hinter dem NOx-Speicherkatalysator (12') mittels eines NOx-Sensors (14) gemessen wird.
  6. Steuerelement, insbesondere Read-Only-Memory oder Flash-Memory, für ein Steuergerät (18) einer Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, auf dem ein Programm abgespeichert ist, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor, ablauffähig und zur Ausführung eines Verfahrens nach einem der Ansprüche 1 bis 5 geeignet ist.
  7. Steuergerät (18) für eine Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, wobei die Brennkraftmaschine (1) zwischen einer ersten Betriebsphase, in der von der Brennkraftmaschine (1) erzeugte Stickoxide (NOx) in den Stickoxid (NOx)-Speicherkatalysator (12') eingespeichert werden, und einer zweiten Betriebsphase, in der eingespeicherte Stickoxide aus dem NOx-Speicherkatalysator (12') ausgespeichert werden, von dem Steuergerät (18) hin- und herschaltbar ist, und das Steuergerät (18) erste Mittel zum Bestimmen des Beginns der zweiten Betriebsphase anhand eines mittels eines Stickoxid (NOx)-Einspeichermodells (30) modellierten Stickoxid (NOx)-Füllstandes (mnosp) des Speicherkatalysators (12'), zweite Mittel (14) zum Erfassen eines ersten Werts des Stickoxid (NOx)-Massenstroms (msnonk_s) hinter dem NOx-Speicherkatalysator (12') und dritte Mittel zur Korrektur des NOx-Einspeichermodells (30) in Abhängigkeit von dem.erfassten ersten Wert (msnonk_s) aufweist, dadurch gekennzeichnet, dass das Steuergerät (18) vierte Mittel zur Entnahme eines zweiten Werts des NOx-Massenstroms (msnonk_m) hinter dem NOx-Speicherkatalysator (12') aus dem NOx-Einspeichermodell (30) und fünfte Mittel zur Bildung einer Differenz der beiden Werte der NOx-Massenströme (msnonk_m - msnonk_s) aufweist und die dritten Mittel das NOx-Einspeichermodell (30) in Abhängigkeit der Differenz (msnonk_m - msnonk_s) korrigieren.
  8. Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, wobei die Brennkraftmaschine (1) ein Steuergerät (18) und einen Stickoxid (NOx)-Speicherkatalysator (12') aufweist und die Brennkraftmaschine (1) zwischen einer ersten Betriebsphase, in der von der Brennkraftmaschine (1) erzeugte Stickoxide (NOx) in den NOx-Speicherkatalysator (12') eingespeichert werden, und einer zweiten Betriebsphase, in der eingespeicherte Stickoxide aus dem NOx-Speicherkatalysator (12') ausgespeichert werden, von dem Steuergerät (18) hin- und herschaltbar ist, und die Brennkraftmaschine (1) erste Mittel zum Bestimmen des Beginns der zweiten Betriebsphase anhand eines mittels eines Stickoxid (NOx)-Einspeichermodells (30) modellierten Stickoxid (NOx)-Füllstandes (mnosp) des NOx-Speicherkatalysators (12'), zweite Mittel (14) zum Erfassen eines ersten Werts des Stickoxid (NOx)-Massenstroms (msnonk_s) hinter dem NOx-Speicherkatalysator (12') und dritte Mittel zur Korrektur des NOx-Einspeichermodells (30) in Abhängigkeit von dem erfassten ersten Wert (msnonk_s) aufweist, dadurch gekennzeichnet, dass die Brennkraftmaschine (1) vierte Mittel zur Entnahme eines zweiten Werts des NOx-Massenstroms (msnonk_m) hinter dem NOx-Speicherkatalysator (12') aus dem NOx-Einspeichermodell (30) und fünfte Mittel zur Bildung einer Differenz der beiden Werte der NOx-Massenströme (msnonk_m - msnonk_s) aufweist und die dritten Mittel das NOx-Einspeichermodell (30) in Abhängigkeit der Differenz (msnonk_m - msnonk_s) korrigieren.
EP01956310A 2000-07-26 2001-07-11 VERFAHREN UND STEUERGERÄT ZUM BETREIBEN EINES STICKOXID (NOx)-SPEICHERKATALYSATORS Expired - Lifetime EP1307639B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10036453 2000-07-26
DE10036453A DE10036453A1 (de) 2000-07-26 2000-07-26 Verfahren und Steuergerät zum Betreiben eines Stickoxid (NOx)-Speicherkatalysators
PCT/DE2001/002594 WO2002008582A1 (de) 2000-07-26 2001-07-11 VERFAHREN UND STEUERGERÄT ZUM BETREIBEN EINES STICKOXID (NOx)-SPEICHERKATALYSATORS

Publications (2)

Publication Number Publication Date
EP1307639A1 EP1307639A1 (de) 2003-05-07
EP1307639B1 true EP1307639B1 (de) 2006-03-15

Family

ID=7650307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956310A Expired - Lifetime EP1307639B1 (de) 2000-07-26 2001-07-11 VERFAHREN UND STEUERGERÄT ZUM BETREIBEN EINES STICKOXID (NOx)-SPEICHERKATALYSATORS

Country Status (5)

Country Link
US (1) US6889497B2 (de)
EP (1) EP1307639B1 (de)
JP (1) JP5220258B2 (de)
DE (2) DE10036453A1 (de)
WO (1) WO2002008582A1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241556B4 (de) * 2002-09-07 2013-11-14 Robert Bosch Gmbh Verfahren, Computerprogramm und Steuergerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE10241499B4 (de) * 2002-09-07 2004-09-09 Audi Ag Verfahren zur Ermittlung des Alterungsgrades eines Stickoxid-Speicherkatalysators einer Brennkraftmaschine insbesondere eines Kraftfahrzeuges
DE10307457B4 (de) * 2003-02-21 2006-10-26 Audi Ag Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators einer Brennkraftmaschine
DE10313216B4 (de) * 2003-03-25 2012-07-12 Robert Bosch Gmbh Verfahren zum Betreiben eines im Abgasbereich einer Brennkraftmaschine angeordneten Stickoxid (NOx)-Speicherkatalysators
JP2004293338A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp NOx吸蔵量の推定方法
JP4213548B2 (ja) * 2003-09-11 2009-01-21 株式会社日立製作所 エンジンの制御装置
DE10351210B4 (de) * 2003-11-03 2013-11-14 Robert Bosch Gmbh Verfahren zum Betreiben eines im Abgasbereich einer Brennkraftmaschine angeordneten Stickoxid (NOx)-Speicherkatalysators und Vorrichtung zur Durchführung des Verfahrens
DE10355037B4 (de) 2003-11-25 2013-10-10 Robert Bosch Gmbh Verfahren zum Optimieren der Abgaswerte einer Brennkraftmaschine
DE102004007523B4 (de) 2004-02-17 2007-10-25 Umicore Ag & Co. Kg Verfahren zur Bestimmung des Umschaltzeitpunktes von der Speicherphase zur Regenerationsphase eines Stickoxid-Speicherkatalysators und zur Diagnose seines Speicherverhaltens
EP1753942B1 (de) * 2004-06-08 2015-01-14 Cummins Inc. Verfahren zur änderung des auslösergrades zur adsorberregenerierung
FR2873404B1 (fr) * 2004-07-20 2006-11-17 Peugeot Citroen Automobiles Sa DISPOSITIF DE DETERMINATION DE LA MASSE DE NOx STOCKEE DANS UN PIEGE A NOx ET SYSTEME DE SUPERVISION DE LA REGENERATION D'UN PIEGE A NOx COMPRENANT UN TEL DISPOSITIF
DE102004038731A1 (de) 2004-08-10 2006-02-23 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP4215050B2 (ja) 2005-12-15 2009-01-28 トヨタ自動車株式会社 内燃機関の排気浄化システム
DE102005059893A1 (de) * 2005-12-15 2007-06-28 Robert Bosch Gmbh Verfahren und Steuergerät zur Beurteilung der Funktionsfähigkeit eines NOx-Speicherkatalysators
US7587889B2 (en) * 2006-07-11 2009-09-15 Cummins Filtration Ip, Inc. System for determining NOx conversion efficiency of an exhaust gas aftertreatment component
US7654076B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. System for controlling absorber regeneration
US7533523B2 (en) * 2006-11-07 2009-05-19 Cummins, Inc. Optimized desulfation trigger control for an adsorber
US7654079B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. Diesel oxidation catalyst filter heating system
US7594392B2 (en) * 2006-11-07 2009-09-29 Cummins, Inc. System for controlling adsorber regeneration
US7707826B2 (en) * 2006-11-07 2010-05-04 Cummins, Inc. System for controlling triggering of adsorber regeneration
US7980064B2 (en) * 2007-06-19 2011-07-19 Eaton Corporation Algorithm incorporating driving conditions into LNT regeneration scheduling
US20080314022A1 (en) * 2007-06-19 2008-12-25 Eaton Corporation Strategy for scheduling LNT regeneration
JP4576464B2 (ja) * 2008-08-05 2010-11-10 本田技研工業株式会社 排ガス浄化装置の劣化判定装置
DE102010038175A1 (de) * 2010-10-14 2012-04-19 Ford Global Technologies, Llc. Verfahren zum Anpassen einer Mager-NOx-Falle in einem Abgassystem eines Kraftfahrzeugs
DE102014209972B4 (de) 2013-07-05 2024-03-21 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Bewerten des Alterungszustandeseines NOx-Speicherkatalysators
FR3078105B1 (fr) 2018-02-16 2022-10-14 Ifp Energies Now Systeme embarque de mesure des emissions polluantes d'un vehicule avec un capteur et un systeme informatique
US10920645B2 (en) 2018-08-02 2021-02-16 Ford Global Technologies, Llc Systems and methods for on-board monitoring of a passive NOx adsorption catalyst
US20200291877A1 (en) * 2019-03-12 2020-09-17 GM Global Technology Operations LLC Aggressive thermal heating target strategy based on nox estimated feedback
CN113550835B (zh) * 2020-04-24 2023-07-25 北京福田康明斯发动机有限公司 污染物排放控制方法、系统和存储介质及行车电脑、车辆
CN114018848B (zh) * 2021-11-16 2022-11-11 无锡时和安全设备有限公司 可视化氮氧化物转化系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836523B2 (ja) * 1995-03-24 1998-12-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5894725A (en) 1997-03-27 1999-04-20 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
DE19739848A1 (de) * 1997-09-11 1999-03-18 Bosch Gmbh Robert Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE19823923C2 (de) * 1998-05-28 2003-04-17 Siemens Ag Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
DE19823921A1 (de) * 1998-05-28 1999-12-02 Siemens Ag Verfahren zur Überprüfung des Wirkungsgrades eines NOx-Speicherkatalysators
DE19828928C2 (de) * 1998-06-29 2003-04-17 Siemens Ag Verfahren zur Überwachung des Abgasreinigungssystems einer Brennkraftmaschine
DE19830829C1 (de) * 1998-07-09 1999-04-08 Siemens Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators
DE19843879C2 (de) 1998-09-25 2003-05-08 Bosch Gmbh Robert Betrieb eines Verbrennungsmotors in Verbindung mit einem NOx-Speicherkatalysator und einem NOx-Sensor
DE19843871B4 (de) * 1998-09-25 2005-05-04 Robert Bosch Gmbh Diagnose eines NOx-Speicherkatalysators mit nachgeschaltetem NOx-Sensor
FR2785331B1 (fr) * 1998-10-28 2000-12-22 Renault Procede de commande de la purge en oxydes d'azote d'un pot catalytique de traitement des gaz d'echappement d'un moteur a combustion interne
WO2000028201A1 (de) * 1998-11-09 2000-05-18 Siemens Aktiengesellschaft VERFAHREN ZUM ADAPTIEREN DER NOx-ROHKONZENTRATION EINER MIT LUFTÜBERSCHUSS ARBEITENDEN BRENNKRAFTMASCHINE
JP3376932B2 (ja) * 1998-12-15 2003-02-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6497092B1 (en) * 1999-03-18 2002-12-24 Delphi Technologies, Inc. NOx absorber diagnostics and automotive exhaust control system utilizing the same
IT1310465B1 (it) * 1999-09-07 2002-02-18 Magneti Marelli Spa Metodo autoadattativo di controllo di un sistema di scarico per motori a combustione interna ad accensione comandata.
FR2798425B1 (fr) 1999-09-13 2001-12-07 Renault Procede de commande de purge de moyens de stockage d'oxydes d'azote associes a un pot catalytique de traitement des gaz d'echappement d'un moteur a combustion interne
US6308515B1 (en) * 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6594989B1 (en) * 2000-03-17 2003-07-22 Ford Global Technologies, Llc Method and apparatus for enhancing fuel economy of a lean burn internal combustion engine
JP2001355485A (ja) * 2000-06-16 2001-12-26 Isuzu Motors Ltd 窒素酸化物吸蔵還元型触媒を備えた排気ガス浄化装置
US6546718B2 (en) * 2001-06-19 2003-04-15 Ford Global Technologies, Inc. Method and system for reducing vehicle emissions using a sensor downstream of an emission control device

Also Published As

Publication number Publication date
US20030163987A1 (en) 2003-09-04
EP1307639A1 (de) 2003-05-07
DE50109223D1 (de) 2006-05-11
JP2004504539A (ja) 2004-02-12
JP5220258B2 (ja) 2013-06-26
WO2002008582A1 (de) 2002-01-31
US6889497B2 (en) 2005-05-10
DE10036453A1 (de) 2002-02-14

Similar Documents

Publication Publication Date Title
EP1307639B1 (de) VERFAHREN UND STEUERGERÄT ZUM BETREIBEN EINES STICKOXID (NOx)-SPEICHERKATALYSATORS
EP1307640B1 (de) VERFAHREN ZUM BETREIBEN EINES STICKOXID (NOx)-SPEICHERKATALYSATORS
EP1311748B1 (de) Verfahren und modell zur modellierung einer ausspeicherphase eines stickoxid-speicherkatalysators
DE10012839B4 (de) Regenerationskraftstoffsteuerung eines NOx-Adsorbersystems
WO2002014658A1 (de) VERFAHREN UND STEUERGERÄT ZUM BESTIMMEN DES ZUSTANDS EINES STICKOXID (NOx)-SPEICHERKATALYSATORS
EP1305507B1 (de) Verfahren zum betreiben eines katalysators
DE19851843A1 (de) Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine
EP1159517B1 (de) Verfahren zum betreiben eines katalysators einer brennkraftmaschine
EP1230471B1 (de) Verfahren zum betreiben eines speicherkatalysators einer brennkraftmaschine
DE10116877B4 (de) Verfahren sowie eine Steuervorrichtung zur Steuerung eines mit einer Abgasnachbehandlungs-Vorrichtung verbundenen Verbrennungsmotors
EP1247006B1 (de) Verfahren zum betreiben eines speicherkatalysators einer brennkraftmaschine
EP1204814B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1264094A2 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
WO2001033059A1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE10241497B3 (de) Verfahren zur Steuerung des Magerbetriebs einer einen Stickoxid-Speicherkatalysator aufweisenden Brennkraftmaschine, insbesondere eines Kraftfahrzeuges
EP1159516A1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE102005012943A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
EP1540151B1 (de) Verfahren zur ermittlung des alterungsgrades eines stickoxid-speicherkatalysators einer brennkraftmaschine insbesondere eines kraftfahrzeuges
EP1540160B1 (de) Verfahren zum betreiben eines stickoxid-speicherkatalysators einer brennkraftmaschine insbesondere eines kraftfahrzeuges
EP1365131B1 (de) Verfahren zur Steuerung eines NOx-Speicherkatalysators
DE19963925A1 (de) Verfahren zum Betreiben eines Speicherkatalysators einer Brennkraftmaschine
EP1159519A1 (de) Verfahren zum betreiben eines speicherkatalysators einer brennkraftmaschine
DE102022210290A1 (de) Verfahren zur Regelung des Sauerstoff-Füllstands eines Katalysators im Abgas eines Verbrennungsmotors
DE4444972A1 (de) Elektronisches Steuersystem und Steuerverfahren für einen Motor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030226

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50109223

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160721

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170927

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180723

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109223

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731