EP1307639B1 - Procede et organe de commande de fonctionnement d'un catalyseur accumulateur d'oxydes d'azote (nox) - Google Patents

Procede et organe de commande de fonctionnement d'un catalyseur accumulateur d'oxydes d'azote (nox) Download PDF

Info

Publication number
EP1307639B1
EP1307639B1 EP01956310A EP01956310A EP1307639B1 EP 1307639 B1 EP1307639 B1 EP 1307639B1 EP 01956310 A EP01956310 A EP 01956310A EP 01956310 A EP01956310 A EP 01956310A EP 1307639 B1 EP1307639 B1 EP 1307639B1
Authority
EP
European Patent Office
Prior art keywords
nox
msnonk
catalytic converter
storage catalytic
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01956310A
Other languages
German (de)
English (en)
Other versions
EP1307639A1 (fr
Inventor
Eberhard Schnaibel
Klaus Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1307639A1 publication Critical patent/EP1307639A1/fr
Application granted granted Critical
Publication of EP1307639B1 publication Critical patent/EP1307639B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • F02D41/1465Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Definitions

  • the present invention relates to a method for operating a nitrogen oxide (NOx) storage catalytic converter of an internal combustion engine, in particular of a motor vehicle, according to claim 1, part 1.
  • nitrogen oxides generated by the internal combustion engine are stored in the storage catalytic converter in a first operating phase and nitrogen oxides stored in the storage catalytic converter are stored out of the storage catalytic converter in a second operating phase.
  • the beginning of the second operating phase is determined on the basis of a nitrogen oxide (NOx) level of the NOx storage catalytic converter wherein the NOx level is modeled using a nitrogen oxide (NOx) storage model.
  • the invention also relates to a control device for an internal combustion engine, in particular of a motor vehicle, according to claim 7, part 1.
  • the internal combustion engine can be switched back and forth by the control unit between a first operating phase, in which nitrogen oxides produced by the internal combustion engine are stored in the nitrogen oxide (NOx) storage catalytic converter, and a second operating phase, in which stored nitrogen oxides are expelled from the NOx storage catalytic converter become.
  • the control unit has first means for determining the start of the second operating phase on the basis of a nitrogen oxide (NOx) level modeled by means of a nitrogen oxide (NOx) storage model of the NOx storage catalyst on.
  • the present invention relates to a control, in particular a read-only memory or a flash memory, for such a control device.
  • the present invention relates to an internal combustion engine, in particular a motor vehicle according to the first part of claim 8.
  • the internal combustion engine has a control unit and a nitrogen oxide (NOx) storage catalytic converter.
  • the internal combustion engine can be switched back and forth by the control unit between a first operating phase, in which nitrogen oxides generated by the internal combustion engine are stored in the NOx storage catalytic converter, and a second operating phase, in which stored nitrogen oxides are expelled from the NOx storage catalytic converter.
  • the internal combustion engine has first means for determining the start of the second operating phase on the basis of a nitrogen oxide (NOx) level of the NOx storage catalytic converter modeled by means of a nitrogen oxide (NOx) storage model.
  • the invention relates to a control according to claim 6.
  • nitrogen oxide (NOx) storage catalysts are used to store the nitrogen oxide (NOx) emissions emitted by the internal combustion engine during a first operating phase (lean operation) .
  • This first operating phase of the NOx storage catalyst is also referred to as Ein untilphase.
  • Ein Grandephase With increasing duration of Ein Grandephase the efficiency of the NOx storage catalyst decreases, which leads to an increase in NOx emissions downstream of the NOx storage catalyst.
  • the cause of the decrease in efficiency is the increase in the nitrogen oxide (NOx) level of the NOx storage catalyst.
  • the NOx level can be monitored and after exceeding a predetermined threshold, the second phase of operation of the NOx storage catalyst (Aus Grande Listephase) are initiated.
  • a nitrogen oxide (NOx) storage model can be used for determining the NOx level of the NOx storage catalytic converter.
  • a reducing agent is added to the exhaust gas of the internal combustion engine, which reduces stored nitrogen oxides to nitrogen and oxygen.
  • the reducing agent for example, hydrocarbon (HC) and / or carbon monoxide (CO) can be used, which can be generated by a rich adjustment of the fuel / air mixture in the exhaust gas.
  • urea may also be added to the exhaust gas as the reducing agent. It is used to reduce the nitrogen oxide to oxygen and nitrogen ammonia from the urea. The ammonia can be obtained by hydrolysis from a urea solution.
  • the NOx level of the NOx storage catalyst depending on, inter alia, the NOx mass flow upstream of the NOx storage catalytic converter, the NOx mass flow downstream of the NOx storage catalytic converter and the temperature of the NOx storage catalytic converter. From these quantities, an efficiency of the NOx storage catalytic converter is determined, which multiplied by the NOx mass flow upstream of the NOx storage catalytic converter integrally supplies the current NOx level. As soon as the NOx level exceeds the predefinable threshold value, the second operating phase is initiated. The efficiency of the NOx storage catalyst decreases at constant boundary conditions with increasing NOx level.
  • the amount of stored NOx is regulated in a storage catalytic converter 5 of an internal combustion engine, wherein a storage model is provided with a controlled parameter Alpha.
  • This parameter alpha is integrally changed with a controller when the measured (oxygen) sensor voltage V downstream of the memory 5 during the emptying of the memory 5 at a time t ⁇ t3 (not) reaches the threshold for a rich mixture.
  • the present invention has for its object to be able to determine the NOx level of a NOx storage catalytic converter with the help of a NOx Ein headingmodells and thus the beginning and end of the second phase of operation (Aus emergephase) as accurately and reliably as possible to ensure optimum exhaust quality.
  • This object is achieved with the features according to the independent claims.
  • the invention it is therefore proposed to correct the NOx injection model by a measured value. From the measured value, a correction factor for the NOx injection model can be obtained, which can be used for diagnostic purposes. Due to the measured value of the NOx level, the with
  • the NOx injection model modeled NOx level corrected and thus the beginning and the end of the second phase of operation can be determined with a much higher accuracy. This in turn allows to go to the limit of the storage capacity of the NOx storage catalyst, d. H. make full use of the storage capacity of the NOx storage tank without exceeding it, which leads to a significantly improved exhaust gas quality.
  • the NOx storage model or the start and the end of the second operating phase are adapted to the actual emissions of the internal combustion engine.
  • the first value of the NOx mass flow downstream of the NOx storage catalytic converter be measured by means of a NOx sensor.
  • a second value of the NOx mass flow downstream of the NOx storage catalytic converter is taken from the NOx storage model and the NOx storage model is corrected as a function of the two values of the NOx mass flow.
  • a difference between the two values of the NOx mass flows is formed and the NOx injection model is corrected as a function of the difference.
  • the NOx level is determined by integrating the product of the NOx mass flow upstream of the NOx storage catalyst and an efficiency of the NOx storage catalyst in the NOx storage model.
  • the efficiency of the NOx storage catalytic converter becomes, for example, dependent on the NOx mass flow upstream of the NOx storage catalytic converter and on the temperature of the NOx storage catalytic converter determined.
  • the difference between the two values of the NOx mass flow downstream of the NOx storage catalytic converter is supplied to a controller and the NOx storage model is corrected as a function of a control variable of the controller.
  • the controller is preferably designed as an integrating (I) controller.
  • the output signal of the NOx sensor arranged downstream of the NOx storage catalytic converter is therefore not evaluated directly, for example via the absolute value, the gradient or the like, but serves to regulate the NOx injection model by means of the I controller.
  • the NOx injection model is corrected as a function of the efficiency of the NOx storage catalytic converter as the manipulated variable of the controller.
  • control element which is provided for a control unit of an internal combustion engine, in particular of a motor vehicle.
  • a program is stored on the control, which is executable on a computing device, in particular on a microprocessor, and suitable for carrying out the method according to the invention.
  • the invention is realized by a program stored on the control program, so that this provided with the program control in the same way is the invention as the method to whose execution the program is suitable.
  • an electrical storage medium can be used as the control, for example a read-only memory or a flash memory.
  • control unit proposes second means for detecting a first value of the nitrogen oxide (NOx) mass flow downstream of the NOx storage catalytic converter and third means for correcting the NOx storage model as a function of the detected first value having.
  • NOx nitrogen oxide
  • the internal combustion engine second means for detecting a first value of the nitrogen oxide (NOx) mass flow behind the NOx storage catalyst and third means for correcting the NOx Ein headingmodells in response to the detected first value.
  • NOx nitrogen oxide
  • FIG. 1 shows a direct-injection internal combustion engine 1 of a motor vehicle is shown, in which a piston 2 in a cylinder 3 back and forth.
  • the cylinder 3 is provided with a combustion chamber 4, which u.a. is limited by the piston 2, an inlet valve 5 and an outlet valve 6.
  • an intake valve 5 With the intake valve 5, an intake pipe 7 and the exhaust valve 6, an exhaust pipe 8 is coupled.
  • a fuel injection valve 9 and a spark plug 10 protrude in the combustion chamber 4. Via the injection valve 9, fuel can be injected into the combustion chamber 4. With the spark plug 10, the fuel in the combustion chamber 4 can be ignited.
  • a rotatable throttle valve 11 is housed, via which the intake pipe 7 air can be supplied.
  • the amount of air supplied is dependent on the angular position of the throttle valve 11.
  • a catalyst 12 is housed, which cleans the exhaust gases resulting from the combustion of the fuel.
  • the catalyst 12 is a nitrogen oxide (NOx) storage catalyst 12 'coupled to a 3-way catalyst 12 "as an oxygen storage.
  • NOx nitrogen oxide
  • a control unit 18 is acted upon by input signals 19, which represent operating variables of the internal combustion engine 1 measured by means of sensors.
  • the control unit 18 generates output signals 20 with which the behavior of the internal combustion engine 1 can be influenced via actuators or actuators.
  • the controller 18 is to intended to control the operating variables of the internal combustion engine 1 and / or to regulate.
  • the control unit 18 is provided with a microprocessor which has stored in a storage medium, in particular in a flash memory, a program which is adapted to perform said control and / or regulation.
  • a so-called homogeneous operation of the internal combustion engine 1 the throttle valve 11 is partially opened or closed depending on the desired torque.
  • the fuel is injected from the injection valve 9 during a suction phase caused by the piston 2 into the combustion chamber 4.
  • the throttle valve 11 air By simultaneously sucked on the throttle valve 11 air, the injected fuel is swirled and thus substantially uniformly distributed in the combustion chamber 4.
  • the fuel-air mixture is compressed during the compression phase to be ignited by the spark plug 10. Due to the expansion of the ignited fuel, the piston 2 is driven.
  • the resulting torque depends in homogeneous operation u.a. from the position of the throttle valve 11 from.
  • a so-called shift operation of the internal combustion engine 1 the throttle valve 11 is opened wide.
  • the fuel is injected from the injection valve 9 during a caused by the piston 2 compression phase in the combustion chamber 4, locally in the immediate vicinity of the spark plug 10 and in time at a suitable distance before the ignition.
  • we ignited with the help of the spark plug 10 of the fuel so that the piston 2 in the now following working phase by the expansion of the inflamed Fuel is driven.
  • the resulting torque largely depends on the injected fuel mass during shift operation.
  • the stratified operation is provided for the idle operation and the partial load operation of the internal combustion engine 1.
  • lambda is usually> 1.
  • a first operating phase the internal combustion engine 1 is operated in stratified operation and the storage catalytic converter 12 'is charged with nitrogen oxides and the 3-way catalyst 12 "with oxygen (injection phase)
  • a second operating phase the storage catalytic converter 12' and the third Pathway catalyst 12 "discharged again so that they can again absorb nitrogen oxides or oxygen in a subsequent shift operation (Aus shallphase).
  • a reducing agent is added to the exhaust gas upstream of the catalyst 12.
  • the reducing agent for example, hydrocarbons (HC), carbon monoxide (CO) or urea can be used. Hydrocarbons and carbon monoxide are generated in the exhaust gas by a rich mixture adjustment (operation of the internal combustion engine in homogeneous operation).
  • Urea can be metered controlled from a reservoir to the exhaust gas.
  • the reducing agent reduces the stored nitrogen oxides to nitrogen and oxygen. These substances exit from the catalyst 12, so that there is an excess of oxygen behind the catalyst 12 during the regeneration phase, although the internal combustion engine 1 is operated with a rich fuel / air mixture (lack of oxygen).
  • an oxygen (02) sensor 13 and after the catalyst 12 a nitrogen (NOx) sensor 14 in the exhaust pipe 8 is arranged.
  • the O2 sensor 13 reacts virtually instantaneously. Due to the prevailing excess oxygen during the shift operation in the exhaust gas, the oxygen storage locations of the catalytic converter 12 are initially almost all occupied. After switching to lack of oxygen at the beginning of the regeneration phase, the oxygen storage sites are successively freed of oxygen, which then emerges from the catalyst 12. After the catalyst 12 therefore prevails after switching to the Regeneratonsphase initially further excess oxygen.
  • FIG. 2 schematically shows a NOx storage model 30.
  • the NOx mass flow msnovk upstream of the catalytic converter 12 and an efficiency eta_sp of the NOx storage catalytic converter 12 ' are applied to the NOx injection model 30.
  • the efficiency eta_sp is dependent on u.a. the NOx mass flow msnovk before the NOx storage catalytic converter 12 ', a NOx mass flow msnonk behind the NOx storage catalytic converter 12' and the temperature of the NOx storage catalytic converter 12 'determined.
  • the efficiency eta_sp is a non-linear function of the NOx filling level mnosp of the NOx storage catalytic converter 12 'and decreases as the NOx level increases.
  • a product mnsospe of the NOx mass flow msnovk and the efficiency eta_sp is formed.
  • the product mnsospe is stored in an integrator 32 integrated.
  • the integrator 32 supplies the NOx filling level mnosp of the NOx storage catalytic converter 12 '. This is compared in a comparator 33 with a predefinable threshold schw. If the NOx level mnosp exceeds the threshold value schw, the regeneration phase of the NOx storage catalytic converter 12 'is initiated by means of a regeneration signal B_denox.
  • FIG. 3 schematically shows a method according to the invention.
  • an output signal msnonk_s of the arranged behind the catalyst 12 NOx sensor 14 is used to control the NOx injection model 30.
  • the beginning and end of the second phase of operation (regeneration phase) of the NOx storage catalyst 12 ' can be determined much more accurate and reliable , which leads to a significantly improved exhaust quality.
  • a modeled NOx mass flow msnonk_m after the catalyst 12 is modeled.
  • the modeled NOx mass flow msnonk_m results from the difference of the NOx mass flow msnovk before the catalyst 12 and the product of the NOx mass flow msnovk and the efficiency eta_sp, d. H. from msnovk ⁇ (1 - eta_sp).
  • the NOx mass flow msnovk upstream of the catalyst 12 may be measured by a NOx sensor (not shown) or taken from the NOx model.
  • control difference 34 of the control circuit shown in Figure 3 is formed.
  • the control difference 34 is supplied to an integrating I-controller 35.
  • I-controller 35 any other suitable regulators can also be used.
  • a manipulated variable 36 of the I-controller 35 is passed to an actuator 37, which varies a manipulated variable 38 in order to act in a controlled manner on the NOx injection model 30.
  • the manipulated variable 38 is the efficiency eta_sp of the NOx storage catalytic converter 12 '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé de fonctionnement d'un catalyseur accumulateur d'oxydes d'azote (NOx) (12') situé dans un moteur à combustion interne (1), en particulier un véhicule automobile. Selon ce procédé, les oxydes d'azote (NOx) produits par le moteur à combustion interne (1) sont accumulés au cours d'une première phase de fonctionnement dans le catalyseur accumulateur (12') et les oxydes d'azote accumulés dans le catalyseur accumulateur sont retirés du catalyseur accumulateur (12') dans une seconde phase de fonctionnement. Le début de la seconde phase de fonctionnement est déterminé à partir d'un niveau (mnosp) d'oxydes d'azote du catalyseur accumulateur de NOx (12'), lequel est modelé sur la base d'un modèle d'accumulation (30) d'oxydes d'azote. Afin de pouvoir déterminer le début et la fin de la seconde phase de fonctionnement, de la manière la plus précise et la plus fiable possible, une première valeur du débit massique (msnonk s) d'oxydes d'azote est enregistrée en aval du catalyseur accumulateur de NOx (12') et le modèle d'accumulation de NOx (30) est corrigé en fonction de cette première valeur enregistrée (msnonk s).

Claims (8)

  1. Procédé de fonctionnement d'un catalyseur de stockage (12'), d'oxyde d'azote (NOx) d'un moteur à combustion interne (1), en particulier dans un véhicule automobile, les oxydes d'azote (NOx) produits par le moteur à combustion interne (1) étant stockés, au cours d'une première phase de fonctionnement, dans le catalyseur de stockage de NOx (12') et les oxydes d'azote stockés dans le catalyseur de stockage de NOx (12') étant sont, au cours d'une seconde phase de fonctionnement, extraits de ce catalyseur de stockage de NOx (12'), le début de la seconde phase de fonctionnement étant défini à l'aide d'un niveau de remplissage (mnosp) d'oxyde d'azote (NOx) du catalyseur de stockage de NOx (12'), en modélisant le niveau de remplissage de NOx (mnosp) au moyen d'un modèle de stockage (30) d'oxyde d'azote (NOx), en saisissant une première valeur d'un débit massique (msnonk_s) d'oxyde d'azote (NOx) derrière le catalyseur de stockage de NOx (12') et en corrigeant, le modèle de stockage de NOx (30) en fonction de la première valeur saisie,
    caractérisé en ce qu'
    on extrait du modèle de stockage de NOx (30)une seconde valeur du débit massique de NOx (msnonk_m) derrière le catalyseur de stockage de NOx (12'), on forme une différence entre les deux valeurs des débits massiques de NOx (msnonk_m - msnonk_s) et on corrige le modèle de stockage de NOx (30) en fonction de cette différence (msnonk_m - msnonk_s).
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    la différence (msnonk_m - msnonk_s) des deux valeurs (msnonk_m, msnonk_s) est acheminée vers un régulateur (35) et le modèle de stockage de NOx (30) est corrigé en fonction d'une grandeur de commande (38) du régulateur (35).
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    le niveau de remplissage de NOx (mnosp) est déterminé par intégration du produit du débit massique de NOx (msnovk) avant le catalyseur de stockage de NOx (12') et d'un rendement (eta_sp) du catalyseur de stockage de NOx (12') dans le modèle de stockage de NOx (30).
  4. Procédé selon la revendication 2 ou 3,
    caractérisé en ce que
    le modèle de stockage de NOx (30) est corrigé en fonction du rendement (eta_sp) du catalyseur de stockage de NOx (12') sous la forme de la grandeur de commande (38) du régulateur (35).
  5. Procédé selon l'une des revendications 1 à 4,
    caractérisé en ce que
    la première valeur du débit massique de NOx (msnonk_s) derrière le catalyseur de stockage de NOx (12') est mesurée au moyen d'un capteur de NOx (14).
  6. Élément de commande, en particulier mémoire morte (RAM) ou mémoire flash (flash memory), pour un appareil de commande (18) d'un moteur à combustion interne (1), en particulier dans un véhicule automobile, sur lequel est enregistré un programme capable de fonctionner sur un calculateur, en particulier sur un microprocesseur, et destiné à exécuter un procédé selon l'une des revendications 1 à 5.
  7. Appareil de commande (18) pour un moteur à combustion interne (1), en particulier dans un véhicule automobile, le moteur à combustion interne (1) pouvant être activé alternativement par l'appareil de commande (18) entre une première phase de fonctionnement, dans laquelle les oxydes d'azote (NOx) produits par le moteur à combustion interne (1) sont stockés dans le catalyseur de stockage (12') d'oxyde d'azote (NOx), et une seconde phase de fonctionnement, dans laquelle les oxydes d'azote stockés sont extraits du catalyseur de stockage de NOx (12'), l'appareil de commande (18) présentant des premiers moyens pour définir le début de la seconde phase de fonctionnement à l'aide d'un niveau de remplissage (mnosp) d'oxyde d'azote (NOx) du catalyseur de stockage (12') modélisé au moyen d'un modèle de stockage (30) d'oxyde d'azote (NOx), des seconds moyens (14) pour saisir une première valeur du débit massique (msnonk_s) d'oxyde d'azote (NOx) derrière le catalyseur de stockage de NOx (12') et des troisièmes moyens pour corriger le modèle de stockage de NOx (30) en fonction de la première valeur saisie (msnonk_s),
    caractérisé en ce que
    l'appareil de commande (18) présente des quatrièmes moyens pour extraire du modèle de stockage de NOx (30) une seconde valeur du débit massique de NOx (msnonk_m) derrière le catalyseur de stockage de NOx (12') et des cinquièmes moyens pour former une différence des deux valeurs de débits massiques de NOx (msnonk_m - msnonk_s), et les troisièmes moyens corrigent le modèle de stockage de NOx (30) en fonction de cette différence (msnonk_m - msnonk_s).
  8. Moteur à combustion interne (1), en particulier dans un véhicule automobile, ce moteur à combustion interne (1) présentant un appareil de commande (18) et un catalyseur de stockage (12') d'oxyde d'azote (NOx), et pouvant être activé alternativement par l'appareil de commande (18) entre une première phase de fonctionnement, dans laquelle les oxydes d'azote (NOx) produits par le moteur à combustion interne (1) sont stockés dans le catalyseur de stockage de NOx (12'), et une seconde phase de fonctionnement, dans laquelle les oxydes d'azote stockés sont extraits du catalyseur de stockage de NOx (12'), avec des premiers moyens pour définir le début de la seconde phase de fonctionnement à l'aide d'un niveau de remplissage (mnosp) d'oxyde d'azote (NOx) du catalyseur de stockage de NOx (12') modélisé au moyen d'un modèle de stockage (30) d'oxyde d'azote (NOx), des seconds moyens (14) pour saisir une première valeur du débit massique (msnonk_s) d'oxyde d'azote (NOx) derrière le catalyseur de stockage de NOx (12') et des troisièmes moyens pour corriger le modèle de stockage de NOx (30) en fonction de la première valeur saisir (msnonk_s),
    caractérisé en ce que
    le moteur à combustion interne (1) présente des quatrièmes moyens pour prélever du modèle de stockage de NOx (30) une seconde valeur du débit massique de NOx (msnonk_m) derrière le catalyseur de stockage de NOx (12') et des cinquièmes moyens pour former une différence des deux valeurs de débits massiques de NOx (msnonk_m - msnonk_s), et les troisièmes moyens corrigent le modèle de stockage de NOx (30) en fonction de cette différence (msnonk_m - msnonk_s).
EP01956310A 2000-07-26 2001-07-11 Procede et organe de commande de fonctionnement d'un catalyseur accumulateur d'oxydes d'azote (nox) Expired - Lifetime EP1307639B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10036453A DE10036453A1 (de) 2000-07-26 2000-07-26 Verfahren und Steuergerät zum Betreiben eines Stickoxid (NOx)-Speicherkatalysators
DE10036453 2000-07-26
PCT/DE2001/002594 WO2002008582A1 (fr) 2000-07-26 2001-07-11 Procede et organe de commande de fonctionnement d'un catalyseur accumulateur d'oxydes d'azote (nox)

Publications (2)

Publication Number Publication Date
EP1307639A1 EP1307639A1 (fr) 2003-05-07
EP1307639B1 true EP1307639B1 (fr) 2006-03-15

Family

ID=7650307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956310A Expired - Lifetime EP1307639B1 (fr) 2000-07-26 2001-07-11 Procede et organe de commande de fonctionnement d'un catalyseur accumulateur d'oxydes d'azote (nox)

Country Status (5)

Country Link
US (1) US6889497B2 (fr)
EP (1) EP1307639B1 (fr)
JP (1) JP5220258B2 (fr)
DE (2) DE10036453A1 (fr)
WO (1) WO2002008582A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241499B4 (de) * 2002-09-07 2004-09-09 Audi Ag Verfahren zur Ermittlung des Alterungsgrades eines Stickoxid-Speicherkatalysators einer Brennkraftmaschine insbesondere eines Kraftfahrzeuges
DE10241556B4 (de) * 2002-09-07 2013-11-14 Robert Bosch Gmbh Verfahren, Computerprogramm und Steuergerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE10307457B4 (de) * 2003-02-21 2006-10-26 Audi Ag Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators einer Brennkraftmaschine
DE10313216B4 (de) * 2003-03-25 2012-07-12 Robert Bosch Gmbh Verfahren zum Betreiben eines im Abgasbereich einer Brennkraftmaschine angeordneten Stickoxid (NOx)-Speicherkatalysators
JP2004293338A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp NOx吸蔵量の推定方法
JP4213548B2 (ja) * 2003-09-11 2009-01-21 株式会社日立製作所 エンジンの制御装置
DE10351210B4 (de) * 2003-11-03 2013-11-14 Robert Bosch Gmbh Verfahren zum Betreiben eines im Abgasbereich einer Brennkraftmaschine angeordneten Stickoxid (NOx)-Speicherkatalysators und Vorrichtung zur Durchführung des Verfahrens
DE10355037B4 (de) * 2003-11-25 2013-10-10 Robert Bosch Gmbh Verfahren zum Optimieren der Abgaswerte einer Brennkraftmaschine
DE102004007523B4 (de) 2004-02-17 2007-10-25 Umicore Ag & Co. Kg Verfahren zur Bestimmung des Umschaltzeitpunktes von der Speicherphase zur Regenerationsphase eines Stickoxid-Speicherkatalysators und zur Diagnose seines Speicherverhaltens
CN100529340C (zh) * 2004-06-08 2009-08-19 卡明斯公司 修正吸附器再生的触发水平的方法
FR2873404B1 (fr) * 2004-07-20 2006-11-17 Peugeot Citroen Automobiles Sa DISPOSITIF DE DETERMINATION DE LA MASSE DE NOx STOCKEE DANS UN PIEGE A NOx ET SYSTEME DE SUPERVISION DE LA REGENERATION D'UN PIEGE A NOx COMPRENANT UN TEL DISPOSITIF
DE102004038731A1 (de) 2004-08-10 2006-02-23 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005059893A1 (de) * 2005-12-15 2007-06-28 Robert Bosch Gmbh Verfahren und Steuergerät zur Beurteilung der Funktionsfähigkeit eines NOx-Speicherkatalysators
JP4215050B2 (ja) 2005-12-15 2009-01-28 トヨタ自動車株式会社 内燃機関の排気浄化システム
US7587889B2 (en) * 2006-07-11 2009-09-15 Cummins Filtration Ip, Inc. System for determining NOx conversion efficiency of an exhaust gas aftertreatment component
US7654079B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. Diesel oxidation catalyst filter heating system
US7594392B2 (en) * 2006-11-07 2009-09-29 Cummins, Inc. System for controlling adsorber regeneration
US7533523B2 (en) * 2006-11-07 2009-05-19 Cummins, Inc. Optimized desulfation trigger control for an adsorber
US7707826B2 (en) * 2006-11-07 2010-05-04 Cummins, Inc. System for controlling triggering of adsorber regeneration
US7654076B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. System for controlling absorber regeneration
US20080314022A1 (en) * 2007-06-19 2008-12-25 Eaton Corporation Strategy for scheduling LNT regeneration
US7980064B2 (en) * 2007-06-19 2011-07-19 Eaton Corporation Algorithm incorporating driving conditions into LNT regeneration scheduling
JP4576464B2 (ja) * 2008-08-05 2010-11-10 本田技研工業株式会社 排ガス浄化装置の劣化判定装置
DE102010038175A1 (de) * 2010-10-14 2012-04-19 Ford Global Technologies, Llc. Verfahren zum Anpassen einer Mager-NOx-Falle in einem Abgassystem eines Kraftfahrzeugs
DE102014209972B4 (de) 2013-07-05 2024-03-21 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Bewerten des Alterungszustandeseines NOx-Speicherkatalysators
FR3078105B1 (fr) * 2018-02-16 2022-10-14 Ifp Energies Now Systeme embarque de mesure des emissions polluantes d'un vehicule avec un capteur et un systeme informatique
US10920645B2 (en) 2018-08-02 2021-02-16 Ford Global Technologies, Llc Systems and methods for on-board monitoring of a passive NOx adsorption catalyst
US20200291877A1 (en) * 2019-03-12 2020-09-17 GM Global Technology Operations LLC Aggressive thermal heating target strategy based on nox estimated feedback
CN113550835B (zh) * 2020-04-24 2023-07-25 北京福田康明斯发动机有限公司 污染物排放控制方法、系统和存储介质及行车电脑、车辆
CN114018848B (zh) * 2021-11-16 2022-11-11 无锡时和安全设备有限公司 可视化氮氧化物转化系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836523B2 (ja) * 1995-03-24 1998-12-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5894725A (en) 1997-03-27 1999-04-20 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
DE19739848A1 (de) * 1997-09-11 1999-03-18 Bosch Gmbh Robert Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE19823921A1 (de) * 1998-05-28 1999-12-02 Siemens Ag Verfahren zur Überprüfung des Wirkungsgrades eines NOx-Speicherkatalysators
DE19823923C2 (de) * 1998-05-28 2003-04-17 Siemens Ag Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
DE19828928C2 (de) * 1998-06-29 2003-04-17 Siemens Ag Verfahren zur Überwachung des Abgasreinigungssystems einer Brennkraftmaschine
DE19830829C1 (de) * 1998-07-09 1999-04-08 Siemens Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators
DE19843871B4 (de) * 1998-09-25 2005-05-04 Robert Bosch Gmbh Diagnose eines NOx-Speicherkatalysators mit nachgeschaltetem NOx-Sensor
DE19843879C2 (de) * 1998-09-25 2003-05-08 Bosch Gmbh Robert Betrieb eines Verbrennungsmotors in Verbindung mit einem NOx-Speicherkatalysator und einem NOx-Sensor
FR2785331B1 (fr) * 1998-10-28 2000-12-22 Renault Procede de commande de la purge en oxydes d'azote d'un pot catalytique de traitement des gaz d'echappement d'un moteur a combustion interne
EP1131549B1 (fr) * 1998-11-09 2004-07-21 Siemens Aktiengesellschaft PROCEDE POUR ADAPTER LA CONCENTRATION BRUTE EN NOx D'UN MOTEUR A COMBUSTION INTERNE FONCTIONNANT AVEC UN EXCEDENT D'AIR
JP3376932B2 (ja) * 1998-12-15 2003-02-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6497092B1 (en) * 1999-03-18 2002-12-24 Delphi Technologies, Inc. NOx absorber diagnostics and automotive exhaust control system utilizing the same
IT1310465B1 (it) * 1999-09-07 2002-02-18 Magneti Marelli Spa Metodo autoadattativo di controllo di un sistema di scarico per motori a combustione interna ad accensione comandata.
FR2798425B1 (fr) 1999-09-13 2001-12-07 Renault Procede de commande de purge de moyens de stockage d'oxydes d'azote associes a un pot catalytique de traitement des gaz d'echappement d'un moteur a combustion interne
US6308515B1 (en) * 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6594989B1 (en) * 2000-03-17 2003-07-22 Ford Global Technologies, Llc Method and apparatus for enhancing fuel economy of a lean burn internal combustion engine
JP2001355485A (ja) * 2000-06-16 2001-12-26 Isuzu Motors Ltd 窒素酸化物吸蔵還元型触媒を備えた排気ガス浄化装置
US6546718B2 (en) * 2001-06-19 2003-04-15 Ford Global Technologies, Inc. Method and system for reducing vehicle emissions using a sensor downstream of an emission control device

Also Published As

Publication number Publication date
US6889497B2 (en) 2005-05-10
EP1307639A1 (fr) 2003-05-07
DE50109223D1 (de) 2006-05-11
JP5220258B2 (ja) 2013-06-26
DE10036453A1 (de) 2002-02-14
US20030163987A1 (en) 2003-09-04
JP2004504539A (ja) 2004-02-12
WO2002008582A1 (fr) 2002-01-31

Similar Documents

Publication Publication Date Title
EP1307639B1 (fr) Procede et organe de commande de fonctionnement d'un catalyseur accumulateur d'oxydes d'azote (nox)
EP1307640B1 (fr) Procede de fonctionnement d'un catalyseur accumulateur d'oxydes d'azote (nox)
EP1311748B1 (fr) Procede et modele de modelisation d'une phase d'extraction d'un pot catalytique a accumulation d'oxyde d'azote
DE10012839B4 (de) Regenerationskraftstoffsteuerung eines NOx-Adsorbersystems
WO2002014658A1 (fr) Procede et organe de commande pour determiner l'etat d'un catalyseur accumulateur d'oxydes d'azote (nox)
EP1305507B1 (fr) Procede pour faire fonctionner un catalyseur
DE19851843A1 (de) Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine
EP1230471B1 (fr) Procede de fonctionnement d'un pot catalytique a accumulation d'un moteur a combustion interne
EP1159517B1 (fr) Procede permettant le fonctionnement d'un catalyseur sur un moteur a combustion interne
EP1247006B1 (fr) Procede pour faire fonctionner un catalyseur accumulateur d'un moteur a combustion interne
EP1204814B1 (fr) Procede permettant de faire fonctionner un moteur a combustion interne
EP1144828A1 (fr) Procede permettant de faire fonctionner un moteur a combustion interne
EP1264094A2 (fr) Procede d'utilisation d'un moteur a combustion interne en particulier d'un vehicule motorise
DE19963903A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE10241497B3 (de) Verfahren zur Steuerung des Magerbetriebs einer einen Stickoxid-Speicherkatalysator aufweisenden Brennkraftmaschine, insbesondere eines Kraftfahrzeuges
DE10223458B4 (de) Verfahren zur Überwachung sowie Vorrichtung zur Abschätzung der Effizienz einer Abgasnachbehandlungsanordnung
DE102005012943A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
EP1540151B1 (fr) Procede pour determiner le degre de vieillissement d'un catalyseur accumulateur d'oxyde d'azote d'un moteur a combustion interne, notamment d'une automobile
EP1540160B1 (fr) Procede permettant de faire fonctionner un pot catalytique a accumulation de dioxyde d'azote d'un moteur a combustion interne notamment d'un vehicule automobile
EP1365131B1 (fr) Procédé de reglage d'un catalyseur d'accumulation de NOx
DE19963925A1 (de) Verfahren zum Betreiben eines Speicherkatalysators einer Brennkraftmaschine
WO2001049990A1 (fr) Procede pour faire fonctionner un catalyseur accumulateur d'un moteur a combustion interne
DE102022210290A1 (de) Verfahren zur Regelung des Sauerstoff-Füllstands eines Katalysators im Abgas eines Verbrennungsmotors
DE4444972A1 (de) Elektronisches Steuersystem und Steuerverfahren für einen Motor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030226

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50109223

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160721

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170927

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180723

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109223

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731