EP1301434A2 - Poudre nanometrique de corindon, corps frittes produits a partir de cette poudre et son procede de production - Google Patents

Poudre nanometrique de corindon, corps frittes produits a partir de cette poudre et son procede de production

Info

Publication number
EP1301434A2
EP1301434A2 EP01960526A EP01960526A EP1301434A2 EP 1301434 A2 EP1301434 A2 EP 1301434A2 EP 01960526 A EP01960526 A EP 01960526A EP 01960526 A EP01960526 A EP 01960526A EP 1301434 A2 EP1301434 A2 EP 1301434A2
Authority
EP
European Patent Office
Prior art keywords
corundum
precursor
aluminum
temperatures
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01960526A
Other languages
German (de)
English (en)
Inventor
Robert Drumm
Christian Goebbert
Kai Gossmann
Ralph Nonninger
Helmut Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz-Institut fur Neue Materialien Gemeinnuet
Original Assignee
Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH filed Critical Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Publication of EP1301434A2 publication Critical patent/EP1301434A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • NANOSKAL1GE COROD POWDER SINTER BODIES MADE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
  • the invention relates to nanoscale corundum powder, a process for their production and their processing into sintered bodies.
  • Powdered corundum ( ⁇ - Al 2 O 3 ) is an important raw material for the production of aluminum oxide ceramics, which can basically be done in two ways.
  • One way starts with shaped bodies that are made directly from corundum powder ( ⁇ -AI 2 0 3 powder), the other from shaped bodies that consist of an -AI 2 0 3 precursor (for example, the ⁇ or ⁇ phase) , which is then converted in situ into the ⁇ -AI 0 3 phase.
  • the sintering temperature of the corundum is between 1300 and 1600 ° C, depending on the size of the starting particles used.
  • the most important obstacle to this is the high activation energy of the homogeneous nucleation, which is kinetically strongly delayed, so that the other Al 2 0 3 phases (e.g.
  • US-A-4657754 describes nanoscale corundum having an average particle size of 20 and 50 nm (jr nanocorundum "), which is produced by seeding, so that the synthesis temperature may be reduced so that at 1000 ° C ⁇ -AI 2 0 3 -Powder with a density of 3.78 g / cm 3 (corresponds to 95% of the theoretical density) is present.
  • Weng et al. describe another method from salt solutions in CN-A-085187, which likewise gives nanocorundus with a diameter of 10 to 15 nm at synthesis temperatures of 1100 to 1300 ° C.
  • a synthesis temperature of 1000 ° C is too high for many purposes, in particular for cofiring processes in microelectronics with foils or the sealing sintering of pastes.
  • the synthesis temperature can be reduced to values below 1000 ° C. by means of a special process technology, an only weakly agglomerated nanoscale corundum powder being obtained which can be sintered at lower sintering temperatures.
  • This seemingly minor improvement is of eminent technical importance, since it enables a much broader field of application to be worked on.
  • new multi-layer systems can be processed in a single cofiring step (which previously required several sintering steps at higher temperatures), since all the multilayer elements contained can now be compressed at the lower sintering temperature.
  • the invention relates to a process for the preparation of nanoscale corundum powders, in which one first produces an Al 2 0 3 precursor by adding an aqueous solution of an aluminum compound with seed crystals and adding a base and the Al 2 O 3 precursor then by calcining at elevated temperatures The temperature is converted to corundum, which is characterized in that the salts present in addition to the Al 2 O 3 precursor are separated off before the calcination, the product obtained is calcined at temperatures from 700 to 975 ° C. and any fines present ( ⁇ 40 nm) are removed ,
  • Aluminum compounds suitable for producing the Al 2 O 3 precursor are preferably water-soluble aluminum salts such as aluminum (IH) nitrate, aluminum (III) chloride, aluminum (III) acetate or aluminum (III) ethylate. These aluminum compounds are dissolved, for example, in deionized water and seed crystals are added, which preferably have a particle size ⁇ 100 nm. Examples of suitable germs are corundum or diasporic germs.
  • the desired Al 2 O 3 precursor which is required for conversion to corundum at temperatures below 1000 ° C., is formed during a ripening period.
  • bases which can be used are inorganic or organic bases, such as sodium, potassium, calcium or magnesium hydroxide, ammonia, urea, aliphatic and aromatic amines, thermally separable bases such as ammonia being particularly preferred.
  • the precipitation or ripening usually takes place at temperatures of 50 to 100 ° C., preferably 70 to 90 ° C. and particularly preferably 80 to 90 ° C., over a period of 20 to 145 hours, preferably 60 to 90 hours and particularly preferably 70 to 80 hours.
  • the n-corundum is preferably produced using the following two alternative methods.
  • the aqueous solvent is preferably removed by freeze-drying and the salts contained as impurities are thermally decomposed at temperatures of 150 to 500 ° C., for example 400 ° C.
  • the product obtained is mechanically comminuted and converted into ⁇ -Al 2 O 3 by calcining at temperatures from 700 to 975 ° C., preferably 750 to 950 ° C. and in particular 800 to 900 ° C.
  • Caicination is usually carried out over a period of 1 to 3 hours.
  • the corundum powder obtained by method 1 is characterized by a high
  • Corundum content but as a secondary phase still contains a small fine fraction ( ⁇ 40 nm), which mainly consists of non- ⁇ -Al 2 0 3 phases. It is essential to the invention to at least largely remove this fine fraction by a later one To enable compaction of the nanoscale corundum powder at sintering temperatures ⁇ 1200 ° C.
  • the fine fraction is preferably removed by centrifugation.
  • the corundum powder produced is dispersed in aqueous solution with the aid of a dispersant (surface modifier) and then centrifuged one or more times.
  • Suitable dispersants are, for example, inorganic acids (preferably HNO 3 ), aromatic or aliphatic mono-, di- or polycarboxylic acids, aromatic or aliphatic oxacarboxylic acids, such as trioxadecanoic acids (TODS), ⁇ -dicarbonyl compounds and amino acids.
  • the dispersant concentration is adapted to the specific surface of the synthesized corundum powder, so that, for example, 4-5 ⁇ mol of dispersant are available per m 2 Al 2 O 3 surface.
  • the existing salt load is reduced or removed by dialysis.
  • the solution containing the AI 2 0 3 precursor is filled into dialysis tubes and stored in deionized water.
  • the dialyzed solution is then frozen and freeze-dried.
  • the powder obtained can, if necessary, be calcined at 150 to 500.degree. C. (for example 400.degree. C.) to completely remove the salt content still present.
  • the powder is converted into ⁇ -Al 2 O 3 by calcining at temperatures from 700 to 975 ° C., preferably 750 to 950 ° C. and in particular 800 to 900 ° C.
  • ⁇ -Al 2 0 3 powder obtained after surface modification with suitable surface modifiers such as inorganic acids (preferably HN0 3 ), .aromatic or aliphatic mono-, di- or polycarboxylic acids, aromatic or aliphatic oxacarboxylic acids, for example trioxadecanoic acids (TODS), ⁇ -dicarbonyl compounds or amino acids, can be compressed directly at sintering temperatures ⁇ 1200 ° C.
  • suitable surface modifiers such as inorganic acids (preferably HN0 3 ), .aromatic or aliphatic mono-, di- or polycarboxylic acids, aromatic or aliphatic oxacarboxylic acids, for example trioxadecanoic acids (TODS), ⁇ -dicarbonyl compounds or amino acids
  • the amount of surface modifier is the specific surface of the synthesized corundum powder adapted so that, for example, 4-5 ⁇ mol of dispersant are available per m 2 Al 2 O 3 surface.
  • the surface can be modified, for example, using a ball mill (3-4 h, aluminum oxide grinding balls ⁇ 1 mm), mortar mills, three-roller mill or kneading unit, adapted to the subsequent shaping technique.
  • the average primary particle size is usually 30 to 150 nm, preferably 40 to 100 nm and particularly preferably 50 to 70 nm.
  • the corundum powder is only slightly agglomerated in the redispersed state. It has a phase purity (content of ⁇ -Al 2 0 3 ) of> 80, preferably> 90 and in particular> 95% by weight and a density of> 3.90 g / cm 3 , preferably 3 3.93 g / cm 3 , particularly preferably> 3.95 g / cm 3 .
  • the corundum powder produced according to the invention is used for further shaping with conventional processing aids, e.g. organic solvents, binders, plasticizers, mixed.
  • suitable solvents are e.g. Ethylene glycol, diethylene glycol monobutyl ether and diethylene glycol monoethyl ether, individually or as mixtures.
  • binders which can be used are cellulose derivatives such as hydroxypropyl cellulose, polyvinylpyrrolidone, acrylate polymers and oligomers,
  • Methacrylates such as tetraethylene glycol dimethacrylate and polyethylene glycoidimethacrylate. The following are used e.g. 15% by weight of binder, based on the weighed solid.
  • binder e.g. 15% by weight of binder, based on the weighed solid.
  • polyethylene glycol dimethacrylates, polyethylene glycols e.g. PEG 600, PEG 800, PEG 1000, PEG 2000, PEG 6000
  • plasticizers e.g. PEG 600, PEG 800, PEG 1000, PEG 2000, PEG 6000
  • 25% by weight based on the weighed-in binder.
  • the nanoscale corundum powders according to the invention are suitable for producing dense Al 2 O 3 sintered bodies in the form of components or constituents of multilayer structures.
  • Special application areas of these components and Multi-layer systems are (micro) electronics, sensors (gas, pressure, piezo sensors), microsystem technology (eg microreactors), ceramic filter elements and catalyst carriers.
  • the solution obtained is frozen (for example at -30 ° C.) and then dried (freeze-drying).
  • the powder is then heated to 400 ° C. (air atmosphere) at a heating rate of 2 K / min and kept at this temperature for 1 h.
  • the powder is ground dry in a mortar mill for 1 hour.
  • the powder is then brought to 800 ° C. at a heating rate of 10 K / min and immediately heated to 900 ° C. at a heating rate of 2 K / min and kept at this temperature for 1 hour.
  • the powder produced in this way has a specific surface area of approximately 20-60 m 2 / g and a density of 3.6-3.9 g / cm 3 , depending on the germs used.
  • the powder After cooling, the powder is dispersed for 3-4 hours in a ball mill with aluminum oxide grinding balls ( ⁇ 1 mm) and an organic acid (TODS) as a dispersant / surface modifier.
  • the dispersant content is adapted to the specific surface of the synthesized aluminum oxide powder, so that 4-5 ⁇ mol TODS per m 2 Al 2 O 3 surface are contained.
  • the fine fraction of the aluminum oxide powder obtained is separated off by repeated centrifugation.
  • the separation limit for centrifugation is arithmetically a particle size of approximately 40 nm.
  • the fine fraction consists predominantly (> 90%) of non- ⁇ -Al 2 0 3 particles.
  • the centrifugate is freeze-dried to remove the solvent.
  • the resulting solution is purified by dialysis in portions containing approximately 400 g ammonium nitrate to remove the dissolved ammonium nitrate ions.
  • the solution is poured into a dialysis tube (pore size 2.5 - 3 nmj and approx.
  • a hold period of 1 is inserted at 900 ° C.
  • the powder thus produced has a specific surface area of approx. 18-22 m 2 / g and a density of 3.95-3.98 g / cm 3 .
  • the primary particle size is between 40-70 nm, the powder is weakly agglomerated in the redispersed state.
  • Example 1 10.5 g of the ⁇ -Al 2 0 3 prepared in Example 1 are homogeneously mixed together with 2.8 g of a 1: 1 solvent mixture of ethylene glycol and diethylene glycol monobutyl ether and 0.5 g of polyvinylpyrrolidone as a binder. Mortars, kneaders or mortar mills can be used as mixing units. The paste obtained is applied several times to a three-roll mill for the final homogenization.
  • the aluminum oxide paste is applied using a thick-film process (screen printing) to already sintered corundum substrates or green (unsintered) substrates made of yttrium-stabilized (3 mol% Y 2 0 3 ) zirconium dioxide in dry layer thicknesses of up to 30 ⁇ m and dried without cracks in a circulating air drying cabinet at 80 ° C.
  • the printed layers on the corundum substrates are thermally compacted at 1200 ° C (heating rate 5K / min) with a holding time of 1 hour.
  • the compression of the ⁇ -Al 2 0 3 layers printed on green (unsintered) substrates made of yttrium-stabilized zirconium dioxide takes place in two stages.
  • the organic matter contained in the composite is removed in a protective gas atmosphere (nitrogen) at temperatures up to 450 ° C by thermal decomposition.
  • the heating up time is 10 hours, holding time 3 hours.
  • the thermal compression up to the dense material composite takes place in an atmosphere furnace at temperatures of
  • Example 2 5 2 g of the -Al 2 0 3 powder produced in Example 1 are homogeneously mixed with 1 g of a solvent mixture of ethylene glycol / diethylene glycol monobutyl ether (1: 1) and 0.15 g of a cellulose binder and dried at 100 ° C. 200 mg of the mixture are compressed in a uniaxial pressing tool with an inner diameter of 5 mm at a pressure of 200 MPa. Then ⁇ Q is post-compressed in a cold isostatic press at 400 MPa. The compact is thermally compressed at 1200 ° C (1h) in an air atmosphere. After sintering, the shaped body has a density of 3.85 g / cm 3 (96.5% of theory).

Abstract

Pour obtenir des poudres nanométriques de corindon, on produit d'abord un précurseur Al2O3 en mélangeant une solution aqueuse d'un composé d'aluminium à des germes cristallins ; on ajoute une base puis on transforme le précurseur Al2O3 en corindon par calcination à haute température. Avant la calcination, on sépare les sels présents en plus du précurseur Al2<O>3<. Le produit obtenu à des températures de 700 à 975 DEG C est calciné et les fines éventuellement présentes sont éliminées. Les poudres de corindon obtenues peuvent être frittées à des températures ≤ 1200 DEG C en corps moulés ou constituants de systèmes multicouche.
EP01960526A 2000-07-21 2001-07-20 Poudre nanometrique de corindon, corps frittes produits a partir de cette poudre et son procede de production Withdrawn EP1301434A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10035679A DE10035679A1 (de) 2000-07-21 2000-07-21 Nanoskalige Korundpulver, daraus gefertigte Sinterkörper und Verfahren zu deren Herstellung
DE10035679 2000-07-21
PCT/EP2001/008422 WO2002008124A2 (fr) 2000-07-21 2001-07-20 Poudre nanometrique de corindon, corps frittes produits a partir de cette poudre et son procede de production

Publications (1)

Publication Number Publication Date
EP1301434A2 true EP1301434A2 (fr) 2003-04-16

Family

ID=7649816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01960526A Withdrawn EP1301434A2 (fr) 2000-07-21 2001-07-20 Poudre nanometrique de corindon, corps frittes produits a partir de cette poudre et son procede de production

Country Status (6)

Country Link
US (1) US7022305B2 (fr)
EP (1) EP1301434A2 (fr)
JP (1) JP2004504256A (fr)
AU (1) AU2001282003A1 (fr)
DE (1) DE10035679A1 (fr)
WO (1) WO2002008124A2 (fr)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838804B1 (fr) * 2002-04-18 2004-06-18 Renault Sa Procede et dispositif pour la realisation d'un capteur de pression integre dans un reservoir
DE10304849A1 (de) 2003-02-06 2004-08-19 Institut für Neue Materialien gemeinnützige Gesellschaft mit beschränkter Haftung Chemomechanische Herstellung von Funktionskolloiden
JP4534524B2 (ja) * 2003-02-26 2010-09-01 住友化学株式会社 微粒αアルミナの製造方法
TWI348457B (en) * 2003-03-04 2011-09-11 Sumitomo Chemical Co Method for producing 帢-alumina particulate
JP4552454B2 (ja) * 2003-03-04 2010-09-29 住友化学株式会社 微粒αアルミナの製造方法
US7422730B2 (en) * 2003-04-02 2008-09-09 Saint-Gobain Ceramics & Plastics, Inc. Nanoporous ultrafine α-alumina powders and sol-gel process of preparing same
US20040198584A1 (en) * 2003-04-02 2004-10-07 Saint-Gobain Ceramics & Plastic, Inc. Nanoporous ultrafine alpha-alumina powders and freeze drying process of preparing same
TW200427631A (en) 2003-05-19 2004-12-16 Sumitomo Chemical Co Method for producing α-alumina powder
JP4595383B2 (ja) * 2003-05-19 2010-12-08 住友化学株式会社 微粒αアルミナの製造法
JP4572576B2 (ja) * 2003-05-19 2010-11-04 住友化学株式会社 微粒αアルミナの製造方法
DE10332775A1 (de) * 2003-07-17 2005-02-17 Sasol Germany Gmbh Verfahren zur Herstellung böhmitischer Tonerden mit hoher a-Umwandlungstemperatur
TW200531924A (en) * 2004-03-12 2005-10-01 Sumitomo Chemical Co Method for producing α-alumina particle
TW200540116A (en) * 2004-03-16 2005-12-16 Sumitomo Chemical Co Method for producing an α-alumina powder
TWI367864B (en) * 2004-03-17 2012-07-11 Sumitomo Chemical Co A method for producing an α-alumina particle
US7713896B2 (en) * 2004-04-14 2010-05-11 Robert Bosch Gmbh Method for producing ceramic green compacts for ceramic components
US20050276745A1 (en) * 2004-06-15 2005-12-15 Sumitomo Chemical Company, Limited Method for producing an alpha - alumina powder
JP4670279B2 (ja) * 2004-08-25 2011-04-13 住友化学株式会社 磁気記録メディア用αアルミナ粉末
JP4810828B2 (ja) * 2004-09-03 2011-11-09 住友化学株式会社 微粒αアルミナの製造方法
TWI408104B (zh) * 2005-03-18 2013-09-11 Sumitomo Chemical Co 微細α-氧化鋁粒子之製造方法
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
DE102005033393B4 (de) * 2005-07-16 2014-04-03 Clariant International Limited Verfahren zur Herstellung von nanokristallinem α-Al2O3
DE102005033392B4 (de) * 2005-07-16 2008-08-14 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Nanokristalline Sinterkörper auf Basis von Alpha-Aluminiumoxyd, Verfahren zu Herstellung sowie ihre Verwendung
DE102006020515B4 (de) * 2006-04-29 2008-11-27 Clariant International Limited Nanopartikel aus Aluminiumoxid und Oxiden von Elementen der I. und II. Hauptgruppe des Periodensystems sowie deren Herstellung
JP2007055888A (ja) * 2005-07-25 2007-03-08 Sumitomo Chemical Co Ltd 微粒αアルミナ
TW200848370A (en) 2007-01-15 2008-12-16 Saint Gobain Ceramics & Plastics Inc Ceramic particulate material and processes for forming same
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8557727B2 (en) * 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US9090475B1 (en) 2009-12-15 2015-07-28 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for silicon SiO2
WO2011104295A1 (fr) * 2010-02-24 2011-09-01 Belenos Clean Power Holding Ag Récipient composite d'auto-surveillance pour des milieux sous haute pression
ES2374479B1 (es) * 2010-08-06 2012-12-26 Universitat De Valencia Procedimiento de obtención de corindón nanocristalino a partir de alumbres naturales o sintéticos.
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
WO2013028575A1 (fr) 2011-08-19 2013-02-28 Sdc Materials Inc. Substrats recouverts destinés à être utilisés dans une catalyse et dans des convertisseurs catalytiques ainsi que procédés permettant de recouvrir des substrats avec des compositions de revêtement verso
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
WO2015061482A1 (fr) 2013-10-22 2015-04-30 SDCmaterials, Inc. Compositions pour régénérer des pièges à nox
CA2926133A1 (fr) 2013-10-22 2015-04-30 SDCmaterials, Inc. Conception de catalyseurs pour moteurs a combustion diesel de grande puissance
CN103570049B (zh) * 2013-11-12 2015-07-15 兰州大学 完全分散的α氧化铝纳米颗粒的制备方法
WO2015143225A1 (fr) 2014-03-21 2015-09-24 SDCmaterials, Inc. Compositions pour systèmes d'adsorption de nox passive (pna) et leurs procédés de fabrication et d'utilisation
CN108059447A (zh) * 2018-01-08 2018-05-22 浙江自立新材料股份有限公司 一种大结晶烧结板状刚玉及其制备方法
CN115010469A (zh) * 2022-06-22 2022-09-06 潮州市三泰陶瓷有限公司 一种具有高硬度的耐磨陶瓷材料及其制备工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069790A2 (fr) * 1999-05-14 2000-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede de production d'oxydes d'aluminium et produits obtenus a partir de ces derniers

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US36323A (en) * 1862-08-26 Water-wheel
US2197896A (en) * 1937-02-15 1940-04-23 Du Pont Artificial wool
US2287099A (en) * 1937-02-15 1942-06-23 Du Pont Artificial wool
US2774129A (en) * 1950-11-06 1956-12-18 Kendall & Co Synthetic felts
IL10853A (en) * 1954-02-26 1900-01-01 fibers and filaments having improving crimp characteristics and methods for their production
UST859640I4 (fr) * 1959-12-15 1900-01-01
US3338992A (en) * 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
BE620334A (fr) * 1961-07-17 1900-01-01
US3502763A (en) * 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
GB1073183A (en) * 1963-02-05 1967-06-21 Ici Ltd Leather-like materials
GB1034207A (en) * 1963-09-24 1966-06-29 British Nylon Spinners Ltd Improvements in or relating to nonwoven fabrics and the method of manufacture thereof
GB1088931A (en) * 1964-01-10 1967-10-25 Ici Ltd Continuous filament nonwoven materials
GB1118163A (en) * 1964-07-30 1968-06-26 Ici Ltd Non-woven fabrics and methods of making them
US3402227A (en) * 1965-01-25 1968-09-17 Du Pont Process for preparation of nonwoven webs
US3272898A (en) * 1965-06-11 1966-09-13 Du Pont Process for producing a nonwoven web
US3589956A (en) * 1966-09-29 1971-06-29 Du Pont Process for making a thermally self-bonded low density nonwoven product
US3533904A (en) * 1966-10-19 1970-10-13 Hercules Inc Composite polypropylene filaments having a high degree of crimp
US3341394A (en) * 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3542615A (en) * 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
US3616160A (en) * 1968-12-20 1971-10-26 Allied Chem Dimensionally stable nonwoven web and method of manufacturing same
US3849241A (en) * 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
DE2048006B2 (de) * 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Verfahren und Vorrichtung zur Herstellung einer breiten Vliesbahn
DE1950669C3 (de) * 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Vliesherstellung
CA948388A (en) * 1970-02-27 1974-06-04 Paul B. Hansen Pattern bonded continuous filament web
US3773605A (en) * 1971-03-05 1973-11-20 Minnesota Mining & Mfg Acoustical material
CA1073648A (fr) * 1976-08-02 1980-03-18 Edward R. Hauser Non tisse fait de microfibres melangees et de fibres bouffantes crepees
USD264512S (en) * 1980-01-14 1982-05-18 Kimberly-Clark Corporation Embossed continuous sheet tissue-like material or similar article
US4340563A (en) * 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4732809A (en) * 1981-01-29 1988-03-22 Basf Corporation Bicomponent fiber and nonwovens made therefrom
US4374888A (en) * 1981-09-25 1983-02-22 Kimberly-Clark Corporation Nonwoven laminate for recreation fabric
US4787947A (en) * 1982-09-30 1988-11-29 Chicopee Method and apparatus for making patterned belt bonded material
US4493868A (en) * 1982-12-14 1985-01-15 Kimberly-Clark Corporation High bulk bonding pattern and method
IT1184114B (it) * 1985-01-18 1987-10-22 Montedison Spa Alfa allumina sotto forma di particelle sferiche,non aggregate,a distribuzione granulometrica ristretta e di dimensioni inferiori a 2 micron,e processo per la sua preparazione
CA1254238A (fr) * 1985-04-30 1989-05-16 Alvin P. Gerk Procede sol-gel pour l'obtention de grains d'abrasif et de produits abrasifs ceramiques durables a base d'alumine
US4657754A (en) * 1985-11-21 1987-04-14 Norton Company Aluminum oxide powders and process
US4659609A (en) * 1986-05-02 1987-04-21 Kimberly-Clark Corporation Abrasive web and method of making same
US4845056A (en) * 1987-10-09 1989-07-04 Allied-Signal Inc. Continuous process for production of fine particulate ceramics
US4883707A (en) * 1988-04-21 1989-11-28 James River Corporation High loft nonwoven fabric
US5082720A (en) * 1988-05-06 1992-01-21 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
US5143779A (en) * 1988-12-23 1992-09-01 Fiberweb North America, Inc. Rebulkable nonwoven fabric
US5198057A (en) * 1988-12-23 1993-03-30 Fiberweb North America, Inc. Rebulkable nonwoven fabric
JP2682130B2 (ja) * 1989-04-25 1997-11-26 三井石油化学工業株式会社 柔軟な長繊維不織布
US5108827A (en) * 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
DE4116522C2 (de) * 1990-05-23 1994-08-18 Fraunhofer Ges Forschung Verfahren zur Herstellung von mit einer porösen alpha-Al¶2¶O¶3¶-Schicht versehenen Substraten, nach dem Verfahren erhaltene Substrate sowie Beschichtungsmittel zur Durchführung des Verfahrens
EP0490476B1 (fr) * 1990-12-14 1996-08-28 Hercules Incorporated Etoffe non-tissée à haute résistance et volumineuse
AU650382B2 (en) 1992-02-05 1994-06-16 Norton Company Nano-sized alpha alumina particles
US5270107A (en) * 1992-04-16 1993-12-14 Fiberweb North America High loft nonwoven fabrics and method for producing same
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
KR950703093A (ko) * 1992-08-24 1995-08-23 테릴 켄트 퀄리 용융 결합된 부직 제품 및 이를 제조하는 방법(melt bonded nonwoven articles and methods of preparing)
US5405682A (en) * 1992-08-26 1995-04-11 Kimberly Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
US5336552A (en) * 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
CA2105026C (fr) * 1993-04-29 2003-12-16 Henry Louis Griesbach Iii Non-tisse forme et sa methode de fabrication
CN1031396C (zh) 1993-07-20 1996-03-27 浙江大学 纳米级α-三氧化二铝颗粒的制备方法
EP0678489A1 (fr) * 1994-04-19 1995-10-25 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Produit fritté en alumine et procédé pour sa préparation
US5622772A (en) * 1994-06-03 1997-04-22 Kimberly-Clark Corporation Highly crimpable spunbond conjugate fibers and nonwoven webs made therefrom
US5707468A (en) * 1994-12-22 1998-01-13 Kimberly-Clark Worldwide, Inc. Compaction-free method of increasing the integrity of a nonwoven web
US5759213A (en) 1995-04-24 1998-06-02 University Of Florida Method for controlling the size and morphology of alpha-alumina particles
US5759926A (en) * 1995-06-07 1998-06-02 Kimberly-Clark Worldwide, Inc. Fine denier fibers and fabrics made therefrom
WO1997000989A1 (fr) * 1995-06-23 1997-01-09 Minnesota Mining And Manufacturing Company Procede d'attenuation sonore et isolation acoustique appliquee
US5672415A (en) * 1995-11-30 1997-09-30 Kimberly-Clark Worldwide, Inc. Low density microfiber nonwoven fabric
US5858515A (en) * 1995-12-29 1999-01-12 Kimberly-Clark Worldwide, Inc. Pattern-unbonded nonwoven web and process for making the same
US5773375A (en) * 1996-05-29 1998-06-30 Swan; Michael D. Thermally stable acoustical insulation
US5879343A (en) * 1996-11-22 1999-03-09 Kimberly-Clark Worldwide, Inc. Highly efficient surge material for absorbent articles
US6200669B1 (en) * 1996-11-26 2001-03-13 Kimberly-Clark Worldwide, Inc. Entangled nonwoven fabrics and methods for forming the same
US5874160A (en) * 1996-12-20 1999-02-23 Kimberly-Clark Worldwide, Inc. Macrofiber nonwoven bundle
US5931823A (en) * 1997-03-31 1999-08-03 Kimberly-Clark Worldwide, Inc. High permeability liner with improved intake and distribution
AUPP355798A0 (en) * 1998-05-15 1998-06-11 University Of Western Australia, The Process for the production of ultrafine powders
US6217691B1 (en) * 1998-12-24 2001-04-17 Johns Manville International, Inc. Method of making a meltblown fibrous insulation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069790A2 (fr) * 1999-05-14 2000-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede de production d'oxydes d'aluminium et produits obtenus a partir de ces derniers

Also Published As

Publication number Publication date
WO2002008124A3 (fr) 2002-09-19
AU2001282003A1 (en) 2002-02-05
US20030098529A1 (en) 2003-05-29
WO2002008124A2 (fr) 2002-01-31
DE10035679A1 (de) 2002-01-31
US7022305B2 (en) 2006-04-04
JP2004504256A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
EP1301434A2 (fr) Poudre nanometrique de corindon, corps frittes produits a partir de cette poudre et son procede de production
DE2904996C2 (de) Verfahren zur Herstellung eines Sinterkörpers aus Siliciumcarbid
DE19544107C1 (de) Metallpulver-Granulat, Verfahren zu seiner Herstellung sowie dessen Verwendung
EP0490245A1 (fr) Corps céramique formé contenant de la zircone
DE2621523B2 (de) Verfahren zur herstellung keramischer formkoerper
DE2759243A1 (de) Polykristalliner siliziumnitrid- sinterkoerper und verfahren zu dessen herstellung
DE3627317A1 (de) Sinterbare aluminiumnitridzusammensetzung, sinterkoerper aus dieser zusammensetzung und verfahren zu seiner herstellung
EP0629594B1 (fr) Procédé de fabrication de corps moulés denses et polycristallins à base de carbure de bore par frittage sans pression
DE2724352A1 (de) Verfahren zur herstellung eines formkoerpers aus einem keramischen material
EP0431165A1 (fr) Materiau composite ceramique et son procede d&#39;obtention
DE2345778A1 (de) Sinterbares aluminiumtitanatpulver
EP0372382B1 (fr) Poudres frittables en céramique, procédé de leur fabrication et céramique en nitrure de silicium obtenue, son procédé de fabrication et son utilisation
DE2923729C2 (fr)
EP3331840B1 (fr) Production de céramiques piézoélectriques sans plomb dans un environnement aqueux
EP0231863B1 (fr) Barbotine stable de coulage à base de poudres à grains fins contenant du nitrure d&#39;aluminium
EP0317701A1 (fr) Réfractaire et procédé pour sa production
AT406673B (de) Verwendung von metalloxiden zur bereitung keramischer formmassen
EP0389962B1 (fr) Poudre en céramique apte au frittage et son procédé de fabrication, céramique en nitrure de silicium obtenue, son procédé de fabrication et son utilisation
EP0351805A2 (fr) Procédé de fabrication de corps verts par façonnement de matériaux céramiques aptes au frittage à base de nitrure de silicium
DE3149796C2 (fr)
EP0797554B1 (fr) Procede de production d&#39;une matiere frittee comportant de l&#39;oxyde d&#39;aluminium
EP0321975A1 (fr) Corps frittés polycristallins à base de nitrure d&#39;aluminium et leur procédé de fabrication
EP1664217B1 (fr) Procede simple et efficace pour la preparation de mine de crayon a partir de garnitures de creuset usees
WO2000020352A1 (fr) Procede de production de materiaux composites, et exemples de tels materiaux composites
EP0218026A2 (fr) Procédé pour la fabrication de corps moulés en alumine et zircone ainsi que corps moulés selon ce procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021122

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT, HELMUT

Inventor name: NONNINGER, RALPH

Inventor name: GOSSMANN, KAI

Inventor name: GOEBBERT, CHRISTIAN

Inventor name: DRUMM, ROBERT

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEIBNIZ-INSTITUT FUER NEUE MATERIALIEN GEMEINNUET

17Q First examination report despatched

Effective date: 20071018

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080429