EP1292176B1 - Dispositif de production d'un jet de gas actif - Google Patents

Dispositif de production d'un jet de gas actif Download PDF

Info

Publication number
EP1292176B1
EP1292176B1 EP02019754A EP02019754A EP1292176B1 EP 1292176 B1 EP1292176 B1 EP 1292176B1 EP 02019754 A EP02019754 A EP 02019754A EP 02019754 A EP02019754 A EP 02019754A EP 1292176 B1 EP1292176 B1 EP 1292176B1
Authority
EP
European Patent Office
Prior art keywords
discharge chamber
channel
discharge
process gas
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02019754A
Other languages
German (de)
English (en)
Other versions
EP1292176B8 (fr
EP1292176A3 (fr
EP1292176A2 (fr
Inventor
Rudolph Konavko
Arkady Konavko
Hermann Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PVA TePla AG
Original Assignee
TePla AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TePla AG filed Critical TePla AG
Publication of EP1292176A2 publication Critical patent/EP1292176A2/fr
Publication of EP1292176A3 publication Critical patent/EP1292176A3/fr
Application granted granted Critical
Publication of EP1292176B1 publication Critical patent/EP1292176B1/fr
Publication of EP1292176B8 publication Critical patent/EP1292176B8/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3484Convergent-divergent nozzles

Definitions

  • the invention relates to a device for generating a chemically active jet (hereinafter referred to as active gas jet) by means of an electrically generated plasma in a process gas used.
  • active gas jet a chemically active jet
  • the invention is particularly suitable for the treatment of surfaces, e.g. for pre-treatment and cleaning of surfaces before bonding, coating or painting, for coating, hydrophilizing, removing electrical charges or sterilizing, and for accelerating chemical reactions.
  • Devices are known for surface pretreatment of workpieces by means of an activated in an electrical discharge zone gas, shown in the publications DE 195 46 930 C1 .
  • DE 195 32 412 A1 and EP 03 05 241 in the Patent DE 195 46 930 C1 a vortex flow of the gas to be activated is passed through an electric discharge zone, which is formed between a conical central electrode and a ring electrode situated at the end of a nozzle.
  • Another device is in the DE 2 991 9142 described, wherein in the outlet of the plasma nozzle channel, a tubular mouthpiece made of electrically insulating material is used.
  • the gas to be activated is passed directly through an electric discharge zone.
  • the discharge zone is formed in a tube by means of an electric field, wherein either electrodes in the flow direction of the gas are arranged one after the other inside the tube or a discharge chamber made of insulating material without electrodes is installed in a waveguide.
  • the in the EP 0 305 241 A1 described arrangement prevents the threat to the operator through a separate, closed processing chamber in which the surface treatment of the material takes place.
  • the so difficult conditions of material processing are disadvantageous and would result in omission of the protective chamber to an uncontrolled change in the process conditions and endanger the operating personnel.
  • the speed, the temperature and the geometry of the active gas jet are determined by the electrical, thermal and gas-dynamic conditions which are necessary for the creation or ignition of the electrical discharge zone for gas activation.
  • the above conditions for gas activation in an electric discharge zone do not always prove to be optimal conditions for surface treatment by the active gas jet.
  • the invention has for its object to find a new way to generate a chemically active beam (active gas jet) by means of a plasma generated by electrical discharge in a process gas used in which at elevated process gas velocity of the active gas jet on the surface to be processed displays a high chemical activity and is already electrically neutral at the output of the device, so that it does not pose a threat to operating personnel, environment and machined surface.
  • active gas jet active gas jet
  • the object in a device for generating a chemically active jet (active gas jet) by means of a plasma generated by electrical discharge in a process gas used with a substantially cylindrical discharge chamber, which is traversed by a process gas and in the activation of the process gas plasma generation due an electrical gas discharge is provided, a gas inlet for continuously supplying the process gas into the discharge chamber and an outlet opening for directing the active gas jet on a surface to be processed, wherein the discharge chamber has a conically tapered end for increasing the speed of the active gas jet, the tapered end of the discharge chamber Subsequent limiting channel for preventing the propagation of the discharge zone into the free space for the surface to be machined, wherein the boundary channel is substantially cylindrical e is formed and earthed and whose length is greater by a factor of 5-10 than its cross-section.
  • an arc discharge for activating the process gas
  • the discharge chamber has a central electrode and a hollow electrode which surrounds the inner wall of the discharge chamber at least in the region of conically tapered end flat and symmetrically covered, has.
  • the boundary channel preferably connects directly to the hollow electrode.
  • the central electrode is expediently rod-shaped and arranged in the gas inlet region along the axis of symmetry of the discharge chamber.
  • the central electrode in order to increase the power of the active gas jet through enlarged electrode surfaces, has a cylindrical cap which includes a small-height cylinder jacket surface and a top surface and whose opening is aligned coaxially with the discharge chamber axis and located above the gas inlet of the discharge chamber.
  • the activation of the process gas to arrange the discharge chamber in an induction field generated with radio frequency (radio frequency).
  • radio frequency radio frequency
  • the high-frequency excitation for activating the process gas can also be achieved by generating an induction field by arranging the discharge chamber in a radio-frequency-operated coil.
  • a further possibility for activating the process gas without contamination of the active gas by electrode material is given by the fact that the discharge chamber is arranged in a waveguide connected to a microwave source.
  • a beam-shaping device is expediently arranged downstream of the boundary channel.
  • branched nozzles for processing individual partial surfaces or depressions of the surface to be processed to be connected to the outlet of the delimiting channel.
  • the beam-shaping device is suitably adapted by baffles to the shape of the surface to be processed, wherein the distance between the surface and the beam-shaping device is held in a defined small area such that the effectively treated surface comprises a larger area.
  • jet-forming devices which incorporate two or more inventive devices for generating the active gas jet in a processing channel, wherein in the processing channel with continuous material flow several surfaces to be treated a workpiece simultaneously or surfaces of extruded profiles with any cross-section are machined on all sides.
  • the boundary channel comprises a plurality of individual channels to reduce the gas-dynamic resistance and the residence time of the active gas in the boundary channel, the individual channels are arranged distributed around a central channel around evenly.
  • the supply of additives is particularly favorable if the boundary channel with a plurality of individual channels has a central inlet channel for the additives, wherein the inlet channel is arranged axially in the center of a ring of individual gas flows through with active gas, as a premature reaction or disintegration of the additives and Contamination of the discharge chamber by the additives can be avoided.
  • the additives in the region of the boundary channel are advantageously insertable as gases, liquids in the form of aerosols or solids in the form of fine particles.
  • the hollow electrode, the boundary channel and the beam-shaping device are made as a uniform body of revolution with very good electrical conductivity, the central electrode coaxially surrounded by an insulator tube in the of the Introduced hollow electrode formed discharge chamber and the gas inlet into the discharge chamber initially supplied to a cylindrical distribution chamber, wherein the process gas tangential flow channels are provided from the distribution chamber to the discharge chamber, so that due to a resulting spiral gas flow from the distribution chamber into the discharge chamber arc discharges between the central electrode and hollow electrode at a be fixed out of the insulator tube protruding end of the central electrode.
  • erosion of the insulator tube is largely prevented.
  • tangential flow channels can additionally be guided in a cylindrical annular chamber between rod-shaped central electrode and inner surface of the insulator tube, so that the central electrode is cooled directly by a portion of the process gas and exit points of arc discharges are substantially limited to non-cylindrical surfaces of the central electrode.
  • the insulator tube is expediently surmounted by the central electrode by a length of up to twice the diameter of the central electrode. Using the additional process gas supply within the insulator tube, the end of the central electrode can be shortened and in extreme cases closes with the end of the insulator tube.
  • the boundary channel is preferably narrowed conically in the gas flow direction and has an average ratio of channel diameter to channel length of 1: 8.
  • the boundary channel is advantageously followed by a beam-shaping device with bell-shaped widened output, so that the working width of the active gas jet is increased.
  • the basic idea of the invention is based on the fact that in the known devices of the state of the art with plasma-induced active gas jet either the activity of the gas jet is too low or the active gas jet still has a dangerously high electrical potential when it exits into the processing space, which endangers the operating personnel ,
  • the process gas is passed in sequence through three zones. First, the process gas (in the discharge space) is activated and accelerated, then in one narrow grounded boundary channel, the velocity-induced spread of the discharge zone from the discharge space in the active gas jet intercepted (limited) and finally an electrically neutral, chemically active active gas jet by jet-forming devices according to the desired application (cleaning, coating, activation, etc.) is formed.
  • the device according to the invention can be combined with all known methods of plasma-induced activation of process gases in which a corona, glow or arc discharge zone (using a DC, AC or pulse current) or a high frequency discharge zone generated in the electromagnetic alternating field (with excitation frequencies up to the Microwave range), arises.
  • the effectiveness of the boundary channel depends essentially on the fact that it has a smaller diameter in relation to the discharge chamber. Therefore, the discharge chamber is conically tapered in the flow direction of the process gas, so that at a high ratio of cross section of the discharge chamber to cross section of the boundary channel, the speed of the active gas jet increases significantly, whereby the time required for the chemically active particles of Aktivgasstrahls, the distance from the discharge chamber to travel back to the place of use is greatly reduced.
  • the boundary channel is dimensioned so that a discharge arc entering it has a potential whose size is still too small at the entrance to the boundary channel for a breakthrough to the channel wall.
  • the boundary channel With increasing path length in the boundary channel, the voltage increases in the Discharge arc until a breakthrough to the channel wall takes place.
  • the boundary channel according to the other conditions of the plasma generation must have a minimum length, which ensures that the aforementioned bulges of the discharge zone can not occur in the free space. This happens at a ratio of the cross section to the channel length of 1: 5 to 1:10.
  • the device according to the invention allows the generation of an electrically neutral, chemically active beam, with high process gas velocity of the active gas jet on the surface to be processed unfolds a high chemical activity and is already electrically neutral at the output of the device, so that it does not pose a threat to operating personnel, environment and represents machined surface.
  • the device for generating an active gas jet according to Fig. 1 consists in its basic structure of a flowing through a process gas 1 discharge chamber 2, in which an activation of the process gas 1 takes place in the form of a generated by a strong field 3 electrical discharge, a substantially cylindrical boundary channel 4 and a beam shaping device 5 for the material processing in the open Space provided active gas jet 6.
  • the discharge chamber 2 has in the flow direction of the process gas 1 a conically tapered end 21 (ie a nozzle-like narrowed shape), which serves to increase the flow velocity of the process gas 1 during its activation in the discharge chamber 2. With this increase in the gas velocity, the time to reach a surface to be processed 7 (only in Fig.
  • the boundary channel 4 is dimensioned so that the entering into it part of the discharge zone 22 reaches such a potential whose size is still too low at the entrance to the boundary channel 4 for a breakthrough to the channel wall, but so far increases with increasing path length in the boundary channel 4, until a breakthrough to the grounded wall of the boundary channel 4 takes place. Furthermore, according to the other conditions of the plasma generation required for activating the process gas 1, the boundary channel 4 must have a minimum length which ensures that the aforementioned bulges 24 of the discharge zone 22 into the free space can not occur.
  • the effectiveness of the active gas jet 6 also depends essentially on the fact that the boundary channel 4 has a significantly smaller diameter in relation to the main part of the discharge chamber 2 (before its conically tapered end 21), so that at a high ratio (1: 5 to 1: 8 ) of the cross section of the discharge chamber 2 with respect to the cross section of the restriction channel 4, the velocity of the active gas jet 6 substantially increases, whereby the time required for the chemically active particles of the active gas jet 6 to travel the distance from the discharge chamber 2 to the point of use is greatly reduced.
  • the boundary channel 4 is substantially cylindrical in shape and has a cross section of 1: 5 to 1: 8 adapted to the diameter of the discharge chamber 2.
  • process gas 1 is introduced.
  • the supplied process gas 1 is activated by the interaction with the field 3 in the electric discharge zone 22, accelerated in the conically tapered portion 21 of the discharge chamber 2 and discharged for the most part and introduced into the boundary channel 4, the spread of the discharge zone 22 to the outside in the free Processing space prevented.
  • the active gas jet 6 flows through a jet-forming device 5, in which it is formed according to the application in terms of speed, temperature, geometric shape and flow (laminar or turbulent flow).
  • the discharge zone 22 can arbitrarily (depending on the type of field generation used) by DC, AC or pulse current, electromagnetic induction, microwaves or other types of excitation, which trigger an electrical gas discharge in the process gas used 1, arise.
  • the invention represents the invention in a variant in which an activation of the process gas 1 by an arc discharge 34 between two electrodes in the discharge chamber 2 takes place.
  • One of the electrodes is a rod-shaped central electrode 31, the other is located on the inner wall of the discharge chamber 2 and forms a so-called hollow electrode 32.
  • the hollow electrode 32 is mounted at least at the conically tapered end 21 of the discharge chamber 2. But it can also form the wall of the discharge chamber 2 itself (as in Fig. 13 shown).
  • an electric arc discharge 34 the process gas 1 is introduced tangentially.
  • the process gas 1 is activated, in the conically tapered part 21 of the discharge chamber 1 accelerated and discharged on the way to the boundary channel 4 largely.
  • boundary channel 4 which accommodates a possible bulge 23 of the discharge zone 22 at high gas velocities, a forwarding of the electrical potential of the discharge zone 22 to the outside into the free space of the surface 7 to be processed is prevented.
  • discharge tufts are blown into the active gas jet of the boundary channel 4, ie it forms a bulge 23 of the discharge zone 22.
  • the active gas jet 6 is passed at the output of the discharge chamber 2 through the narrow, grounded boundary channel 4, in which certain aerodynamic congestion, a further discharge of the active gas jet 6 takes place.
  • the boundary channel 4 is dimensioned such that the bulge 23 of the discharge zone 22 entering it has a potential whose size is still too low at the entrance to the boundary channel 4 for a breakthrough to the channel wall. With increasing path length in the boundary channel 4, the voltage in the discharge arc increases so far until a breakthrough to the channel wall.
  • the boundary channel 4 must have a certain minimum length according to the other conditions of plasma generation, which ensures that the aforementioned bulge 23 of the discharge zone 22 can not traverse the boundary channel 4 and with a ratio between channel cross section and Channel length from 1/5 to 1/10.
  • the active gas jet 6 has a temperature comparable to the temperature at the outlet of the discharge chamber 2, but its gas-dynamic properties (velocity and flow conditions) are substantially determined by the gas flow rate and by the dimensions and structural design of the delimiting channel 4. After the boundary channel 4, the active gas jet 6 flows through the jet-forming device 5, in which it is formed according to the application in terms of speed, temperature, geometric shape and flow (laminar or turbulent flow).
  • jet-forming devices 5 can be used, for example, nozzles designed such that an adiabatic expansion of the active gas jet occurs to lower the temperature, or flattened jet-forming devices 5, as described in more detail below, to a flat, to form wide active gas jet 6.
  • the electrical discharge zone 22 can for the device described arbitrarily (depending on the type of voltage generator 33 used) by DC, AC or pulse current.
  • the active gas jet 6 generated in the discharge chamber 2 unfortunately also loses part of its activity as it flows through the boundary channel 4 due to recombination of the active particles and because of interactions of the active gas jet 6 with the channel wall. In order to reduce the effect of the aforementioned processes, a reduction in the channel length requires a simultaneous reduction in the cross-section of the boundary channel 4.
  • Fig. 2 shows an embodiment in which around a central single channel 41 around more individual channels 41 are arranged evenly distributed.
  • Fig. 3 represents a generation of an active gas jet 6, in which - in contrast to the example described above - the central electrode 31 has the shape of an electrically conductive cylinder cap instead of the rod shape.
  • This central electrode 31 is arranged coaxially with its opening in the direction of the discharge chamber 2.
  • the process gas 1 is introduced tangentially into a gap between the cylindrical central electrode 31 and the discharge chamber 2.
  • the support surface of the arc discharge 34 increases on the central electrode 31, ie the bases of the arc discharges 34 move at intensively fluidized flow of the process gas 1 on a larger surface.
  • Fig. 4 a variant is shown, in which the process gas 1 between two in the discharge chamber 2 in the flow direction successively arranged electrodes 35 is activated.
  • the discharge zone 22 is generated by a high-frequency discharge in an alternating field 3, wherein the discharge chamber 2 consists of electrically insulating material (eg quartz).
  • the electrical discharge resulting from the use of cold electrodes 35 is unstable under certain pressures, eg atmospheric pressure, without additional measures because high electron densities and energy gradients in front of the electrodes 35 create a space charge layer and destabilize the discharge.
  • this stabilization is achieved by simple measures (such as those of J. Reece Roth in: Industrial Plasma Engineering, Vol. 1: Principles, Inst. Of Physics Publishing, Bristol and Philadelphia, 1995, pp. 382-385, 404-407, 464f , described) achieved.
  • an RF discharge for activating the process gas 1 is particularly advantageous.
  • all of the electrodes described in the previous design variants for producing the electrical discharge zone 22 are more or less exposed to an erosion process, ie they wear out. This leads to a contamination of the discharge chamber 2 and the process gas 1 by Electrode material.
  • an active gas jet 6 which is free of contamination by electrode material, according to US Pat Fig. 5 generates the discharge zone 22 without electrodes.
  • the discharge chamber 2 consisting in this example of electrically insulating, but microwave-transparent material is introduced into the field 3 of a microwave generator 37, wherein in a typical microwave conductor 38, which is connected to the microwave generator 37, a location of relatively uniform and high field strength is used. All other processes, which produce the active gas jet 6 from the discharge zone 22, proceed in accordance with the preceding examples. A likewise electrodeless activation of the process gas 1 is in Fig. 6 shown.
  • a high-frequency generator 36 is used to induce a high-frequency alternating field 3 in the discharge chamber 2 with a coil 39.
  • the discharge chamber 2 is arranged within the turns of the coil 39 and forms the desired discharge zone 22 inside.
  • the material of the discharge chamber 2 is relatively freely selectable, but not necessarily ferromagnetic.
  • the process gas 1 is accelerated in the conically tapered end 21 of the discharge chamber 2 and freed from its dangerous potential in the grounded boundary channel 4 so that an electrically neutral active gas jet 6 is available at the outlet of the jet-forming device 5.
  • Fig. 7 shows a stylized discharge chamber 2, in which the type of generation of the electrical discharge can be chosen arbitrarily.
  • the generated active gas is conducted from the discharge chamber 2 through the restricting channel 4 into a jet-forming device 5, which has branched nozzles 51.
  • the branched nozzles 51 are directed to different sub-areas 71, which represent different heights in the surface to be processed 7 and each guide a portion of the active gas jet 6 on the faces 71.
  • FIG. 10 Another special design of jet-forming device is in Fig. 10 shown.
  • This example deals with the effective processing of a continuous material flow, in which either an extruded profile 72 or a material flow of identical workpieces are to be processed simultaneously on a plurality of surfaces 7 with an active gas jet 6.
  • an extruded profile 72 is guided through a closed processing channel 53, wherein at least two opposite sides of this processing channel 53 obliquely to Movement direction of the extruded profile 72 each a device according to the invention is mounted.
  • the mass flow of this additive 8 may only make up a fraction of the mass flow of the process gas 1 in the discharge chamber 2.
  • the discharge chamber 2 is incorporated in this embodiment in a housing 9, since an electrodeless activation of the process gas 1 is to be assumed here.
  • the housing 9 symbolizes in the simplest case a waveguide 38 with connected microwave source 37 according to Fig. 5 but can also be a coil 39 according to Fig. 7 and a corresponding cooling record.
  • the activated process gas 1 through a boundary channel 4 with a plurality of parallel individual channels 41, which are arranged in a ring 42, out.
  • a supply channel 82 which is fed from the outside. Via this supply channel 82, which is guided from the outside into the center of the ring 42 of the individual channels 41 within the metallic perforated plate of the delimiting channel 4, the additive 8 is introduced into the center of an active gas jet 6, which approximately represents a gas ring. Since the active gas jet 6 flows out at a very high speed in the small cross sections of the individual channels 41, the mass flow of the Additive 8 varies over the supply channel 82 over a wide range and can be set very accurately.
  • the device consists of discharge chamber 2, delimiting channel 4 and beam shaping device 5, which is designed as a unitary base 91 in the form of a handy handpiece (Pen ) are formed of copper or other very good electrical conductor, a rod-shaped central electrode 31, which is arranged by means of a quartz insulator tube 29, coaxial with the wall of the discharge chamber 2, which is also the hollow electrode 32.
  • the insulator tube 29 is sealed by an elastic sealing ring 92 in the base body 91 gas-tight with respect to the discharge chamber 21.
  • the end of the central electrode 31 protrudes from the insulator tube 29 by a length of up to twice the diameter of the central electrode 31 into the discharge chamber 2.
  • the insulator tube 29 itself protrudes at least by a length of the size of its own outer diameter in the discharge chamber 2 and thus forms outside of its lateral surface part of the discharge chamber 2 in the form of a hollow cylinder.
  • the process gas 1 is introduced symmetrically into the discharge chamber 2.
  • the conically tapered end 21 of the discharge chamber 2 flows smoothly into the narrow boundary channel 4.
  • the diameter of the boundary channel 4 is in the ratio 1: 8 to its length and is in Fig. 13 only stylized (not to scale) drawn.
  • the beam-forming device 5 connects.
  • the discharge chamber 2, the boundary channel 4 and the jet-forming device 5 are made of uniform copper and have a common grounded contact 93.
  • the grounded contact 93 is at the same time connected to the negative pole of the voltage generator 33 (in Fig. 13 not shown).
  • the positive pole of the voltage generator 33 is connected to the central electrode 31.
  • the supply of the process gas 1 takes place via the gas inlet 24 initially into a cylindrical distribution chamber 25, from which a helical gas flow in the hollow cylindrical part of the discharge chamber 2 is generated via uniformly distributed tangential flow channels 26.
  • This action causes the bases of the arc discharge 34 (in Fig. 13 does not represent) at the Central electrode 31 are limited to the end face and immediately adjacent parts of the electrode surface, so that the insulator tube 29 is less thermally stressed and its erosion is reduced.
  • an insulating connecting body 94 is fixed (eg screwed), which carries the attachment and the connection of the central electrode 31.
  • the connection body 94 has an additional gas inlet 27 which is connected to the discharge chamber 2 via a narrow annular chamber 28 along the central electrode 31.
  • a portion of the process gas 1 is supplied between the central electrode 31 and insulator tube 29 with the function of electrode cooling and direct feed into the discharge zone 22.
  • the annular chamber 28 is sealed at the rear in the connecting body 94 by an elastic ring 96 against the central electrode 31, which is guided backwards to the terminal 95 therethrough.
  • tangential flow channels 26 may be provided for generating a spiral gas circulation.
  • the device after Fig. 13 works in the following way.
  • a portion of the process gas 1 is supplied through the additional gas inlet 27 and flows through the annular chamber 28 between the central electrode 31 and the insulator tube 29 in the discharge chamber 2.
  • the other (larger) part of the process gas 1 through the gas inlet 24 via the distribution chamber 25th , through the tangential openings 26 of the discharge chamber 2 in the hollow cylindrical part, which is formed by the hollow electrode 32 and the protruding insulator tube 29, respectively.
  • a spiral vortex flow is generated in the discharge chamber 2.
  • the process gas 1 is due to the interactions in the discharge zone 22 (analogous to Fig. 2 , but in Fig. 13 not shown), exits the discharge chamber 2 - accelerated by the conically tapered end 21 - at high speed and flows through the subsequent boundary channel 4 and the jet-forming device 5 in the (free) The processing room.
  • the active gas jet 6 essentially loses its potential in the limiting duct 4, whose size at the end of the delimiting duct 4 with respect to ground (earthed) is almost zero.
  • the active gas jet 6 is then adjusted to the width and shape desired for the application (as exemplified by FIGS FIGS. 7 to 9 described) brought. This is a chemically very effective and electrically neutral active gas jet 6 for any application available.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Nozzles (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Lasers (AREA)

Claims (24)

  1. Dispositif de production d'un jet chimiquement actif (6) au moyen d'un plasma produit par décharge électrique dans un gaz de procédé utilisé, ledit dispositif comprenant une chambre de décharge sensiblement cylindrique, qui est traversée par un gaz de procédé et dans laquelle un plasma est produit par un décharge électrique gazeuse afin d'activer le gaz de procédé; une entrée de gaz pour l'alimentation continue de la chambre de décharge en gaz de procédé, et une orifice de sortie pour diriger le jet chimiquement actif (6) vers une surface à traiter,
    - ladite chambre de décharge (2) présentant une extrémité (21) coniquement rétrécie pour augmenter la vitesse du jet chimiquement actif (6), et
    - un canal limiteur (4) étant disposé en aval de l'extrémité (21) rétrécie de la chambre de décharge (2) de manière à éviter la propagation de la zone de décharge (22) dans l'espace libre pour la surface (7) à traiter, ledit canal limiteur (4) étant sensiblement cylindrique, caractérisé en ce que ledit canal limiteur (4) est mis à la terre et en ce que sa longueur est supérieure à sa section transversale d'un facteur de 5 - 10.
  2. Dispositif selon la revendication 1, dans lequel une décharge en arc (34) est prévue afin d'activer le gaz de procédé (1), et la chambre de décharge (2) comprend une électrode centrale (31) et une électrode creuse (32) qui couvre la paroi interne de la chambre de décharge (2) d'une manière planaire et symétrique au moins dans la région de l'extrémité (21) coniquement rétrécie.
  3. Dispositif selon la revendication 2, dans lequel le canal limiteur (4) est joint directement à l'électrode creuse (32).
  4. Dispositif selon la revendication 2, dans lequel l'électrode centrale (31) est en forme de barreau et est disposée le long de l'axe de symétrie de la chambre de décharge (2).
  5. Dispositif selon la revendication 2, dans lequel l'électrode centrale (31) présente la forme d'un capuchon cylindrique, qui comprend une enveloppe de cylindre de faible hauteur ainsi qu'une base et dont l'ouverture est orientée de manière coaxiale à l'axe de symétrie de la chambre de décharge (2) et disposée au-dessus de l'entrée de gaz (26) de la chambre de décharge (2).
  6. Dispositif selon la revendication 1, dans lequel, pour activer le gaz de procédé (1), la chambre de décharge (2) est disposée dans un champ d'induction, qui est produit par haute fréquence (radiofréquence).
  7. Dispositif selon la revendication 6, dans lequel, pour activer le gaz de procédé (1), la chambre de décharge (2) présente deux électrodes HF (35), qui sont disposées le long de la paroi de la chambre de décharge (2) dans la direction d'écoulement du gaz de procédé (1) et qui fonctionnent en radiofréquence.
  8. Dispositif selon la revendication 6, dans lequel, pour activer le gaz de procédé (1), la chambre de décharge (2) est disposée dans une bobine (39) qui fonctionne en haute fréquence.
  9. Dispositif selon la revendication 1, dans lequel, pour activer le gaz de procédé (1), la chambre de décharge (2) est disposée dans un guide d'onde (38) raccordé à une source de micro-ondes (37).
  10. Dispositif selon la revendication 1, dans lequel un moyen de formation d'un jet (5) est disposé en aval du canal limiteur (4) pour le réglage du jet chimiquement actif (6) selon des paramètres désirés, notamment la vitesse, la température, la forme géométrique et le type d'écoulement.
  11. Dispositif selon la revendication 10, caractérisé en outre en ce que des buses de branchement (51) sont raccordées à la sortie du canal limiteur (4) pour le traitement individuel de surfaces partielles (71) ou de concavités dans la surface (7) à traiter.
  12. Dispositif selon la revendication 10, caractérisé en outre en ce que le moyen de formation d'un jet (5) est adapté à la forme de la surface (7) à traiter au moyen de tôles de guidage (52), et la distance entre la surface (7) et les tôles de guidage (52) est tenue dans une gamme étroite définie, de sorte que la surface (7) effectivement traitée renferme une plus grande surface.
  13. Dispositif selon la revendication 10, caractérisé en outre en ce que l'on prévoit des moyens de formation d'un jet (5) qui intègrent deux ou plus de deux dispositifs de production d'un jet chimiquement actif (6) selon l'invention dans un seul canal de traitement (53), ce qui permet, étant donné un passage continu de matériau, le traitement simultané dans le canal de traitement (53) de plusieures surfaces (7) à traiter d'une pièce fabriquée, ou le traitement de tout côté de surfaces (7) de profils extrudés (72) de n'importe quelle section transversale dans le canal de traitement (53).
  14. Dispositif selon la revendication 1, dans lequel un tuyau d'alimentation (81) qui se termine une faible distance en amont de la sortie de la chambre de décharge (2) est axialement disposé dans la chambre de décharge (2) afin d'introduire des additifs (8) dans le jet chimiquement actif (6), évitant en même temps une influence desdits additifs (8) sur la caractéristique de décharge et une contamination de la chambre de décharge (2) avec les additifs (8) ou leurs produits de réaction.
  15. Dispositif selon la revendication 1, caractérisé en outre en ce que le canal limiteur (4) comprend plusieurs canaux individuels (41) afin de réduire la résistance à cause de la dynamique des gaz et le temps de séjour du jet chimiquement actif (6) dans le canal limiteur (4), les canaux individuels (41) étant uniformement répartis sous la forme d'un anneau (42) entourant un canal central.
  16. Dispositif selon la revendication 15, caractérisé en outre en ce que le canal limiteur (4) avec plusieurs canaux individuels (41) comprend un canal central d'alimentation (82) en additifs (8), ledit canal d'alimentation (82) étant disposé axialement au centre de l'anneau (42) de canaux individuels (41) à travers lesquels passe le gaz de procédé (6) activé.
  17. Dispositif selon la revendication 14 ou 16, dans lequel les additifs (8) peuvent être introduits dans la zone du canal limiteur (4) comme des gaz, des liquides sous forme d'aérosols ou comme des solides sous forme de fines particules.
  18. Dispositif selon la revendication 4, dans lequel l'électrode creuse (32), le canal limiteur (4) et le moyen de formation d'un jet (5) sont fabriqués comme un corps de révolution uniforme présentant une très bonne conductibilité électrique, l'électrode centrale (31) est introduite dans la chambre de décharge (2), formée par l'électrode creuse (32), comme électrode centrale (31) en forme de barreau coaxialement enfermée dans un tube isolant (29), et l'alimentation en gaz pour le gaz de procédé (1) présente des canaux d'écoulement tangentiels (24) dans une chambre de distribution cylindrique (15; 16) entourant l'électrode centrale (31) de manière concentrique, les décharges en arc (34) entre l'électrode centrale (31) et l'électrode creuse (32) présentant une zone de sortie concentrée sur l'extrémité de l'électrode centrale (31) à cause d'une fleuve gazeuse résultante en spirale de la chambre de distribution (15; 16) jusque dans la chambre de décharge (2).
  19. Dispositif selon la revendication 18, dans lequel les canaux d'écoulement tangentiels (24) sont amenés dans une partie cylindrique annulaire de la chambre de décharge (2) entre la surface intérieure de l'électrode creuse (32) et la surface extérieure du tube isolant (29), de sorte que le gaz de procédé (1) circule en spirale autour de l'extérieur du tube isolant (29).
  20. Dispositif selon la revendication 18, dans lequel les canaux d'écoulement tangentiels (24) sont amenés en outre dans une chambre annulaire cylindrique (28) entre l'électrode centrale (31) en forme de barreau et la surface intérieure du tube isolant (29), de sorte que l'électrode centrale (31) soit refroidie directement par une partie du gaz de procédé (1) et les points de sortie de décharges en arc (34) sont limités sensiblement à des surfaces non pas cylindriques de l'électrode centrale (31).
  21. Dispositif selon la revendication 19, dans lequel l'extrémité de l'électrode centrale (31) en forme de barreau fait saillie au-delà du tube isolant (29) sur une longueur maximale de deux fois le diamètre de l'électrode centrale (31).
  22. Dispositif selon la revendication 19 ou 20, dans lequel l'extrémité de l'électrode centrale (31) est au ras de l'extrémité du tube isolant (29).
  23. Dispositif selon la revendication 18, dans lequel le canal limiteur (4) est faiblement rétrécie de manière conique dans la direction d'écoulement du gaz et en ce qu'il présente un rapport moyen du diamètre du canal à sa longueur de 1:8.
  24. Dispositif selon la revendication 18, dans lequel un moyen de formation d'un jet (5) avec une sortie élargie en forme de cloche est disposé en aval du canal limiteur (4) de manière à augmenter la largeur de travail du jet chimiquement actif (6).
EP02019754A 2001-09-07 2002-09-04 Dispositif de production d'un jet de gas actif Expired - Lifetime EP1292176B8 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10145131A DE10145131B4 (de) 2001-09-07 2001-09-07 Vorrichtung zum Erzeugen eines Aktivgasstrahls
DE10145131 2001-09-07

Publications (4)

Publication Number Publication Date
EP1292176A2 EP1292176A2 (fr) 2003-03-12
EP1292176A3 EP1292176A3 (fr) 2008-07-02
EP1292176B1 true EP1292176B1 (fr) 2009-12-09
EP1292176B8 EP1292176B8 (fr) 2010-05-19

Family

ID=7698901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02019754A Expired - Lifetime EP1292176B8 (fr) 2001-09-07 2002-09-04 Dispositif de production d'un jet de gas actif

Country Status (6)

Country Link
US (1) US6943316B2 (fr)
EP (1) EP1292176B8 (fr)
AT (1) ATE451824T1 (fr)
CA (1) CA2399493C (fr)
DE (2) DE10145131B4 (fr)
ES (1) ES2337657T3 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358329B4 (de) 2003-12-12 2007-08-02 R3T Gmbh Rapid Reactive Radicals Technology Vorrichtung zur Erzeugung angeregter und/oder ionisierter Teilchen in einem Plasma und Verfahren zur Erzeugung ionisierter Teilchen
DE102004028197B4 (de) * 2004-06-09 2006-06-29 Jenoptik Automatisierungstechnik Gmbh Verfahren zur Vorbehandlung verzinkter Stahlbleche oder Aluminiumbleche zum Schweißen
US7148456B2 (en) * 2004-09-15 2006-12-12 The Penn State Research Foundation Method and apparatus for microwave phosphor synthesis
US7079962B2 (en) * 2004-10-20 2006-07-18 Itron, Inc. Automated utility meter reading system with variable bandwidth receiver
WO2006048650A1 (fr) * 2004-11-05 2006-05-11 Dow Corning Ireland Limited Systeme a plasma
SK51082006A3 (sk) * 2006-12-05 2008-07-07 Fakulta Matematiky, Fyziky A Informatiky Univerzitfakulta Matematiky, Fyziky A Informatiky Univerzity Komensk�Hoy Komensk�Ho Zariadenie a spôsob úpravy povrchov kovov a metaloZariadenie a spôsob úpravy povrchov kovov a metaloidov, oxidov kovov a oxidov metaloidov a nitridovidov, oxidov kovov a oxidov metaloidov a nitridovkovov a nitridov metaloidovkovov a nitridov metaloidov
DE102006060942A1 (de) * 2006-12-20 2008-06-26 Plasma Treat Gmbh Vorrichtung und Verfahren zur Erzeugung eines Plasmastrahls
DE102007002161B4 (de) * 2007-01-15 2011-11-10 Sergei Afanassev Elektrischer Raketenmotor mit pulverförmigem Betriebsstoff
DE102007012882A1 (de) * 2007-03-17 2008-09-18 Je Plasmaconsult Gmbh Verfahren und Vorrichtung zur Plasmabehandlung
DE102007024090A1 (de) 2007-05-22 2008-11-27 Diener, Christof, Dipl.-Ing. Plasmabehandlungsvorrichtung
JP2011522381A (ja) * 2008-05-30 2011-07-28 コロラド ステート ユニバーシティ リサーチ ファンデーション プラズマに基づく化学源装置およびその使用方法
CH700049A2 (fr) * 2008-12-09 2010-06-15 Advanced Machines Sarl Procédé et dispositif de génération d'un flux de plasma.
KR101001477B1 (ko) 2009-02-27 2010-12-14 아주대학교산학협력단 바이오-메디컬 응용을 위한 상압 저온 마이크로 플라즈마 분사 장치
FR2955628B1 (fr) * 2010-01-27 2013-10-04 Centre Nat Rech Scient Procede et dispositif de modulation du debit massique d'un ecoulement de gaz
TWI432228B (zh) * 2010-09-07 2014-04-01 Univ Nat Cheng Kung 微電漿產生裝置及其滅菌系統
WO2015030191A1 (fr) * 2013-08-30 2015-03-05 独立行政法人産業技術総合研究所 Dispositif de traitement à plasma à micro-ondes
ITPD20130310A1 (it) 2013-11-14 2015-05-15 Nadir S R L Metodo per la generazione di un getto o jet di plasma atmosferico e dispositivo minitorcia al plasma atmosferico
DE102014118909B4 (de) 2014-02-05 2016-12-29 Wilhelm Niemann GmbH & Co. KG Maschinenfabrik Tauchmühle mit Mahlraumabdichtung
CN108714735A (zh) * 2018-08-11 2018-10-30 刘冠诚 一种等离子焰扩散咀
DE102018221191A1 (de) 2018-12-07 2020-06-10 Carl Zeiss Smt Gmbh Optisches Element zur Reflexion von VUV-Strahlung und optische Anordnung
CN111465160A (zh) * 2020-05-14 2020-07-28 国网重庆市电力公司电力科学研究院 一种等离子体射流发生装置及系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042830A (en) * 1960-04-04 1962-07-03 Mhd Res Inc Method and apparatus for effecting gas-stabilized electric arc reactions
US3264508A (en) * 1962-06-27 1966-08-02 Lai William Plasma torch
US3239130A (en) * 1963-07-10 1966-03-08 Cons Vacuum Corp Gas pumping methods and apparatus
CH607540A5 (fr) * 1976-02-16 1978-12-29 Niklaus Mueller
US4800716A (en) * 1986-07-23 1989-01-31 Olin Corporation Efficiency arcjet thruster with controlled arc startup and steady state attachment
US4916273A (en) * 1987-03-11 1990-04-10 Browning James A High-velocity controlled-temperature plasma spray method
FR2618796B1 (fr) * 1987-07-27 1993-02-05 Centre Nat Rech Scient Procede de traitement de surfaces, utilisant une post-decharge electrique dans un gaz en ecoulement et dispositif pour la mise en oeuvre de ce procede
US4882465A (en) * 1987-10-01 1989-11-21 Olin Corporation Arcjet thruster with improved arc attachment for enhancement of efficiency
US4926632A (en) * 1988-02-01 1990-05-22 Olin Corporation Performance arcjet thruster
US5111656A (en) * 1990-07-12 1992-05-12 Olin Corporation Arcjet nozzle having improved electrical-to-thrust conversion efficiency and high voltage operation
US5901551A (en) * 1994-10-24 1999-05-11 Primex Technologies, Inc. Converging constrictor for an electrothermal arcjet thruster
US5640843A (en) * 1995-03-08 1997-06-24 Electric Propulsion Laboratory, Inc. Et Al. Integrated arcjet having a heat exchanger and supersonic energy recovery chamber
JPH0967191A (ja) * 1995-08-29 1997-03-11 Komatsu Ltd ガス噴射による表面処理装置
DE19532412C2 (de) * 1995-09-01 1999-09-30 Agrodyn Hochspannungstechnik G Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken
DE19546930C1 (de) * 1995-12-15 1997-05-07 Agrodyn Hochspannungstechnik G Koronadüse zur Oberflächenbehandlung von Werkstücken
JP3423543B2 (ja) * 1996-08-30 2003-07-07 株式会社荏原製作所 高速原子線源
WO1999049705A1 (fr) * 1998-03-20 1999-09-30 Tokyo Electron Limited Dispositif de traitement plasmique
DE29919142U1 (de) * 1999-10-30 2001-03-08 Agrodyn Hochspannungstechnik GmbH, 33803 Steinhagen Plasmadüse
DE10115241A1 (de) * 2001-03-28 2002-10-24 Aurion Anlagentechnik Gmbh Vorrichtung und Verfahren zur atmosphärischen Plasmabehandlung
DE10303402A1 (de) * 2003-01-24 2004-08-12 Pva Tepla Ag Vorrichtung zum Erzeugen eines breiten Aktivgasstrahls auf Basis eines Gasentladungsplasmas

Also Published As

Publication number Publication date
ATE451824T1 (de) 2009-12-15
CA2399493C (fr) 2011-05-24
CA2399493A1 (fr) 2003-03-07
ES2337657T3 (es) 2010-04-28
EP1292176B8 (fr) 2010-05-19
DE10145131A1 (de) 2003-03-27
EP1292176A3 (fr) 2008-07-02
US20030047540A1 (en) 2003-03-13
US6943316B2 (en) 2005-09-13
DE10145131B4 (de) 2004-07-08
DE50214062D1 (de) 2010-01-21
EP1292176A2 (fr) 2003-03-12

Similar Documents

Publication Publication Date Title
EP1292176B1 (fr) Dispositif de production d'un jet de gas actif
EP1230414B1 (fr) Procede et dispositif servant au revetement par plasma de surfaces
EP1053660B1 (fr) Dispositif de production d'un jet de plasma froid non-thermique libre
DE69926356T2 (de) Das verfahren zur erzeugung einer physikalisch und chemisch aktiven umgebung durch einen plasmastrahl und plasmastrahl dazu
DE3851965T2 (de) Plasma-Operationsmesser.
DE60308341T2 (de) Verfahren zur oberflächenbehandlung durch atmosphärisches plasma und vorrichtung zu seiner herstellung
EP2716139B1 (fr) Dispositif et procédé de production d'un plasma froid homogène dans des conditions de pression atmosphérique
DE69216637T2 (de) Verfahren zur oberflächenbehandlung eines werkstückes
AT514555A4 (de) Verfahren und Vorrichtung zur Erzeugung eines Plasmastrahls
EP3430864B1 (fr) Buse plasma et procede d'utilisation de la buse plasma
WO2008061602A1 (fr) Procédé et dispositif pour produire un plasma, et utilisations du plasma
WO2002076158A1 (fr) Procede de soudage au plasma
DE10140298B4 (de) Verfahren zum Plasmaschweißen
DE10136951B4 (de) Verfahren zum Laser-Plasma-Hybridschweißen
EP1819208B1 (fr) Dispositif et procédé de production de particules excitées et/ou ionisées dans un plasma
DE102008028166B4 (de) Vorrichtung zur Erzeugung eines Plasma-Jets
DE2100474A1 (de) Verfahren zum Erregen eines, eine mitgeschleppte kondensierte Phase enthal tende, fließfähigen Mediums mittels einer Lichtbogenentladung Korman, Samuel, Hewlett, N Y , (V St A )
DE10358329B4 (de) Vorrichtung zur Erzeugung angeregter und/oder ionisierter Teilchen in einem Plasma und Verfahren zur Erzeugung ionisierter Teilchen
DE102013106315B4 (de) Verfahren und Vorrichtung zum Erzeugen eines physikalischen Plasmas
DE1764479C (de) Hochfrequenz-Plasmagenerator
DE1284952B (de) Verfahren und Vorrichtung zur Durchfuehrung von Gasphasenreaktionen in elektrischen Entladungen
DE1440618C (de) Verfahren zur Erzeugung eines Plasmastromes hoher Temperatur
DE2100411A1 (en) Excitation of a fluid medium by an arc dis- - charge
DE1155546B (de) Plasmaofen
DE19930925A1 (de) Plasmagenerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20081229

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

BECA Be: change of holder's address

Owner name: PVA TEPLA A.G.IM WESTPARK 10-12, D-35435 WETTENBER

Effective date: 20091209

BECH Be: change of holder

Owner name: PVA TEPLA A.G.

Effective date: 20091209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50214062

Country of ref document: DE

Date of ref document: 20100121

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2337657

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: VA TEPLA AG

Free format text: TEPLA AG#HANS-RIEDL-STRASSE 5#85622 FELDKIRCHEN (DE) -TRANSFER TO- PVA TEPLA AG#IM WESTPARK 10-12#35435 WETTENBERG (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20100420

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PVA TEPLA AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100923

Year of fee payment: 9

Ref country code: ES

Payment date: 20100923

Year of fee payment: 9

26N No opposition filed

Effective date: 20100910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100914

Year of fee payment: 9

Ref country code: IT

Payment date: 20100923

Year of fee payment: 9

Ref country code: LU

Payment date: 20100922

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100921

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100916

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100913

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110607

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50214062

Country of ref document: DE

Representative=s name: PATENTANWAELTE OEHMKE UND KOLLEGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50214062

Country of ref document: DE

Owner name: DIENER ELECTRONIC GMBH & CO. KG, DE

Free format text: FORMER OWNER: PVA TEPLA AG, 35435 WETTENBERG, DE

Effective date: 20111213

Ref country code: DE

Ref legal event code: R082

Ref document number: 50214062

Country of ref document: DE

Representative=s name: PATENTANWAELTE OEHMKE UND KOLLEGEN, DE

Effective date: 20111213

BERE Be: lapsed

Owner name: PVA TEPLA A.G.

Effective date: 20110930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110904

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120401

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110904

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 451824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130927

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214062

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214062

Country of ref document: DE

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401