EP1285213B1 - Echangeur de chaleur a microstructure et son procede de realisation - Google Patents

Echangeur de chaleur a microstructure et son procede de realisation Download PDF

Info

Publication number
EP1285213B1
EP1285213B1 EP01935996A EP01935996A EP1285213B1 EP 1285213 B1 EP1285213 B1 EP 1285213B1 EP 01935996 A EP01935996 A EP 01935996A EP 01935996 A EP01935996 A EP 01935996A EP 1285213 B1 EP1285213 B1 EP 1285213B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
graphite
hollow fibre
fibre structure
microstructured heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01935996A
Other languages
German (de)
English (en)
Other versions
EP1285213A1 (fr
Inventor
Norbert Breuer
Peter Satzger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1285213A1 publication Critical patent/EP1285213A1/fr
Application granted granted Critical
Publication of EP1285213B1 publication Critical patent/EP1285213B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the invention relates to a microstructure heat exchanger and a method for producing such a microstructure heat exchanger according to the preamble of the independent claims.
  • the cooling of electronic components has hitherto been predominantly by solid-state heat conduction through the housing or external Heatsink.
  • the payable performance is through the thermal conductivity, the wall thicknesses and the specific Surface of the components used limited. If one fluid-cooled heat exchanger begins to occur at the Cooling electronic components the problem of thermal Coupling of the heat exchanger to this component. moreover are fluid-cooled heat exchangers far more expensive than Heat exchangers based on conventional concepts.
  • a cooling element in which one or more cooling coils embedded in a carbon derivative environment such as graphite.
  • a carbon derivative environment such as graphite.
  • the metallic cooling coils in a pasty carbon mass embedded which is then solidified by strong heating, so that the cooling coils is enclosed by a graphite matrix.
  • Object of the present invention is the preparation of a Microstructure heat exchanger, on the one hand a good thermal Coupling to the component to be cooled allows, and on the other hand is cheap to produce, as well as the provision a suitable, simple manufacturing process.
  • the microstructure heat exchanger according to the invention and the inventive Method has over the prior art the advantage that it is thus possible in a simple manner a large number of small tubes or hollow fibers within a hollow fiber structure parallel to switch, and so on Due to the resulting large heat exchanger surface a high Transfer or dissipate heat output.
  • Next is advantageous that through the use of graphite as a matrix body a particularly good thermal coupling or thermal conductivity the microstructure heat exchanger according to the invention given is.
  • the used Hollow fiber structure in a variety of variants or structures produced, and therefore in a particular case in a simpler Adaptable to the particular task.
  • the production process according to the invention is characterized Simplicity and versatility in terms of the manufacturable Microstructure heat exchanger off. It is next for both graphite and other elastic or by Presses plastically malleable materials suitable simultaneously have a good thermal conductivity.
  • the hollow fiber structure used a particular regular arrangement of metallic Is tubes that are gas permeable or liquid permeable with a common supply line and a common discharge line in connection.
  • a matrix body is particularly advantageous is a graphite body pressed together, preferably before graphite foils made of expanded graphite into which the particular metallic hollow fiber structure during pressing has been embedded. It can be advantageous both unstructured, d. H. flat graphite foils are used, as well as graphite foils, which before pressing with a the arrangement of the tubes of the hollow fiber structure corresponding Negative structuring have been provided.
  • thermal coupling of a to be cooled Component to the matrix body it is also advantageous if this is formed flat in the form of a plate, and by pressing against the cooling member thermally conductive with this is connected.
  • This compression is due to the elasticity or plastic formability of the graphite body used especially simple, and there are also possible bumps balanced on the cooling component, which in addition to an improved thermal coupling leads.
  • a thermal Conductive paste for example in the form of a on the flat Graphite body applied conductive layer, are used.
  • Figure 1 a metallic hollow fiber structure
  • Figure 2a the compression of these Hollow fiber structure with two graphite foils
  • Figure 2b the after the compression of Figure 2a obtained matrix body with integrated hollow fiber structure
  • Figure 3 shows a microstructure heat exchanger in the form of a plate with an applied Cooling plate.
  • the invention is initially based on a metallic hollow fiber structure 10 as described in the application DE 199 10 985.0 in similar form has been described. Insofar should on details dispensed with the manufacturing process.
  • FIG. 1 shows first a hollow fiber structure 10 according to FIG the application DE 199 10 985.0 has been produced.
  • This has a plurality of mutually parallel metallic tubes 13, the gas-permeable or fluid-continuous with a common supply line 12 and a common discharge line 11 are in communication.
  • the tubes 13 and the supply line 12 and the discharge line 11 consist for example of nickel.
  • the wall thickness the tubes 13 of the hollow fiber structure 10 according to FIG. 1 is between 100 nm and 50 microns, especially 500 nm to 5 ⁇ m.
  • the mean distance of the tubes 13 of the hollow fiber structure 10 according to Figure 1 is usually between 5 microns and 10 mm, in particular between 20 microns and 200 microns.
  • microstructure heat exchanger 5 To get from the microstructure of Figure 1 now a microstructure heat exchanger 5, are initially two graphite foils 14 prepared from previously expanded graphite, between which the hollow fiber structure 10 is arranged. This will be explained with the aid of FIG. 2a.
  • the hollow fiber structure 10 is further preferably so between placed the graphite foils 14 that the tubes 13th lie between the sheets 14, while the discharge line 11th and the supply line 12 is not covered by the graphite foils 14 becomes.
  • the hollow fiber structure is provided 10 first between two lightly pressed graphite foils 14 to arrange expanded graphite, and then these two graphite foils 14 together with the Hollow fiber structure 10 to press.
  • this pressing is due to the elasticity and plastic formability the graphite foils 14 no additional binder required.
  • the after pressing resulting matrix body 15 in the form of a plate is shown in Figure 2b.
  • two flat graphite foils 14 according to FIG. 2a may also be at least one of these two Graphite sheets before pressing with one of the arrangement of Tubes 13 of the hollow fiber structure 10 corresponding negative structuring be provided.
  • the negative structuring at least one of the graphite foils 14 may be, for example by a corresponding embossing with one of the hollow fiber structure 10 corresponding pressure structure or a corresponding Stamp done.
  • microstructure heat exchanger according to the invention 5 according to the illustrated embodiment not even on a fluid guide or gas guide according to FIG 1 restricted.
  • FIG. 3 explains how with the produced matrix body 15 a cooling of a cooling component in the form of a cooling plate 17 takes place.
  • the cooling plate 17 by a suitable Contact pressure with the matrix body 15 compressed, wherein the cooling plate 17 thermally coupled to the matrix body 15 becomes.
  • the good thermal coupling results here again by the elasticity and thermal conductivity of the used Graphite.
  • the electrical connections then preferably on the surface facing away from the matrix body 15 are located.
  • the thermal coupling between matrix body 15 and Cooling plate 17 also be provided that on the matrix body 15 applied a layer of a thermal conductive paste 16 becomes.
  • cooling can be achieved by the use of fluids or gases such as air, water or a refrigerant.
  • the fluid is, for example, by a with the supply line 12 related pump or gas for example, by a with the supply line 12 in connection standing fan through the microstructure heat exchanger 5 guided.
  • microstructure heat exchanger 5 d. H. within the matrix body 15 embedded hollow fiber structure 10, an evaporation of a Make liquid, so that, for example, a cooling in the microstructure heat exchanger 5 according to the principle of Heat pipe takes place.

Claims (15)

  1. Echangeur de chaleur à microstructure ayant au moins une structure à fibres creuses (10) traversée par un liquide ou un gaz, et au moins un corps de matrice (15) entourant au moins partiellement la structure à fibres creuses (10), le corps de matrice (15) étant un corps de graphite,
    caractérisé en ce que
    le corps de matrice (15) est un corps de graphite en graphite comprimé.
  2. Echangeur de chaleur à microstructure selon la revendication 1,
    caractérisé en ce que
    le corps de matrice est un corps de graphite réalisé à partir de feuilles de graphite (14) en graphite expansé, comprimées les unes avec les autres.
  3. Echangeur de chaleur à microstructure selon la revendication 2,
    caractérisé en ce que
    les feuilles de graphite (14) comprimées les unes avec les autres sont déformables élastiquement et/ou plastiquement et présentent une épaisseur comprise entre 250 µm et 3 mm.
  4. Echangeur de chaleur à microstructure selon la revendication 1 ou 2,
    caractérisé en ce que
    le corps de matrice (15) présente une forme plane et une épaisseur comprise entre 500 µm et 5 mm.
  5. Echangeur de chaleur à microstructure selon la revendication 1,
    caractérisé en ce que
    la structure à fibres creuses (10) est une structure métallique à fibres creuses.
  6. Echangeur de chaleur à microstructure selon la revendication 5,
    caractérisé en ce que
    la structure à fibres creuses (10) est un ensemble de tubes (13) reliés à au moins une conduite d'entrée (12) et au moins une conduite de sortie (11) laissant passer un gaz ou un liquide.
  7. Echangeur de chaleur à microstructure selon la revendication 6,
    caractérisé en ce que
    les tubes (13) sont disposés régulièrement.
  8. Echangeur de chaleur à microstructure selon la revendication 6 ou 7,
    caractérisé en ce que
    l'épaisseur de paroi des tubes (13) de la structure à fibres creuses (10) est comprise entre 100 nm et 50 µm, notamment entre 500 nm et 5 µm.
  9. Echangeur de chaleur à microstructure selon la revendication 6, 7 ou 8,
    caractérisé en ce que
    la distance moyenne des tubes (13) de la structure à fibres creuses (10) est comprise entre 5 µm et 10 mm, notamment entre 20 µm et 200 µm.
  10. Dispositif de refroidissement avec échangeur de chaleur à microstructure (5) selon l'une quelconque des revendications précédentes, le corps de matrice (15) étant relié de manière thermoconductrice avec un composant de refroidissement.
  11. Dispositif de refroidissement selon la revendication 10,
    caractérisé en ce que
    le composant de refroidissement est une plaque de refroidissement (17) ou un composant de puissance électronique.
  12. Dispositif de refroidissement selon la revendication 10 ou 11,
    caractérisé en ce que
    le corps de matrice (15) de l'échangeur de chaleur à microstructure (5) est relié de manière thermoconductrice avec le composant de refroidissement par l'intermédiaire d'une pâte thermoconductrice (16).
  13. Procédé de fabrication d'un échangeur de chaleur à microstructure comprenant les étapes opératoires suivantes :
    a) Mise à disposition d'une structure à fibres creuses (10),
    b) Mise à disposition d'au moins un premier corps partiel de matrice (14) et d'au moins un deuxième corps partiel de matrice (14) dont au moins un est déformable élastiquement et/ou plastiquement et bon conducteur de chaleur, et
    c) Compression de la structure à fibres creuses (10) et des corps partiels de matrice (14) pour obtenir l'échangeur de chaleur à microstructure (5), les corps partiels de matrice (14) étant formés pour obtenir un corps de matrice (15) entourant la structure à fibres creuses (10) du moins partiellement.
  14. Procédé selon la revendication 13,
    caractérisé en ce qu'
    on utilise une feuille de graphite (14) en tant que premier et/ou deuxième corps partiel de matrice (14).
  15. Procédé selon la revendication 14,
    caractérisé en ce que
    la feuille de graphite (14) est munie avant la compression d'une structure négative correspondant à la structure à fibres creuses (10).
EP01935996A 2000-05-11 2001-04-26 Echangeur de chaleur a microstructure et son procede de realisation Expired - Lifetime EP1285213B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10022972 2000-05-11
DE10022972A DE10022972A1 (de) 2000-05-11 2000-05-11 Mikrostruktur-Wärmetauscher und Verfahren zu dessen Herstellung
PCT/DE2001/001571 WO2001086221A1 (fr) 2000-05-11 2001-04-26 Echangeur de chaleur a microstructure et son procede de realisation

Publications (2)

Publication Number Publication Date
EP1285213A1 EP1285213A1 (fr) 2003-02-26
EP1285213B1 true EP1285213B1 (fr) 2005-04-06

Family

ID=7641583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01935996A Expired - Lifetime EP1285213B1 (fr) 2000-05-11 2001-04-26 Echangeur de chaleur a microstructure et son procede de realisation

Country Status (6)

Country Link
EP (1) EP1285213B1 (fr)
JP (1) JP2003533057A (fr)
KR (1) KR100758836B1 (fr)
DE (2) DE10022972A1 (fr)
ES (1) ES2240457T3 (fr)
WO (1) WO2001086221A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167563A3 (fr) * 2019-02-05 2020-10-29 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Échangeur de chaleur composite vasculaire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220705A1 (de) * 2002-05-10 2003-11-27 Abb Patent Gmbh Einrichtung zur chemischen oder biochemischen Analyse von Proben oder Reagenzien unter Verwendung von Wasser als Lösungsmittel
US20040118553A1 (en) 2002-12-23 2004-06-24 Graftech, Inc. Flexible graphite thermal management devices
JP2006064296A (ja) * 2004-08-27 2006-03-09 Sgl Carbon Ag 膨張黒鉛から成る熱伝導板とその製造方法
DE102005029051A1 (de) * 2005-06-21 2006-12-28 Sgl Carbon Ag Wärmeleitvorrichtung für eine Fußboden-, Wand- oder Deckenheizung
EP1736715A1 (fr) * 2005-06-23 2006-12-27 Sgl Carbon Ag Tubes à vide pour collecteurs solaires avec transfert de chaleur amélioré
EP2597041A1 (fr) * 2011-11-22 2013-05-29 Active Space Technologies GmbH Sangle thermique
EP2667102B1 (fr) 2012-05-23 2014-12-24 Inotec Gmbh & Co.KG élément de construction mixte pour un dispositif de climatisation au plafond, au mur ou au sol d'un bâtiment
JP6201458B2 (ja) 2013-06-28 2017-09-27 富士通株式会社 電子装置及び電子装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE966473C (de) * 1951-07-22 1957-09-12 Huels Chemische Werke Ag Graphitwaermeaustauscher
FR2373498A1 (fr) * 1976-12-09 1978-07-07 Savoie Electrodes Refract Bloc refroidi en materiau carbone
JPS6453438A (en) * 1987-08-25 1989-03-01 Actronics Kk Cooler for power semiconductor element
US5079619A (en) 1990-07-13 1992-01-07 Sun Microsystems, Inc. Apparatus for cooling compact arrays of electronic circuitry
GB9211413D0 (en) * 1992-05-29 1992-07-15 Cesaroni Anthony Joseph Panel heat exchanger formed from tubes and sheets
US5829516A (en) * 1993-12-15 1998-11-03 Aavid Thermal Products, Inc. Liquid cooled heat sink for cooling electronic components
JP3521318B2 (ja) * 1994-08-05 2004-04-19 株式会社日立製作所 高熱流束受熱板及びその製造方法
DE69531390T2 (de) * 1994-11-30 2004-05-27 Sumitomo Electric Industries, Ltd. Substrat, Halbleiteranordnung, Anordnung für Elementmontage
JP3025441B2 (ja) * 1996-08-08 2000-03-27 日本原子力研究所 核融合炉の第1壁の冷却用壁体の製作方法
JP2000082659A (ja) * 1998-09-03 2000-03-21 Miura Co Ltd 現像液塗布システムおよびその制御方法
DE19910985B4 (de) * 1999-03-12 2004-09-02 Robert Bosch Gmbh Verfahren zur Erzeugung metallischer Hohlfasern oder Hohlfaserstrukturen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167563A3 (fr) * 2019-02-05 2020-10-29 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Échangeur de chaleur composite vasculaire

Also Published As

Publication number Publication date
ES2240457T3 (es) 2005-10-16
KR20020037331A (ko) 2002-05-18
KR100758836B1 (ko) 2007-09-19
DE10022972A1 (de) 2001-11-22
JP2003533057A (ja) 2003-11-05
EP1285213A1 (fr) 2003-02-26
DE50105837D1 (de) 2005-05-12
WO2001086221A1 (fr) 2001-11-15

Similar Documents

Publication Publication Date Title
DE69626662T2 (de) Mit flüssigkeit gekühlter kühlkorper zur kühlung von elektronischen bauteilen
EP0356745B1 (fr) Dispositif d'échange de chaleur
EP2567423B1 (fr) Dispositif de refroidissement d'une batterie
DE19653956A1 (de) Flaches Wärmerohr
DE2647758B2 (de) Kühlungsmodul für elektrische Bauteile
EP1285213B1 (fr) Echangeur de chaleur a microstructure et son procede de realisation
WO2018014918A1 (fr) Agencement de batterie
WO2014027018A1 (fr) Dispositif thermoélectrique
DE112004002839T5 (de) Vorrichtung für den Wärmetransport und Verfahren zu dessen Herstellung
DE102009000914A1 (de) Verdampfer und Kühleinrichtung unter Verwendung derartiger Verdampfer
DE102012224356A1 (de) Halbleitervorrichtung
DE102016222630A1 (de) Kühlvorrichtung und Verfahren zum Herstellen einer Kühlvorrichtung
DE10334130B4 (de) Brennstoffzellenanordnung und Vorrichtung zum Befestigen einer Brennstoffzellenanordnung an einem Gehäuse
DE102007044634B4 (de) Hochtemperatur-Polymer-Elektrolyt-Membran-Brennstoffzelle (HT-PEMFC) einschließlich Vorrichtungen zu deren Kühlung
DE3922485C1 (fr)
DE102012214702A1 (de) Thermoelektrische Vorrichtung
DE102009033988A1 (de) Heizvorrichtung
DE4311839A1 (de) Mikrokühleinrichtung für eine Elektronik-Komponente
DE10023949C1 (de) Wärmetauscher, insbesondere Mikrostruktur-Wärmetauscher
DE102016222629A1 (de) Kühlvorrichtung und Verfahren zum Herstellen einer Kühlvorrichtung
DE102007053090A1 (de) Kühlkörper für elektronische Bauelemente und Verfahren zur Herstellung eines Kühlkörpers für elektronische Bauelemente
DE10216157A1 (de) Zu Heizzwecken dienender Wärmeübertrager mit elektrischer Heizeinrichtung
AT520693B1 (de) Akkumulator
DE102019121964A1 (de) Verfahren zur Herstellung eines Batteriemoduls einer Kraftfahrzeugbatterie
DE102007017623A1 (de) Montageplatte für elektrische oder elektronische Bauteile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021211

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB

17Q First examination report despatched

Effective date: 20040408

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50105837

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050725

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2240457

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100423

Year of fee payment: 10

Ref country code: FR

Payment date: 20100506

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110426

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110426

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140626

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50105837

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103