EP1285150B1 - Verfahren und vorrichtung zum betrieb einer dampfturbine mit mehreren stufen im leerlauf oder schwachlastbetrieb - Google Patents

Verfahren und vorrichtung zum betrieb einer dampfturbine mit mehreren stufen im leerlauf oder schwachlastbetrieb Download PDF

Info

Publication number
EP1285150B1
EP1285150B1 EP01933992A EP01933992A EP1285150B1 EP 1285150 B1 EP1285150 B1 EP 1285150B1 EP 01933992 A EP01933992 A EP 01933992A EP 01933992 A EP01933992 A EP 01933992A EP 1285150 B1 EP1285150 B1 EP 1285150B1
Authority
EP
European Patent Office
Prior art keywords
stage
enthalpy
steam
mass flow
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01933992A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1285150A1 (de
Inventor
Edwin Gobrecht
Jürgen HAVEMANN
Norbert Henkel
Michael Wechsung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01933992A priority Critical patent/EP1285150B1/de
Publication of EP1285150A1 publication Critical patent/EP1285150A1/de
Application granted granted Critical
Publication of EP1285150B1 publication Critical patent/EP1285150B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • F01D19/02Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting

Definitions

  • the present invention relates to a method of operating a multi-stage steam turbine in idle or light load operation, wherein all stages are steamed. It further relates to a device for distributing steam to individual stages of a steam turbine at idle or low load operation, in particular for carrying out said method.
  • the start times of steam turbines must be constantly shortened. Shorter start times can only be achieved if as many stages as possible are subjected to the largest possible mass flow at the same time. Only by this admission can be achieved for the shortest possible start time required preheating the steam turbine.
  • the mass flow the power generated by the turbine must not exceed the idling load. When the idling load is exceeded, uncontrolled increases in the speed of the steam turbine can occur. The total supplyable total mass flow is therefore limited.
  • HD stage high-pressure stage
  • ND stage low-pressure stage
  • MD stage medium-pressure stage
  • this object is achieved in a method of the type mentioned in that the application of a stage is chosen such that this stage delivers as little power.
  • all stages of the steam turbine can be subjected to steam.
  • the application is carried out in such a way that a stage delivers as little power as possible. Therefore, this stage generates only little power, so that the remaining stages can be acted upon by a comparatively large mass flow. All stages are therefore preheated reliably, so that short start times can be realized.
  • the enthalpy of the vapor as it enters this stage and the enthalpy of the vapor as it exits this stage are determined and the enthalpy difference between inlet and outlet is minimized.
  • the power delivered by a stage is directly proportional to the enthalpy difference.
  • the temperature of the vapor as it enters this stage and the temperature of the vapor as it exits this stage are measured and from this the enthalpy difference between inlet and outlet is determined, in particular calculated.
  • the temperature of the steam is easy to measure, so that the Meßaufwand is reduced.
  • the pressure drop between the entry into this stage and the exit from this stage is measured and taken into account in the calculation of the enthalpy difference between inlet and outlet.
  • the enthalpy of the steam flowing through the stage depends on both the pressure and the temperature.
  • enthalpy of the vapor as it enters this stage and the enthalpy of the vapor as it exits this stage are measured.
  • a suitable method for measuring the enthalpy of steam is described, for example, in WO99 / 15887, which is based on the same Applicant.
  • This publication refers to DE-AS 10 46 068 for determining the enthalpy of superheated steam, ie superheated steam.
  • WO99 / 15887 relates to a measuring and calculating method for determining the enthalpy of wet steam. For sampling, a partial volume flow of the wet steam is combined with a reference gas to form a mixture, so that the liquid components of the partial volume flow completely evaporate.
  • the enthalpy of the reference gas and the enthalpy of the mixture are determined and from this the enthalpy of the wet steam is calculated.
  • the disclosure of WO99 / 15887 and DE-AS 10 46 068 is expressly included in the content of the present application.
  • the mass flow supplied to this stage is changed in order to minimize the enthalpy difference.
  • the supplied mass flow In the front part of this stage, the supplied mass flow generates power through expansion. On the exhaust side, the mass flow is recompressed and thereby consumes power.
  • a balance can be found between the two processes, thereby minimizing the enthalpy difference.
  • this stage delivers no power.
  • the mass flow flowing through this stage thus provides no power and serves only for preheating.
  • the further stages of the steam turbine can then be subjected to the complete mass flow to overcome the idling load. It will therefore all stages are supplied with the maximum mass flow and optimally preheated. The start times can thus be significantly reduced.
  • the device is a first measuring point for detecting the enthalpy of a stage supplied mass flow, a second measuring point for detecting the enthalpy of the emerging from this stage mass flow, a comparison unit for determining the Enthalpiedifferenz and a unit for adjusting the mass flow supplied to this stage.
  • the device according to the invention makes it possible to determine the enthalpy difference either by a direct measurement of the particular enthalpies present or by a measurement of parameters relevant for the enthalpy, such as pressure and temperature.
  • the determined enthalpy difference can be regulated via the unit for adjusting the supplied mass flow.
  • FIG. 1 shows a steam turbine 10 with an HD stage 11 and a combined MD-ND stage 12.
  • the stages 11, 12 are connected to each other via a shaft 13, which drives a generator 14 for generating electric current.
  • the shaft 13 and the generator 14 can not be closer shown device are decoupled from each other.
  • a steam generator 15 serves to generate the operation and idle steam.
  • Downstream of the MD-ND stage 12, a condenser 16 is provided for condensing the exiting steam.
  • the condensate is returned to the steam generator 15 via pumps 17, an MD / LP preheater 18 and two HD preheaters 19, 20.
  • a reheatening 21 and a feedwater preheating A, B, C, D, n are provided.
  • the components mentioned and their function are known in the art, so apart from a detailed explanation.
  • the steam generator 15 provides a mass flow ⁇ ready. Upstream of the HD stage 11, the mass flow m is split. A first mass flow ⁇ 1 is fed to the HD stage 11, while the remaining mass flow ⁇ 2 is led past the HD stage 11 directly to the intermediate superheating 21. The MD-ND stage 12 is subjected to a mass flow ⁇ 3 . The remaining mass flow ⁇ 4 is passed directly past the MD-ND stage 12, to the condenser 16. Valves 22, 23, 24 are used to set the mass flows ⁇ 1 , ⁇ 3. The mass flows ⁇ 2 , ⁇ 4 result automatically from the setting of the mass flows ⁇ 1 , ⁇ 3 .
  • a first measuring point 25 and downstream of a second measuring point 26 is provided upstream of the HD stage 11.
  • the temperature T 1 of the mass flow ⁇ 1 entering the HD stage 11 as vapor is measured at the measuring point 25. Downstream, a temperature measurement is carried out at the measuring point 26, at which a temperature T 2 , the evaporation temperature of the HD stage 11, is determined. At the same time, the pressure difference .DELTA.p between the measuring points 25, 26 is advantageously determined by suitable, unspecified, pressure measuring devices. The measured temperatures T 1 , T 2 and the measured pressure difference ⁇ p are fed to a controller 27, which calculates the enthalpy difference ⁇ h between the measuring points 25, 26.
  • the valve 22 is actuated, so that the mass flow ⁇ 1 is regulated as a function of the calculated enthalpy difference ⁇ h.
  • This balance for the HP stage 11 is essentially achieved by maintaining the steaming temperature T 2 at a value corresponding to the throttled steam temperature through the control circuit 27 which provides enthalpy-dependent valve trim.
  • a mass flow ⁇ 1 is provided with a correspondingly throttled temperature T 1 and fed to the HP stage 11.
  • the throttling effect (throttling effect) of the valve 22 is utilized selectively in order to set the desired temperatures T 1 , T 2 .
  • the enthalpy .DELTA.h is decisive for the heat generated by the high-pressure stage power P.
  • the controller 27 therefore controls via valve 23 to the mass flow m 3 by the IP / LP stage 12 according to a predetermined idling load and generated by the high-pressure stage 11 Power.
  • further measuring points for detecting temperature and / or pressure can be provided downstream of the intermediate superheating or at other suitable positions.
  • Figure 2 shows an enlarged view of the HD stage 11 with the associated control of the mass flow ⁇ 1 .
  • the enthalpy h 1 , h 2 is measured directly at the measuring points 25, 26 and then formed in the controller 27, the enthalpy difference .DELTA.h.
  • the valves 22, 23 are controlled by the controller 27. This minimizes the power P provided by the HD stage 11 and at the same time maximizes the mass flow ⁇ 3 through the MD / ND stage 12.
  • the inventively provided impingement of the HD stage is such that as little as possible and advantageous no power P is delivered.
  • the method makes it possible to act on all stages 11, 12 with the respective maximum possible mass flow ⁇ 1 , ⁇ 3 . As a result, a good preheating of all levels 11, 12 and thus short start times are achieved. Exceeding the idling load and an impermissible increase in the speed of the steam turbine 10 are reliably avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
EP01933992A 2000-05-31 2001-05-18 Verfahren und vorrichtung zum betrieb einer dampfturbine mit mehreren stufen im leerlauf oder schwachlastbetrieb Expired - Lifetime EP1285150B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01933992A EP1285150B1 (de) 2000-05-31 2001-05-18 Verfahren und vorrichtung zum betrieb einer dampfturbine mit mehreren stufen im leerlauf oder schwachlastbetrieb

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00111692 2000-05-31
EP00111692 2000-05-31
EP01933992A EP1285150B1 (de) 2000-05-31 2001-05-18 Verfahren und vorrichtung zum betrieb einer dampfturbine mit mehreren stufen im leerlauf oder schwachlastbetrieb
PCT/EP2001/005747 WO2001092689A1 (de) 2000-05-31 2001-05-18 Verfahren und vorrichtung zum betrieb einer dampfturbine mit mehreren stufen im leerlauf oder schwachlastbetrieb

Publications (2)

Publication Number Publication Date
EP1285150A1 EP1285150A1 (de) 2003-02-26
EP1285150B1 true EP1285150B1 (de) 2006-07-12

Family

ID=8168882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01933992A Expired - Lifetime EP1285150B1 (de) 2000-05-31 2001-05-18 Verfahren und vorrichtung zum betrieb einer dampfturbine mit mehreren stufen im leerlauf oder schwachlastbetrieb

Country Status (6)

Country Link
US (1) US7028479B2 (ja)
EP (1) EP1285150B1 (ja)
JP (1) JP4707927B2 (ja)
CN (1) CN1318737C (ja)
DE (1) DE50110456D1 (ja)
WO (1) WO2001092689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009004173A1 (de) * 2009-01-09 2010-07-15 Man Turbo Ag Dampfturbine und Verfahren zum Betrieb eienr Dampfturbine

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1575154A1 (de) * 2004-03-08 2005-09-14 Siemens Aktiengesellschaft Turbosatz
EP1744020A1 (de) * 2005-07-14 2007-01-17 Siemens Aktiengesellschaft Verfahren zum Starten einer Dampfturbinenanlage
EP1775431A1 (de) * 2005-10-12 2007-04-18 Siemens Aktiengesellschaft Verfahren zum Aufwärmen einer Dampfturbine
JP4621597B2 (ja) * 2006-01-20 2011-01-26 株式会社東芝 蒸気タービンサイクル
US7632059B2 (en) * 2006-06-29 2009-12-15 General Electric Company Systems and methods for detecting undesirable operation of a turbine
JP4240155B1 (ja) * 2008-03-06 2009-03-18 三浦工業株式会社 蒸気システム
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
JP5193021B2 (ja) * 2008-12-25 2013-05-08 株式会社日立製作所 蒸気タービン試験設備、低負荷試験方法、及び負荷遮断試験方法
US8662820B2 (en) * 2010-12-16 2014-03-04 General Electric Company Method for shutting down a turbomachine
US20120151918A1 (en) * 2010-12-16 2012-06-21 General Electric Company Method for operating a turbomachine during a loading process
US8857184B2 (en) * 2010-12-16 2014-10-14 General Electric Company Method for starting a turbomachine
US9080466B2 (en) 2010-12-16 2015-07-14 General Electric Company Method and system for controlling a valve of a turbomachine
EP2469047B1 (de) * 2010-12-23 2016-04-20 Orcan Energy AG Wärmekraftwerk sowie Verfahren zur Steuerung, Regelung und/oder Überwachung einer Vorrichtung mit einer Expansionsmaschine
ITMI20110498A1 (it) * 2011-03-28 2012-09-29 Stamicarbon Metodo per l avviamento di un impianto termico a ciclo combinato per la produzione di energia elettrica da una condizione di impianto fermo ad una condizione di impianto in marcia.
EP2642084A1 (en) * 2012-03-22 2013-09-25 Alstom Technology Ltd Valve arrangement for controlling steam supply to a geothermal steam turbine
WO2013144006A2 (en) * 2012-03-28 2013-10-03 Alstom Technology Ltd Combined cycle power plant and method for operating such a combined cycle power plant
DE102012209139A1 (de) 2012-05-31 2013-12-05 Man Diesel & Turbo Se Verfahren zum Betreiben einer Solaranlage
EP2738360B1 (en) 2012-12-03 2019-06-12 General Electric Technology GmbH A warming arrangement for a steam turbine in a power plant
JP5397560B1 (ja) * 2013-04-05 2014-01-22 富士電機株式会社 抽気蒸気タービン発電設備の保安運転方法および装置
EP2918792A1 (de) * 2014-03-13 2015-09-16 Siemens Aktiengesellschaft Dampfkraftanlage mit Spindelleckdampfleitung
BE1021896B1 (nl) 2014-05-19 2016-01-25 Atlas Copco Airpower Naamloze Vennootschap Werkwijze voor het laten expanderen van een gasdebiet en inrichting daarbij toegepast
DE102014211976A1 (de) * 2014-06-23 2015-12-24 Siemens Aktiengesellschaft Verfahren zum Anfahren eines Dampfturbinensystems
US10577962B2 (en) 2016-09-07 2020-03-03 General Electric Company Turbomachine temperature control system
JP7026520B2 (ja) * 2018-01-30 2022-02-28 三菱重工コンプレッサ株式会社 タービン用の弁装置、タービン、およびそれらの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE920548C (de) * 1952-07-11 1954-11-25 Licentia Gmbh Vorrichtung zur Erhoehung der Temperatur der Einstroemteile einer Dampfturbine waehrend des Sparbetriebes
DE1046068B (de) 1957-05-22 1958-12-11 Licentia Gmbh Verfahren und Einrichtung zur Verbesserung der Zwischenueberhitzung und der Speisewasservorwaermung in Dampfkraftanlagen, insbesondere solchen mit Heizdampf- bzw. Fabrikationsdampfabgabe
US3173654A (en) * 1962-03-14 1965-03-16 Burns & Roe Inc Temperature control of turbine blades on spinning reserve turbines
US4258424A (en) * 1972-12-29 1981-03-24 Westinghouse Electric Corp. System and method for operating a steam turbine and an electric power generating plant
US4166221A (en) * 1978-02-09 1979-08-28 Westinghouse Electric Corp. Overspeed protection controller employing interceptor valve speed control
JPS5810103A (ja) * 1981-07-10 1983-01-20 Hitachi Ltd タービン起動方法
US4402183A (en) * 1981-11-19 1983-09-06 General Electric Company Sliding pressure flash tank
JPS60119304A (ja) * 1983-12-02 1985-06-26 Toshiba Corp 蒸気タ−ビン
US4891948A (en) * 1983-12-19 1990-01-09 General Electric Company Steam turbine-generator thermal performance monitor
JPS6165003A (ja) * 1984-09-04 1986-04-03 Hitachi Ltd タービン制御装置
US4589255A (en) 1984-10-25 1986-05-20 Westinghouse Electric Corp. Adaptive temperature control system for the supply of steam to a steam turbine
US5018356A (en) 1990-10-10 1991-05-28 Westinghouse Electric Corp. Temperature control of a steam turbine steam to minimize thermal stresses
US5333457A (en) * 1991-10-07 1994-08-02 Westinghouse Electric Corporation Operation between valve points of a partial-arc admission turbine
DE4438835C2 (de) * 1994-10-24 1997-06-05 Ver Energiewerke Ag Verfahren und eine Anordnung zur Bildung eines Signals zum Hochfahren des Hochdruckteiles einer Dampfturbine
DE19742138C1 (de) 1997-09-24 1999-03-11 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Enthalpie von Naßdampf

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009004173A1 (de) * 2009-01-09 2010-07-15 Man Turbo Ag Dampfturbine und Verfahren zum Betrieb eienr Dampfturbine
DE102009004173B4 (de) * 2009-01-09 2017-01-05 Man Diesel & Turbo Se Dampfturbine und Verfahren zum Betrieb einer Dampfturbine

Also Published As

Publication number Publication date
CN1432099A (zh) 2003-07-23
CN1318737C (zh) 2007-05-30
JP4707927B2 (ja) 2011-06-22
US7028479B2 (en) 2006-04-18
EP1285150A1 (de) 2003-02-26
WO2001092689A1 (de) 2001-12-06
JP2003535251A (ja) 2003-11-25
DE50110456D1 (de) 2006-08-24
US20040088984A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
EP1285150B1 (de) Verfahren und vorrichtung zum betrieb einer dampfturbine mit mehreren stufen im leerlauf oder schwachlastbetrieb
DE60112519T2 (de) Dampfgekühlte Gasturbinenanlage
EP0597305B1 (de) Verfahren zum Betrieb einer Kombianlage
DE3153303C2 (de) Verfahren und Einrichtung zum Begrenzen der bei Belastungsänderungen auftetenden thermischen Beanspruchung einer Dampfturbine
DE3124782C2 (ja)
EP1267229B1 (de) Steuer- und Regelverfahren und Regeleinrichtung zum An- oder Abfahren einer verfahrenstechnischen Komponente eines technischen Prozesses
CH633857A5 (de) Die rotor-waermespannungen vorherbestimmende turbinensteueranordnung.
DE2721168A1 (de) Kombiniertes gasturbinen- und dampfturbinenkraftwerk
EP2038517B1 (de) Verfahren zum betrieb einer gasturbine sowie gasturbine zur durchführung des verfahrens
DE60126721T2 (de) Kombiniertes Kreislaufsystem mit Gasturbine
EP1934434A2 (de) Verfahren zum aufwärmen einer dampfturbine
EP1797284B1 (de) Verfahren und modul zum vorrausschauenden anfahren von dampfturbinen
DE4416359C2 (de) Mehrstufige Hochtemperatur-Gas-Expansionsanlage in einem Gasleitungssystem mit nutzbarem Druckgefälle
DE102005005472A1 (de) Verbessertes Anfahrverfahren für Kraftwerke
EP2255076A2 (de) Verfahren zur regelung eines dampferzeugers und regelschaltung für einen dampferzeuger
DE19516799B4 (de) Verfahren zur Einstellung einer Hauptregelgröße beim Betrieb einer Gasturbogruppe
DE69931413T2 (de) Gekühltes System in einer Kraftanlage mit kombiniertem Kreislauf
DE3415165C2 (ja)
EP1241323A1 (de) Verfahren zum Betrieb einer Dampfkraftanlage sowie Dampfkraftanlage
EP3118424B1 (de) Regelung von orc-prozessen durch einspritzung unverdampften fluids
DE632316C (de) Gasturbinenanlage mit Gleichdruckverbrennung
WO2018059840A1 (de) Verfahren zur kurzfristigen leistungsanpassung einer dampfturbine eines gas-und dampfkraftwerks für die primärregelung
DE3808006C2 (ja)
EP1764486A1 (de) Verfahren zum Ermitteln der aktuellen Maximalleistung einer Kraftwerksanlage und Regelvorrichtung
DE2427923A1 (de) Steuereinrichtung fuer eine dampfturbinenanordnung mit umgehungsleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAVEMANN, JUERGEN

Inventor name: GOBRECHT, EDWIN

Inventor name: HENKEL, NORBERT

Inventor name: WECHSUNG, MICHAEL

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060712

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 50110456

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060923

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160512

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160527

Year of fee payment: 16

Ref country code: FR

Payment date: 20160512

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160720

Year of fee payment: 16

Ref country code: CH

Payment date: 20160802

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110456

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170518

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170518

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531