EP1284825A1 - Staubfilter mit filterschlauch, sprühelektrode und niederschlagselektrode - Google Patents

Staubfilter mit filterschlauch, sprühelektrode und niederschlagselektrode

Info

Publication number
EP1284825A1
EP1284825A1 EP01940008A EP01940008A EP1284825A1 EP 1284825 A1 EP1284825 A1 EP 1284825A1 EP 01940008 A EP01940008 A EP 01940008A EP 01940008 A EP01940008 A EP 01940008A EP 1284825 A1 EP1284825 A1 EP 1284825A1
Authority
EP
European Patent Office
Prior art keywords
filter
electrode
dust
hose
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01940008A
Other languages
English (en)
French (fr)
Inventor
Alois Scheuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scheuch GmbH
Original Assignee
Scheuch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scheuch GmbH filed Critical Scheuch GmbH
Publication of EP1284825A1 publication Critical patent/EP1284825A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/38Tubular collector electrode

Definitions

  • the invention relates to a dust filter according to the preamble of patent claim 1.
  • Dust-containing exhaust gases occur in many areas of industry, e.g. in wood processing, in the chipboard and fibreboard industry, the iron and steel industry, in foundries, the building materials industry or in metal production.
  • the use of various filters is common for cleaning the dust-laden exhaust gases.
  • the fabric filters usually consist of filter bags with a closed tube end, which are mostly supplied with the raw gas from the outside and in which the clean gas escapes at the open tube end.
  • the filter bags consist of a suitable fabric to which the contaminants adhere.
  • the cleaning is made by compressed air pulses of short duration. During cleaning, the gas flow in the filter fabric is reversed and the adhering dust cake is cleaned up by the inflation of the hose and the resulting acceleration, as well as by the purging effect of the compressed air flow. Depending on the type of contamination and the bag filter used, cleaning can also be carried out gently with low-pressure purge air that is blown into the interior of the filter.
  • the particles thrown off the filter hose during cleaning slide down between the filter hoses in the filter housing and are collected, for example, in a dust collection funnel and transported via a discharge screw into a container for disposal or recycling.
  • cleaning by shaking the filter bags is also common.
  • electrostatic precipitators for separating particles from exhaust gases are also common. In addition to solids, electrostatic precipitators can also be used to separate organic substances and odorous substances with good effects.
  • the majority of the dust particles in the electrostatic precipitator are negatively ionized by spray electrodes with negative direct voltage. The negatively charged dust particles migrate to the positively charged or grounded precipitation electrodes and deposit there over time in the form of a dust layer.
  • Both the spray electrodes, on which dust layers also form, and the precipitation electrodes are periodically cleaned, for example by knocking, and the falling dust, as with the fabric filters, is collected, for example, in a dust collection funnel and sent to containers for further disposal or recycling.
  • the cleaning is carried out by means of liquids which are directed onto the electrodes via the injection nozzles arranged above the filter and thus remove the contaminants with the washing liquid.
  • electrostatic precipitators are cleaned more quickly, since there is no problem with the accumulation of dust particles after cleaning the bag filters.
  • fabric filters have a higher degree of separation.
  • Filters are known which combine the advantages of electrostatic filters with the high degree of separation of fabric filters. Such combinations of bag filters made of fabric and electrostatic filters are called hybrid filters. For example, the high-voltage electrodes of an electrostatic filter are arranged between the bag filters. However, this did not solve the problem of the dust accumulating on the bag filters after the cleaning phase to a satisfactory degree.
  • a hybrid filter is proposed in US Pat. No. 5,938,818 A, which arranges a large number of bag filters in a filter housing and moreover between individual ones Filter hose rows arranged in the form of earthed electrodes in plate form and high-voltage electrodes between the filter hose rows, so that an electrostatic field is built up on each side of each hose row. Dust particles that pass through this zone are collected on the grounded sheet-like electrode. The pre-cleaned gas then flows through the fabric of the filter bags into the interior, where it is passed on to the clean gas outlet. Due to the electrostatic field and the corresponding distances between the filter hose, high-voltage electrode and precipitation electrode, most of the particles are attached to the precipitation electrode.
  • a two-stage cleaning compressed air pulse is also used, consisting of a first short compressed air pulse of high pressure and a subsequent second longer compressed air pulse with lower pressure.
  • the precipitation electrodes are accomplished by reversing the direction of the electric field between the electrodes.
  • the cleaning of the precipitation electrode by shaking or tapping can be improved.
  • the object of the present invention is to further improve the filter effect by increasing the degree of dust separation.
  • the disadvantages of known systems should be avoided or at least reduced.
  • the object of the invention is achieved in that Filter hose seen, which is arranged at least one spray electrode behind the at least one precipitation electrode.
  • the term “behind” means that the spray electrode is at a greater distance from the filter hose than the precipitation electrode from the filter hose.
  • the electrodes do not have to be aligned, but can also be offset from one another.
  • the dust particles ionized in the electric field between the spray electrodes and precipitation electrodes migrate to the precipitation surface and are largely deposited there. Those dust particles that do not adhere to the precipitation electrodes reach the filter bags and form a dust cake on the fabric surface.
  • the dust particles deposited on the filter hose are ionized, which supports the attachment to the grounded precipitation electrode when the filter hose is cleaned by compressed air pulses. It is thereby avoided that especially the fine dust particles get back to the filter surface immediately after the end of the cleaning pulse and thereby increase the filter resistance. This means that significantly higher filter loads are possible with a high degree of dust separation. This has a positive effect, especially with expensive filter media, since the fabric filter can be kept much smaller.
  • the area of the dust filter according to the invention which is effective for dust separation is larger, as a result of which the degree of dust separation can be increased or the filter can be made smaller with the same dust separation.
  • the at least one filter hose and any support basket arranged in the filter hose are advantageously electrically insulated, so that the electrically charged dust particles adhering to the filter hose fabric do not lose their charge.
  • the charge of the dust particles supports the movement of the filter bags in the direction of the grounded precipitation electrode.
  • the at least one precipitation electrode is tubular.
  • the surface of the precipitation electrode is substantially increased over prior art designs', whereby the frequency of cleaning of the collecting electrode can be reduced and a smaller Dust pollution of the filter bags follows.
  • a plurality of tubular precipitation electrodes are arranged in a row next to one another and at a distance from one another. This further increases the area of precipitation. A sufficient distance between the precipitation electrodes ensures a sufficient flow of the gas in the filter.
  • a plurality of filter bags each form at least one row of filter bags. This increases the filter surface and thus the filter's separation efficiency.
  • an electrostatic filter according to the invention is arranged on at least one side of each row of filter tubes, it is achieved that the gases to be cleaned must always pass through the ionization zone formed by the electrostatic filter before they reach the filter tubes.
  • At least one spray electrode is advantageously arranged between two filter hose rows and at least one precipitation electrode is arranged between the at least one spray electrode and each filter hose row. This significantly increases the cleaning of gases contaminated with pollutants.
  • At least one precipitation electrode is arranged on the outer side of at least one outermost row of filter tubes, the area of the filter which is effective for dust separation can be further enlarged, as a result of which the filter effect is further increased.
  • at least one precipitation electrode is arranged on the outer sides of the outermost rows of filter bags.
  • the row of filter bags lies between this or these outside precipitation electrodes and the closest spray electrode within an ionization zone, as a result of which the negatively charged particles are largely deposited on the precipitation electrodes when the filter bags are cleaned.
  • the at least one precipitation electrode is electrically grounded and the at least one spray electrode is at a negative direct voltage potential.
  • the at least one filter hose and / or the at least one precipitation electrode is advantageously arranged essentially vertically. This will make cleaning supported.
  • the dust-containing gas is advantageously flowed in essentially in the direction of the filter hose rows.
  • an essentially vertical baffle in front of the outermost filter hose of each filter hose row in the inflow direction of the dust-containing gas.
  • This baffle covers the filter bags and the surrounding precipitation electrodes, so that the dusty gases are immediately forced into the ionization zone built up between the spray electrodes and the precipitation electrodes and, after passing through the ionization zone, the ionized dust particles that do not deposit on the precipitation electrodes Continue moving filter bags.
  • the number and design of the baffles can be made according to the desired flow conditions.
  • Fig.l is a plan view of part of a dust filter according to an embodiment of the present invention during the filtering phase;
  • FIG. 2 shows a plan view of the part of the filter according to FIG. 1 during the cleaning phase
  • FIG. 3 shows a multi-stage dust filter according to the present invention in plan view
  • FIG. 4 shows a partially sectioned side view of the dust filter according to FIG. 3.
  • Fig.l is a filter bag row 6 consisting of three filter bags 1 is shown.
  • an electrostatic filter or an electrostatic filter alley 3 consisting of the spray electrodes 2 and precipitation electrodes 4 is arranged.
  • precipitation electrodes 4 are also arranged on the other side of the spray electrodes 2 and also on the other side of the filter hose row 6.
  • the filter bags 1 and any support baskets 7 arranged therein are preferably electrically insulated.
  • Precipitation electrodes 4 preferably consist of vertically arranged and spaced tubes which are electrically grounded.
  • the spray electrodes 2 are at a negative DC voltage level, as a result of which an electric field is built up between them and the precipitation electrodes 4. in which the dust particles 5 are ionized.
  • the electrical charge of the respective components of the dust filter is identified by the signs "+" and "-”.
  • the dust-containing gas is preferably flowed into the dust filter in the direction of the filter hose row 6. The direction of flow is indicated by the arrows X.
  • the raw gas is forced into the ionization zone between the spray electrodes 2 and the precipitation electrodes 4, where the dust particles are negatively charged , Most of the ionized dust particles 5 are deposited on the surface of the precipitation electrodes 4. Only a small proportion passes between the precipitation electrodes 4 and is passed through the gas flow to the filter bags 1, where they are deposited on the outside of the filter bags 1.
  • the electrical field between the spray electrodes 2 and the precipitation electrodes 4 causes the dust particles 5 to move in the direction of the arrows A.
  • an electrostatic filter lane 3 is arranged between each two rows of filter tubes 6, each consisting of a spray electrode 2 and precipitation electrodes 4 arranged on both sides.
  • the distance can between the spray electrodes 2 and the filter bags 1 turn out to be significantly smaller than in known arrangements, where no precipitation electrode is arranged between the spray electrodes and the filter bags.
  • the distance between the spray electrodes 2 and the filter bags 1 must be considerably greater than the distance between the spray electrodes 2 and the precipitation electrodes 4, since otherwise the spray electrodes 2 will roll over to the wires of the support baskets 7 of the filter bags 1 if the distances are too small would, whereby the tissue of the filter bags 1 would be perforated. Because the filter bags 1 are to a lesser extent dust particles 5, they only have to be cleaned at larger "time intervals.
  • the cleaning of the precipitation electrodes 4 is preferably done by tapping and can also be done less frequently due to the enlarged surface compared to a plate-shaped electrode
  • the filter arrangement according to the invention has the advantage that a significantly higher filter load is possible with a high degree of dust separation at the same time.
  • the degree of separation of the electrostatic filter lane 3 can be significantly improved since the flow speed in the electrostatic filter is lower
  • the present invention has the advantage that when the bag filter is cleaned, the fine dust does not have to pass through the ionization zone again in order to reach the precipitation areas, but directly from the filter also get to the precipitation electrodes.
  • Figures 3 and 4 show a plan view and a 'partially sectioned side view of a multi-stage dust filter constructed according to the invention, in which two filter hose rows 6 are shown, the filter hose row 6 shown on the left being in the filtering phase and the right filter hose row 6 in the cleaning phase.
  • the nozzles for delivering the compressed air pulses for cleaning the filter bags 1 are located above the filter bags.
  • the compressed air is supplied via corresponding compressed air lines 10, only a part of which is shown.
  • a compressed air pulse is emitted via the nozzles 9, which is blown into the filter hose 1 equipped with a support basket 7.
  • the filter tube 1 closed at the bottom is inflated and the dust particles 5 located thereon are moved against the precipitation electrodes 4 in the direction of the arrows B.
  • the cleaned gas flows according to the arrows Y through the open end of the filter bags into the clean gas space of the filter.
  • the distance between two rows of filter tubes 6 can be chosen smaller in the present arrangement, since a larger area of the filter is effective for dust separation.
  • the arrangement of the electrostatic filters constructed according to the invention between the filter hose rows can be repeated as often as required, depending on the number of filter stages and the size of the cleaning system.

Landscapes

  • Electrostatic Separation (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Die Erfindung betrifft ein Staubfilter mit zumindest einem, an seinem unteren Ende geschlossenen Filterschlauch (1), welcher von außen mit den staubhaltigen Gasen beaufschlagt wird, und mit zumindest einem Elektrofilter (3) mit zumindest einer Niederschlagselektrode (4) und zumindest einer Sprühelektrode (2), welche gegenüber der zumindest einen Niederschlagselektrode (4) auf negativem Potential liegt. Zur Verbesserung der Filterwirkung, indem der Staubabscheidegrad erhöht wird, ist erfindungsgemäß vorgesehen, dass vom Filterschlauch (1) gesehen, die zumindest eine Sprühelektrode (2) hinter der zumindest einen Niederschlagselektrode (4) angeordnet ist. Die Filterschläuche (1) und allfällige Stützkörbe (7) sind vorteilhafterweise elektrisch isoliert. Bei der Abreinigung der Filterschläuche (1) lagern sich die ionisierten Staubpartikel (5) zum größten Teil an den unmittelbar daneben liegenden Niederschlagselektroden (4) ab.

Description

STAUBFILTER MIT FILTERSCHLAUCH, SPRUHELEKTRODE UND NIEDERSCHLAGSELEKTRODE
Die Erfindung betrifft ein Staubfilter nach dem Oberbegriff des Patentanspruchs 1.
Staubhaitige Abgase treten in vielen Bereichen der Industrie, z.B. bei der HolzVerarbeitung, in der Span- und Faserplattenindustrie, der Hüttenindustrie, bei Gießereien, der Baustoffindustrie oder bei der Metallerzeugung auf.
Zur Reinigung der staubbelasteten Abgase ist die Verwendung verschiedener Filter, wie Gewebefilter oder Elektrofilter, üblich. Die Gewebefilter bestehen üblicherweise aus Filterschläuchen mit einem geschlossenen Schlauchende, die meistens von außen mit dem Rohgas beaufschlagt werden und bei welchen das Reingas am offenen Schlauchende entweicht. Die Filterschläuche bestehen aus einem geeigneten Gewebe, an dem die Verunreinigungen haften bleiben. Die Abreinigung. derartiger Filterschläuche erfolgt durch Druckluftimpulse von kurzer Dauer. Während der Abreinigung wird die Gasströmung im Filtergewebe umgekehrt und der anhaftende Staubkuchen durch das Aufblähen des Schlauches und die daraus resultierende Beschleunigung sowie durch die Spülwirkung des DruckluftStromes abgereinigt. In Abhängigkeit der Art der Verunreinigungen und der verwendeten Schlauchfilter kann die Abreinigung auch schonend mit Spülluft geringen Drucks, welche in das Innere der Filter eingeblasen wird, erfolgen. Die während der Abreinigung vom Filterschlauch weggeschleuderten Partikel gleiten zwischen den Filterschlauchen im Filtergehäuse nach unten und werden beispielsweise in einem Staubsammeltrichter gesammelt und über eine Austrageschnecke in einen Behälter zur Entsorgung bzw. Wiederverwertung transportiert. Neben der Abreinigung von Schlauchfiltern durch Spülluft oder Druckluft ist auch eine Abreinigung durch eine Rüttelbewegung der Filterschläuche üblich.
Nachdem bei Gewebefiltern eine Vielzahl von Filterschläuchen vertikal nebeneinander angeordnet ist, werden die vom abgereinigten Schlauchfilter weggeschleuderten Staubpartikeln häufig vom benachbarten Filterschlauch wieder aufgenommen. Darüber hinaus kann vor allem Feinstaub in der Abreinigungsphase nicht weit genug vom Filterschlauch weggeschleudert werden und lagert sich daher sofort wieder am Gewebe an. Dies wird dadurch verstärkt, dass der Übergang von der Abreinigungsphase zur Filtrierphase äußerst schnell passiert. Dadurch gelangt der von den FilterSchläuchen abgeschleuderte Staub nicht direkt, sondern 'nur über Umwege nach unten, beispielsweise in den Staubsammeltrichter. Daraus ergibt sich ein relativ hoher Widerstand des Gewebefilters, der durch eine geringe Filterflächenbelastung ausgeglichen werden muss .
Neben den Gewebefiltern sind auch Elektrofilter zur Abscheidung von Partikeln aus Abgasen üblich. Mit Elektrofiltern können neben Feststoffen auch organische Stoffe und Geruchsstoffe mit guter Wirkung abgeschieden werden. Im Elektrofilter werden die Staubpartikeln durch mit negativer Gleichspannung beaufschlagte Sprühelektroden zum überwiegenden Anteil negativ ionisiert. Die negativ geladenen Staubteilchen wandern an die positiv geladenen oder geerdeten Niederschlagselektroden und lagern sich dort im Laufe der Zeit in Form einer Staubschicht ab. Sowohl die Sprühelektroden, an welchen sich ebenfalls Staubschichten bilden, als auch die Niederschlagselektroden werden periodisch, beispielsweise durch Klopfen, abgereinigt und der abfallende Staub, ebenso wie bei den Gewebefiltern, beispielsweise in einem Staubsammeltrichter gesammelt und in Behältern der weiteren Entsorgung oder Wiederverwertung zugeführt. Bei Nass-Elektrofiltern erfolgt die Abreinigung durch Flüssigkeiten, welche über ober dem Filter angeordnete Einspritzdüsen auf die Elektroden gerichtet werden und somit die Verunreinigungen mit der Waschflüssigkeit abführen. Bei Elektrofiltern erfolgt die Abreinigung im Gegensatz zu Gewebefiltern rascher, da das Problem der Anlagerung der Staubpartikeln nach der Abreinigung der Schlauchfilter hier nicht vorliegt. Demgegenüber haben Gewebefilter einen höheren Abscheidegrad.
Es sind Filter bekannt, welche die Vorteile von Elektrofiltern mit dem hohen Abscheidegrad von Gewebefiltern kombinieren. Derartige Kombinationen von Schlauchfiltern aus Gewebe und Elektrofiltern werden Hybridfilter genannt. Beispielsweise werden dabei die Hochspannungselektroden eines Elektrofilters zwischen den Schlauchfiltern angeordnet. Allerdings konnte dadurch das Problem des Wiederanlagerns der Stäube an den Schlauchfiltern nach der Abreinigungsphase nicht in zufriedenstellendem Maße behoben werden..
Zur Verbesserung wird in der US 5.938 818 A ein Hybridfilter vorgeschlagen, welches eine Vielzahl von Schlauchfiltern in einem Filtergehäuse angeordnet und darüber hinaus zwischen einzelnen Filterschlauchreihen geerdete Elektroden in Plattenform sowie Hochspannungselektroden zwischen den Filterschlauchreihen angeordnet, aufweist, so dass an jeder Seite jeder Schlauchreihe ein elektrostatisches Feld aufgebaut wird. Staubpartikeln, die durch diese Zone gelangen, werden an der geerdeten flächenförmigen Elektrode angesammelt. Danach strömt das vorgereinigte Gas durch das Gewebe der Filterschläuche in das Innere, wo es zum Reingasauslass weitergeführt wird. Durch das elektrostatische Feld und die entsprechenden Abstände zwischen Filterschlauch, Hochspannungselektrode und Niederschlagselektrode werden die meisten Partikel an der Niederschlagselektrode angelagert. Nur ein geringer Anteil der Verunreinigungen wird an der Außenseite der Filterschlauehe abgelagert. Durch den somit langsamer anwachsenden Filterkuchen am Gewebefilter können die Abreinigungsintervalle länger gewählt werden. Bei der Abreinigung der Filterschläuche werden die Partikel in die Zone zwischen der Hochspannungseiektrode und der Niederschlagselektrode abgeschleudert und somit zur Niederschlagselektrode transportiert und größtenteils nicht wieder von der Außenseite des Gewebefilters angezogen. Zur Verbesserung der Abreinigung der Schlauchfilter wird darüber hinaus ein zweistufiger Abreinigungs- Druckluftimpuls eingesetzt, bestehend aus einem ersten kurzen Druckluftimpuls hohen Drucks und einem darauffolgenden zweiten längeren Druckluftimpuls mit niedrigerem Druck. Die Niederschlagselektroden werden durch Umkehrung der Richtung des elektrischen Feldes zwischen den Elektroden bewerkstelligt. Darüber hinaus kann die Abreinigung der Niederschlagselektrode durch Rütteln oder Klopfen verbessert werden. Nachteilig bei dieser Konstruktion ist auch, dass im Bereich zwischen den Sprühelektroden und den Filterschlauchen keine Rohgasströmung vorgesehen ist und durch Leitbleche im Einströmbereich abgedeckt wird. Der Grund dafür ist, dass zwischen den Sprühelektroden und den FilterSchläuchen kein elektrisches Feld vorherrscht und Staubteilchen aus diesem Bereich ohne elektrische Ladung auf die Filterschlauehe gelangen würden. Der genannte Bereich ist somit für die Staubabscheidung nicht wirksam.
Die Aufgabe der vorliegenden Erfindung besteht darin, die Filterwirkung weiter zu verbessern, indem der Staubabscheidegrad erhöht wird. Die Nachteile bekannter Systeme sollen vermieden oder zumindest reduziert werden.
Gelöst wird die erfindungsgemäße Aufgabe dadurch, dass vom Filterschlauch gesehen, die zumindest eine Sprühelektrode hinter der zumindest einen Niederschlagselektrode angeordnet ist. Der Begriff "hinter" bedeutet dabei, dass die Sprühelektrode einen größeren Abstand vom Filterschlauch als die Niederschlagselektrode vom Filterschlauch aufweist. Die Elektroden müssen dabei nicht fluchtend angeordnet, sondern können auch gegeneinander versetzt sein. Die im elektrischen Feld zwischen den Sprühelektroden und Niederschlagselektroden ionisierten Staubteilchen wandern zur Niederschlagsfläche und lagern sich dort zum großen Teil ab. Jene Staubteilchen, die sich nicht an den Niederschlagselektroden anlagern, gelangen zu den FilterSchläuchen und bilden auf der Gewebeoberfläche einen Staubkuchen. Die am Filterschlauch abgelagerten Staubteilchen sind jedoch ionisiert, wodurch bei der Abreinigung der Filterschlauche durch Druckluftimpulse die Anlagerung an den geerdeten Niederschlagselektrodeh unterstützt wird. Es wird dadurch vermieden, dass vor allem die Feinstaubteilchen sofort nach Ende des Abreinigungsimpulses wieder zurück an die Filteroberfläche gelangen und dadurch den Filterwiderstand erhöhen. Dadurch sind wesentlich höhere Filterbelastungen möglich, bei gleichzeitig hohem Staubabscheidegrad. Dies wirkt sich vor allem bei teuren Filtermedien positiv aus, da das 'Gewebefilter wesentlich kleiner gehalten werden kann. Im Gegensatz zu bekannten Staubfiltern dieser Art ist der für die Staubabscheidung wirksame Bereich des erfindungsgemäßen Staubfilters größer, wodurch der Staubabscheidegrad erhöht werden kann bzw. bei gleicher Staubabscheidung das Filter kleiner aufgebaut werden kann.
Vorteilhafterweise sind der zumindest eine Filterschlauch sowie ein allfälliger im Filterschlauch angeordneter Stützkorb elektrisch isoliert, so dass die an dem Filterschlauchgewebe anhafteten, elektrisch geladenen Staubpartikeln nicht ihre Ladung verlieren. Die Ladung der Staubpartikeln unterstützt bei der Abreinigung der Filterschläuche die Bewegung derselben in Richtung geerdeter Niederschlagselektrode.
Gemäß einem weiteren Merkmal der Erfindung ist vorgesehen, dass die zumindest eine Niederschlagselektrode rohrförmig ausgebildet ist. Dadurch wird die Oberfläche der Niederschlagselektrode gegenüber bekannten Konstruktionen ' wesentlich vergrößert, wodurch die Frequenz der Abreinigung der Niederschlagselektrode reduziert werden kann und eine geringere Staubbelastung der Filterschläuche folgt.
Gemäß einem weiteren Merkmal der Erfindung ist vorgesehen, dass mehrere rohrförmige Niederschlagselektroden in einer Reihe nebeneinander und voneinander beabstandet angeordnet sind. Dadurch wird die Niederschlagsfläche weiter vergrößert. Ein ausreichender Abstand zwischen den Niederschlagselektroden gewährleistet eine ausreichende Strömung des Gases im Filter.
Vorteilhafterweise bilden jeweils mehrere Filterschläuche zumindest eine Filterschlauchreihe. Dadurch wird die Filteroberfläche und somit die Abscheideleistung des Filters erhöht .
Wenn zumindest an einer Seite jeder Filterschlauchreihe ein Elektrofilter entsprechend der Erfindung angeordnet ist, wird erreicht, dass die zu reinigenden Gase immer die durch das Elektrofilter gebildete Ionisationszone durchlaufen müssen, bevor sie die Filterschläuche erreichen.
Vorteilhafterweise ist zwischen zwei Filterschlauchreihen zumindest eine Sprühelektode und zwischen der zumindest einen Sprüheletrode und jeder Filterschlauchreihe zumindest eine Niederschlagselektrode angeordnet. Dadurch wird die Abreinigung von Schadstoffbeiasteten Gasen wesentlich erhöht.
Wenn an der außen liegenden Seite zumindest einer äußersten Filterschlauchreihe zumindest eine Niederschlagselektrode angeordnet ist, kann der für die Staubabscheidung wirksame Bereich des Filters weiter vergrößert werden, wodurch die Filterwirkung weiter erhöht wird. Vorteilhafterweise ist natürlich an den außen liegenden Seiten bei alleräußersten Filterschlauchreihen zumindest eine Niederschlagselektrode angeordnet. Somit liegt die Filterschlauchreihe zwischen dieser oder diesen außen liegenden Niederschlagselektroden und der nächstliegenden Sprühelektrode innerhalb einer Ionisationszone, wodurch die negativ geladenen Partikel bei der Abreinigung der Filterschläuche sich größtenteils an den Niederschlagselektroden ablagern.
Gemäß einem weiteren Merkmal der Erfindung ist vorgesehen, dass die zumindest eine Niederschlagselektrode elektrisch geerdet ist und die zumindest eine Sprühelektrode auf negativem Gleichspannungspotential liegt.
Vorteilhafterweise ist der zumindest eine Filterschlauch und bzw. oder die zumindest eine Niederschlagselektrode im Wesentlichen vertikal angeordnet. Dadurch wird die Abreinigung unterstützt .
Vorteilshafterweise wird das staubhaltige Gas im Wesentlichen in Richtung der Filterschlauchreihen eingeströmt. Dabei ist es jedoch zweckmäßig und vorteilhaft, vor dem äußersten Filterschlauch jeder Filterschlauchreihe in Einströmrichtung des staubhaltigen Gases ein im Wesentlichen vertikales Leitblech anzuordnen. Dieses Leitblech deckt die Filterschläuche und die sie umgebenden Niederschlagselektroden ab, so dass die staubbehafteten Gase sofort in die zwischen den Sprühelektroden und den Niederschlagselektroden aufgebaute Ionisationszone gezwungen wird und nach Durchschreiten der Ionisationszone die ionisierten Staubpartikel, welche sich nicht an -den Niederschlagselektroden ablagern, zu den Filterschlauchen weiterbewegen. Die Anzahl und Gestaltung der Leitbleche kann entsprechend den gewünschten Strömungsverhältnissen beliebig erfolgen.
Die vorliegende Erfindung wird an Hand der beiliegenden Zeichnungen näher erläutert. Darin zeigen:
Fig.l eine Draufsicht auf einen Teil eines Staubfilters gemäß einer Ausführungsform der vorliegenden Erfindung während der Filtrierphase;
Fig.2 eine Draufsicht auf den Teil des Filters gemäß Fig.l während der Abreinigungsphase;
Fig.3 ein mehrstufiges Staubfilter gemäß der vorliegenden Erfindung in Draufsicht; und
Fig.4 eine teilweise geschnittene Seitenansicht des Staubfilters gemäß Fig.3.
In Fig.l ist eine aus drei Filterschläuchen 1 bestehende Filterschlauchreihe 6 dargestellt. Neben der Filterschlauchreihe 6 ist ein Elektrofilter bzw. eine Elektrofiltergasse 3 bestehend aus den Sprühelektroden 2 und Niederschlagselektroden 4 angeordnet. Vorteilhafterweise sind auch an der anderen Seite der Sprühelektroden 2 und auch an der anderen Seite der Filterschlauchreihe 6 Niederschlagselektroden 4 angeordnet. Die Filterschläuche 1 sowie allfällige darin angeordnete Stützkörbe 7 sind vorzugsweise elektrisch isoliert. Die
Niederschlagselektroden 4 bestehen vorzugsweise aus vertikal angeordneten und voneinander beabstandeten Rohren, welche elektrisch geerdet sind. Die Sprühelektroden 2 befinden sich auf negativem Gleichspannungsniveau, wodurch zwischen diesen und den Niederschlagselektroden 4 ein elektrisches Feld aufgebaut wird, in dem die Staubteilchen 5 ionisiert werden. Die elektrische Ladung der jeweiligen Bauteile des Staubfilters ist durch die Zeichen "+" und "-" gekennzeichnet. Das staubhaltige Gas wird vorzugsweise in Richtung der Filterschlauchreihe 6 in das Staubfilter eingeströmt. Die Anströmrichtung ist durch die Pfeile X gekennzeichnet. Durch ein vor der Filterschlauchreihe im Wesentlichen vertikal angeordnetes Leitblech 8, welches eine horizontale Ausdehnung über die beidseitig der Filterschlauchreihe 6 angeordneten Niederschlagselektroden 4 aufweist, wird das Rohgas in die zwischen den Sprühelektroden 2 und den Niederschlagselektroden 4 befindliche Ionisationszone gezwungen, wo die Staubpartikel negativ geladen werden. Die meisten der ionisierten Staubteilchen 5 lagern sich an der Oberfläche der Niederschlagselektroden 4 ab. Nur ein geringer Anteil gelangt zwischen den Niederschlagselektroden 4 hindurch und wird durch die Gasströmung zu den Filterschläuchen 1 geleitet, wo diese an der Außenseite der Filterschläuche 1 abgelagert werden. Das elektrische Feld zwischen den Sprühelektroden 2 und den Niederschlagselektroden 4 bewirkt eine Bewegung der Staubpartikeln 5 in Richtung der Pfeile A. Üblicherweise befinden sich einem Staubfilter mehrere Filterschlauchreihen, welche parallel zueinander angeordnet sind. In diesem Fall wird zwischen zwei Filterschlauchreihen 6 jeweils eine Elektrofiltergasse 3 angeordnet, welche aus jeweils einer Sprühelektrode 2 und beidseitig angeordneten Niederschlagselektroden 4 besteht.
Während der Abreinigung der Filterschläuche 1 entsprechend Fig.2 werden in das offene Ende der Filterschläuche 1 Druckluftimpulse abgegeben, wodurch sich die Filterschläuche 1 aufblähen und die daran anhaftenden Staubpartikel 5 in Richtung der Pfeile B bewegt werden. Da die Staubpartikel 5 ionisiert sind und die Filterschläuche 1 sowie die allfälligen Stützkörbe 7 elektrisch isoliert sind, werden die Staubpartikeln von den die Filterschlauchreihen 6 umgebenden Niederschlagselektroden angezogen und bleiben an diesen haften. Durch die elektrische Isolation der Filterschläuche 1 und der allfälligen Stützkörbe 7 kann es auch zu keinen Überschlägen von den Sprühelektroden 2 zu den Drähten der Stützkörbe 7 kommen, wodurch das Gewebe der Filterschlauche 1 beschädigt werden könnte. Durch die erfindungsgemäße Anordnung von Niederschlagselektroden 4 zwischen den Sprühelektroden 2 und den Filterschläuchen 1 kann der Abstand zwischen den Sprühelektroden 2 und den Filterschläuchen 1 wesentlich geringer ausfallen als bei bekannten Anordnungen, wo zwischen den Sprühelektroden und den Filterschlauchen keine Niederschlagselektrode angeordnet ist. In diesem Fall muss der Abstand der Sprühelektroden 2 zu den Filterschlauchen 1 wesentlich größer sein als der Abstand der Sprühelektroden 2 zu den Niederschlagselektroden 4, da es sonst bei zu geringen Abständen zu Überschlägen von den Sprühelektroden 2 zu den Drähten der Stützkörbe 7 der Filterschläuche 1 kommen würde, wodurch -das Gewebe der Filterschläuche 1 durchlöchert würde. Dadurch, dass die Filterschläuche 1 zu einem geringeren Grad mit Staubpartikeln 5 behaftet werden, müssen diese nur in größeren" Zeitintervallen abgereinigt werden. Die Abreinigung der Niederschlagselektroden 4 erfolgt vorzugsweise durch Abklopfen und kann auf Grund der gegenüber einer plattenförmig ausgebildeten Elektrode vergrößerten Oberfläche auch seltener erfolgen. Gegenüber herkömmlichen Hybridfiltern weist die vorliegende erfindungsgemäße Filteranordnung den Vorteil auf, dass eine wesentlich höhere Filterbelastung bei gleichzeitig hohem Staubabscheidegrad möglich ist. Der Abscheidegrad der Elektrofiltergasse 3 kann wesentlich verbessert werden, da die Strömungsgeschwindigkeit im Elektrofilter niedriger ist. Gegenüber dem Stand der Technik weist die vorliegende Erfindung den Vorteil auf, dass bei Abreinigung der Schlauchfilter der Feinstaub nicht wieder die Ionisationszone durchlaufen muss, um zu den Niederschlagsflächen zu gelangen, sondern direkt vom Filterschlauch an die Niederschlagselektroden gelangt.
Die Figuren 3 und 4 zeigen eine Draufsicht und eine ' teilweise geschnittene Seitenansicht eines erfindungsgemäß aufgebauten mehrstufigen Staubfilters, bei dem zwei Filterschlauchreihen 6 dargestellt sind, wobei sich die links dargestellte Filterschlauchreihe 6 in der Filtrierphase und die rechte Filterschlauchreihe 6 in der Abreinigungsphase befindet. Wie aus Fig.4 ersichtlich, befinden sich oberhalb der Filterschläuche die Düsen zur Abgabe der Druckluftimpulse zur Abreinigung der Filterschlauche 1. Die Druckluft wird über entsprechende Druckluftleitungen 10, von welchen nur ein Teil dargestellt ist, zugeführt. Während der Abreinigung, wie im rechten Teil der Abbildungen veranschaulicht, wird über die Düsen 9 ein Druckluftimpuls abgegeben, der in den mit einem Stützkorb 7 ausgestatteten Filterschlauch 1 eingeblasen wird. Dadurch wird der unten geschlossene Filterschlauch 1 aufgebläht und die daran befindlichen Staubpartikel 5 werden gegen die Niederschlagselektroden 4 in Richtung der Pfeile B bewegt. Während der Filtrierphase, wie im linken Teil des Bildes dargestellt, strömt das gereinigte Gas entsprechend der Pfeile Y durch das offene Ende der Filterschläuche in den Reingasraum des Filters. Der Abstand zwischen zwei Filterschlauchreihen 6 kann bei der vorliegenden Anordnung kleiner gewählt werden, da ein größerer Bereich des Filters für die Staubabscheidung wirksam ist.
Die Anordnung der erfindungsgemäß aufgebauten Elektrofilter zwischen den Filterschlauchreihen kann, je nach Anzahl der Filterstufen und Größe der Reinigungsanlage, beliebig oft wiederholt werden.

Claims

Ansprüche
1. Staubfilter mit zumindest einem, an seinem unteren Ende geschlossenen Filterschlauch (1) , welcher von außen mit den staubhaltigen Gasen beaufschlagt wird, und mit zumindest einem Elektrofilter (3) mit zumindest einer Niederschlagselektrode (4) und zumindest einer Sprühelektrode (2), welche gegenüber der zumindest einen Niederschlagselektrode (4) auf negativem Potential liegt, dadurch gekennzeichnet, dass vom Filterschlauch (1) gesehen, die zumindest eine Sprühelektrode (2) hinter der zumindest einen Niederschlagselektrode (4) angeordnet ist.
2. Filter nach Anspruch 1, dadurch gekennzeichnet, dass der zumindest eine Filterschlauch (1) sowie ein allfälliger im Filterschlauch (1) angeordneter Stützkorb (7) elektrisch isoliert ist.
3. Filter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zumindest eine Niederschlagselektrode (4) rohrförmig ausgebildet ist.
4. Filter nach Anspruch 3, dadurch gekennzeichnet, dass mehrere rohrförmige Niederschlagselektroden (4) in einer Reihe nebeneinander und voneinander beabstandet angeordnet sind.
5. Filter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jeweils mehrere Filterschläuche (1) zumindest eine Filterschlauchreihe (6) bilden.
6. Filter nach Anspruch 5, dadurch gekennzeichnet, dass zumindest an einer Seite jeder Filterschlauchreihe (6) ein Elektrofilter angeordnet ist.
7. Filter nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zwischen zwei Filterschlauchreihen (6) zumindest eine Sprühelektrode (2) und zwischen der zumindest einen Sprühelektrode (2) und jeder Filterschlauchreihe (6) zumindest eine Niederschlagselektrode (4) angeordnet ist.
8. Filter nach Anspruch 7, dadurch gekennzeichnet, dass an der außenliegenden Seite zumindest einer äußersten Filterschlauchreihe (6) zumindest eine Niederschlagselektrode (4) angeordnet ist.
9. Filter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die zumindest eine Niederschlagselektrode (4) elektrisch geerdet ist und die zumindest eine Sprühelektrode (2) auf negativem Gleichspannungspotential liegt.
10. Filter nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der zumindest eine Filterschlauch (1) im Wesentlichen vertikal angeordnet ist.
11. Filter nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die zumindest eine Niederschlagselektrode (4) im Wesentlichen vertikal angeordnet ist.
12. Filter nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass das staubhaltige Gas im wesentlichen in Richtung (X) der
Filterschlauchreihen (6) eingeströmt wird.
13. Filter nach Anspruch 12, dadurch gekennzeichnet, dass vor dem äußersten Filterschlauch (1) jeder Filterschlauchreihe (6) in der Einströmrichtung des staubhaltigen Gases ein im wesentlichen vertikales Leitblech (8) angeordnet ist.
EP01940008A 2000-05-31 2001-05-31 Staubfilter mit filterschlauch, sprühelektrode und niederschlagselektrode Withdrawn EP1284825A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0096000A AT408843B (de) 2000-05-31 2000-05-31 Staubfilter
AT9602000 2000-05-31
PCT/AT2001/000179 WO2001091908A1 (de) 2000-05-31 2001-05-31 Staubfilter mit filterschlauch, sprühelektrode und niederschlagselektrode

Publications (1)

Publication Number Publication Date
EP1284825A1 true EP1284825A1 (de) 2003-02-26

Family

ID=3683559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01940008A Withdrawn EP1284825A1 (de) 2000-05-31 2001-05-31 Staubfilter mit filterschlauch, sprühelektrode und niederschlagselektrode

Country Status (9)

Country Link
US (1) US6869467B2 (de)
EP (1) EP1284825A1 (de)
AT (1) AT408843B (de)
AU (1) AU2001273726A1 (de)
CA (1) CA2413993A1 (de)
HU (1) HUP0301744A2 (de)
PL (1) PL365585A1 (de)
SK (1) SK15672002A3 (de)
WO (1) WO2001091908A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559976B2 (en) * 2006-10-24 2009-07-14 Henry Krigmont Multi-stage collector for multi-pollutant control
WO2008112306A1 (en) * 2007-03-14 2008-09-18 Tucker Richard D Pyrolysis systems, methods, and resultants derived therefrom
US9604192B2 (en) 2007-03-14 2017-03-28 Richard D. TUCKER Pyrolysis and gasification systems, methods, and resultants derived therefrom
US8784616B2 (en) * 2007-03-14 2014-07-22 Tucker Engineering Associates, Inc. Pyrolysis systems, methods, and resultants derived therefrom
US7582145B2 (en) * 2007-12-17 2009-09-01 Krigmont Henry V Space efficient hybrid collector
US7582144B2 (en) * 2007-12-17 2009-09-01 Henry Krigmont Space efficient hybrid air purifier
US7695551B2 (en) * 2008-03-12 2010-04-13 Bha Group, Inc. Apparatus for filtering gas turbine inlet air
US8038776B2 (en) * 2008-03-12 2011-10-18 Bha Group, Inc. Apparatus for filtering gas turbine inlet air
US7527674B1 (en) 2008-03-12 2009-05-05 Bha Group, Inc. Apparatus for filtering gas turbine inlet air
US7597750B1 (en) * 2008-05-12 2009-10-06 Henry Krigmont Hybrid wet electrostatic collector
US7819945B2 (en) * 2008-10-30 2010-10-26 Cymer, Inc. Metal fluoride trap
US9797864B2 (en) * 2011-05-24 2017-10-24 Carrier Corporation Current monitoring in electrically enhanced air filtration system
DE102013113334A1 (de) * 2013-12-02 2015-06-03 Jochen Deichmann Vorrichtung zum Reinigen von Gasen
JP6290824B2 (ja) * 2015-05-22 2018-03-07 トヨタ自動車株式会社 排気浄化装置
JP6956714B2 (ja) * 2015-10-30 2021-11-02 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 空気清浄装置
CN108499735A (zh) * 2017-02-27 2018-09-07 袁野 结露型电除尘器
CN115007314B (zh) * 2022-05-30 2023-05-16 福建龙净环保股份有限公司 一种耦合增强电袋复合除尘装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE438834C (de) 1922-07-28 1926-12-29 Siemens Schuckertwerke G M B H Elektrische Gasreinigungseinrichtung, bei der in einem Gaskanal Sprueh- und Nieder-schlagselektroden quer zum Gasstrom abwechselnd hintereinander stehen
US1853393A (en) 1926-04-09 1932-04-12 Int Precipitation Co Art of separation of suspended material from gases
US2064960A (en) * 1932-03-05 1936-12-22 Estelle T Thorne Method of and apparatus for cleaning gases
US2785769A (en) 1952-12-29 1957-03-19 Phillips Petroleum Co Carbon black separation
FR2183635B1 (de) * 1972-05-08 1975-06-13 Vicard Pierre G
US3915676A (en) * 1972-11-24 1975-10-28 American Precision Ind Electrostatic dust collector
US3910779A (en) * 1973-07-23 1975-10-07 Gaylord W Penney Electrostatic dust filter
US4147522A (en) * 1976-04-23 1979-04-03 American Precision Industries Inc. Electrostatic dust collector
US4357151A (en) * 1981-02-25 1982-11-02 American Precision Industries Inc. Electrostatically augmented cartridge type dust collector and method
US5158580A (en) * 1989-12-15 1992-10-27 Electric Power Research Institute Compact hybrid particulate collector (COHPAC)
US5217511A (en) * 1992-01-24 1993-06-08 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Enhancement of electrostatic precipitation with electrostatically augmented fabric filtration
DE19521320A1 (de) 1995-06-12 1996-12-19 Abb Research Ltd Einrichtung zur Entfernung von Staubpartikeln aus Abgasen
US5938818A (en) * 1997-08-22 1999-08-17 Energy & Environmental Research Center Foundation Advanced hybrid particulate collector and method of operation
US6152988A (en) * 1997-10-22 2000-11-28 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Enhancement of electrostatic precipitation with precharged particles and electrostatic field augmented fabric filtration
DE19841973C2 (de) 1998-09-14 2002-08-14 Keller Lufttechnik Gmbh & Co Kg Aus Sprühelektroden und einer Niederschlagselektrode gebildete Elektro-Filterstufe
US6544317B2 (en) * 2001-03-21 2003-04-08 Energy & Environmental Research Center Foundation Advanced hybrid particulate collector and method of operation
US6524369B1 (en) * 2001-09-10 2003-02-25 Henry V. Krigmont Multi-stage particulate matter collector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0191908A1 *

Also Published As

Publication number Publication date
US20030159584A1 (en) 2003-08-28
SK15672002A3 (sk) 2003-03-04
PL365585A1 (en) 2005-01-10
HUP0301744A2 (en) 2003-08-28
AU2001273726A1 (en) 2001-12-11
US6869467B2 (en) 2005-03-22
ATA9602000A (de) 2001-08-15
CA2413993A1 (en) 2002-12-02
AT408843B (de) 2002-03-25
WO2001091908A1 (de) 2001-12-06

Similar Documents

Publication Publication Date Title
AT408843B (de) Staubfilter
DE69810486T2 (de) Kombinierter filter und elektrostatischer abscheider
EP0415486B1 (de) Verfahren und Vorrichtung zur elektrostatischen Reinigung staub- und schadstoffhaltiger Abgase in mehrfeldrigen Abscheidern
EP2343130A1 (de) Vorrichtung zum Abscheiden von Lack-Overspray
EP0035973B1 (de) Einrichtung zum diskontinuierlichen Reinigen staubbeladener Rohgase
DE102008046414A1 (de) Vorrichtung zum Abscheiden von Lack-Overspray
DE102007045664B3 (de) Verfahren und Vorrichtung zum Entfernen von Staub und/oder faserförmigen Beimengungen aus einem Kunststoffgranulat
DE102008046413A1 (de) Vorrichtung zum Abscheiden von Lack-Overspray
DE102011052946B4 (de) Elektroabscheider
EP0740963B1 (de) Anlage zur Reinigung von staubhaltigem Abgas
EP2533907B1 (de) Anlage zum beschichten, insbesondere lackieren, von gegenständen, insbesondere von fahrzeugkarosserien
WO2002066167A1 (de) Elektrostatischer staubabscheider mit integrierten filterschläuchen
DE2307508A1 (de) Elektrische ausfaellvorrichtung
EP1545785B1 (de) Elektrostatisch arbeitender filter und verfahren zum abscheiden von partikeln aus einem gas
DE3535826A1 (de) Staubabscheider
DE2216436A1 (de) Staubfiltervorrichtung
EP0345309A1 (de) Elektrostatisches filter für die kontinuierliche abscheidung von in einem gasstrom suspendierten festen oder flüssigen partikeln
DE2235531B2 (de) Verfahren und Einrichtung zum Abscheiden von feinsten Fremdstoffpartikeln aus einem Gasstrom
EP3711840B1 (de) Entstaubungsanlage
EP0342539B1 (de) Elektrostatischer Staubabscheider
WO1990006181A1 (de) Vorrichtung zum elektrostatischen abscheiden von festen teilchen und aerosolen aus gasen
DE19613720C2 (de) Staubabscheidevorrichtung und Verfahren zum Staubabscheiden für einen Elektrofilter
AT394664B (de) Elektro-schuettschichtfilter-anlage
DE102015016554A1 (de) Vorrichtung zum Abscheiden von Overspray, Oberflächenbehandlungsanlage und Verfahren zum Abscheiden von Overspray
DE102008046410B4 (de) Vorrichtung zum Abscheiden von Lack-Overspray

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20050112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070809