WO2002066167A1 - Elektrostatischer staubabscheider mit integrierten filterschläuchen - Google Patents

Elektrostatischer staubabscheider mit integrierten filterschläuchen Download PDF

Info

Publication number
WO2002066167A1
WO2002066167A1 PCT/CH2002/000081 CH0200081W WO02066167A1 WO 2002066167 A1 WO2002066167 A1 WO 2002066167A1 CH 0200081 W CH0200081 W CH 0200081W WO 02066167 A1 WO02066167 A1 WO 02066167A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
electrodes
emission
dust separator
precipitation
Prior art date
Application number
PCT/CH2002/000081
Other languages
English (en)
French (fr)
Other versions
WO2002066167A8 (de
Inventor
Walter Eckert
Original Assignee
Elex Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elex Ag filed Critical Elex Ag
Priority to US10/468,374 priority Critical patent/US20040065201A1/en
Priority to EP02710737A priority patent/EP1361927A1/de
Publication of WO2002066167A1 publication Critical patent/WO2002066167A1/de
Publication of WO2002066167A8 publication Critical patent/WO2002066167A8/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration

Definitions

  • Electrostatic dust collector with integrated filter hoses Electrostatic dust collector with integrated filter hoses
  • the invention relates to an electrostatic dust separator with integrated filter hoses, which essentially comprises plate-shaped precipitation electrodes arranged in parallel, filter hoses running parallel to the precipitation electrodes in the aisles thus formed, and emission electrodes arranged between these precipitation electrodes and filter hoses, the electrodes on high-voltage generation systems are connected, and a filter housing has a gas inlet opening leading to the electrodes, a gas outlet opening communicating with the interior of the filter bags and a dust collection funnel.
  • an electrostatic dust separator of a conventional type often also called an electrostatic precipitator for short
  • the dust-laden gas to be cleaned is passed through the many parallel passages of a filter housing.
  • the precipitation electrodes arranged one behind the other can reach linear dimensions of up to approximately 15 m and more.
  • the emission electrodes, which emit electrons, are arranged longitudinally between the precipitation electrodes.
  • the emission electrodes While the precipitation electrodes of known dust collectors lie on the ground or are grounded, the emission electrodes are connected to a high negative DC voltage, which is usually in the range from 30 to 100 kV, but can also exceed this value.
  • An electrical force field is created between the two electrodes.
  • the electrical force concentration at the emission electrode must be large enough to generate a glow or coronary discharge, which is noticeable as a strong, bluish glow.
  • the emerging electrons ionize the air and other gases that form the atmosphere.
  • the negative and positive ions generated during ionization migrate to the electrodes of opposite polarity.
  • the migrating ions in turn collide with the dust particles suspended in the gas stream, adhere to them and thereby impart an electrical charge.
  • the charged dust particles are also attracted to the electrodes of the opposite polarity.
  • the vast majority of the dust particles are negatively charged due to the electron-emitting emission electrodes. They are deposited on the positive precipitation electrodes. Only one to three percent of the dust particles are charged positively and are deposited on the emission electrodes with negative potential.
  • the dust particles do not all immediately transfer their charge to the electrode in question, but also form loosely connected solid layers, particularly on the precipitation electrodes, also as a result of adhesion and cohesive forces.
  • the dust layer When the dust layer has reached a thickness of 0.5 to 2 cm, it must be removed from the electrode. This periodic cleaning is carried out in the case of dry filters by tapping and shaking devices, in the case of wet filters by washing devices. In practice, e.g. knocked one to eight times an hour by turning a shaft with somersaults.
  • WO, A1 90/07382 describes a dust separator which contains two functional elements, spray electrodes and filter bags. It is an improved bag filter with fibers attached to the bags, which are ionized by the spray electrodes, the filter bags having at least one opening for discharging the gases flowing through the filter material. The filter bags are also provided with supporting material.
  • the spray electrodes can be arranged inside and / or outside the filter bags.
  • hybrid filters a combination of electrostatic filters with fabric filters.
  • the focus is on the use of synergies that can arise between electrical and filtering separation.
  • hybrid filters were known in which the electrostatic filters and the fabric filters are spatially separated in the direction of flow of the gas.
  • WO, A1 99/10103 a hybrid filter can be used without spatial separation of the two filter types in the sense mentioned.
  • every second precipitation electrode is replaced by a series of filter bags with a circular cross section. This current state of the art is shown in FIGS. 1 and 2.
  • FIG. 1 shows an electrostatic dust separator 10 with integrated filter hoses 12, which alternately replace a plate-shaped precipitation electrode 14.
  • Emission electrodes 16 are arranged parallel to the plane of the two precipitation electrodes 14.
  • the emission electrodes 16 are insulated from the housing 18 of the electrostatic dust separator 10 (FIG. 1) and connected to the negative pole of a high-voltage generation system, not shown.
  • the positive pole of the high-voltage generating plant is connected to ground 24.
  • the plate-shaped precipitation electrodes 14 and the filter bags 12 are connected to the filter housing (18).
  • the dust particles of the raw gas stream 20 are largely deflected in the direction of the precipitation electrodes 14 and form a dust layer 22 thereon, which is removed by regular tapping. Only a relatively small number of dust particles are deflected in the direction of the filter bags 12.
  • the invention has for its object to provide a dust collector of the type mentioned, which allows an increase in performance per unit volume and thus works more economically.
  • the object is achieved in that the precipitation electrodes are electrically insulated from the filter housing and connected to the positive pole of the high-voltage generation system, the negative pole of the high-voltage generation system is connected to the filter housing forming the mass, and the emission electrodes are connected to the Spray tips, as well as the filter hoses in their immediate vicinity, are connected to the filter housing in an electrically conductive manner.
  • the distance between the emission electrodes and the filter bags can be kept smaller in this way.
  • the distance between the emission electrodes or the spray tips from the assigned precipitation electrode is expediently at least twice as large as the distance between the emission electrodes and the next filter hose.
  • This distance between the emission electrode and spray tips from the precipitation electrode is preferably three to ten times greater than the distance between the emission electrode and the nearest filter hose.
  • the mentioned spacing relationships are realized in that the filter hoses arranged in series parallel to the precipitation electrode alternately have smaller and larger distances, in other words the filter hoses are grouped in pairs.
  • the emission electrodes with spray tips can be arranged at least in the direction of the associated precipitation electrode in the gap formed by the larger distances between the filter bags.
  • the distance between the emission electrodes lying in practice on both sides of the longitudinal center plane of the filter bags suitably corresponds approximately to the radius of the filter bags, but can also be relatively slightly larger or smaller.
  • the filter bags have an inner support basket made of a material that is mechanically solid even at working temperatures, for example made of a mechanically solid plastic or an easily machinable metal.
  • the inner basket has a purely support function, not an electrical one.
  • Metallic inner filter baskets are connected directly to the mass and / or connected to the relevant spray electrode with a metal wire or tape.
  • the spray tips are regularly over the entire circumference of the basket-shaped Emission electrode distributed or arranged concentrated in the direction of the associated precipitation plates.
  • the spray tips and the filter hose are preferably 20-70 mm apart, in particular approximately 30-50 mm apart.
  • Normal filter media can be used for the filter bags, but antistatic material with membrane is preferred.
  • the filter bags are completely separated from the electrical field. Although normally supported by the inner basket, the filter bags can also be hung on the inside of an outer filter basket that is specially designed for this purpose.
  • the filter bags are circular in cross-section.
  • the cross section can take any shape that can be handled in practice, for example square, elliptical, rectangular, long rectangular or long rectangular with semicircular narrow sides.
  • the inner and outer basket are designed accordingly.
  • the outer filter basket designed as an emission electrode and the supported filter hose can be designed as a built-in module.
  • the first assembly can be carried out by installing the outer basket electrode with the spray tips together with the hose and inner basket as a pre-assembled module.
  • the entire module is replaced; the filter hose is actually replaced in the workshop.
  • the outer basket with the spray tips, then the hose and finally the inner basket, i.e. the support basket for the filter hose can be installed.
  • the outer basket electrode with the spray tips is left in the filter system.
  • the inserting the new filter hose is the outer basket electrode a precise guide to the lower stabilization system, the change can be made completely from above.
  • the hybrid filters can be operated like previous electrostatic filters.
  • the majority of the dust, 95% or more, continues to separate out on the precipitation electrodes, which are now electrically insulated from the filter housing.
  • the precipitation electrodes are shaken with a tapping mechanism of the usual type, the dust layer falls down.
  • the exhaust gas pre-cleaned in this way can only escape from the filter chamber through the filter bags and flow off as clean gas.
  • the filter bags are also cleaned from time to time by blowing compressed air through the filter medium from the inside out. This cleaning causes the dust adhering to the hose surface to accelerate in the direction of the electric field. It is transported past the emission electrodes into the electric field and deposited on the precipitation electrodes like in a classic electrostatic precipitator.
  • fabric material is needed that makes the best possible use of the synergies between electrical and fabric filter separation.
  • the fabric filter medium is required on the one hand to filter the increased proportion of fine dust, which is increasingly contained in the gas stream after the pre-separation, and on the other hand to give the adhering dust the best possible impulse during cleaning in the electrical field.
  • the present invention has the following major advantages:
  • the distance between the emission electrodes or spray tips and the filter bags can be kept considerably smaller than usual the filter housings can also be built up to 50% smaller.
  • the main fields of application of the present invention are the cement industry and incineration plants such as coal-fired power plants, waste-to-energy plants, etc.
  • FIG. 3 is a perspective view of a hybrid filter
  • FIG. 4 shows a partially cut-away view according to FIG. 3,
  • FIG. 6 shows a partially cutaway perspective view of a filter module with an emission electrode and filter hose
  • FIG. 8 shows a plan according to FIG. 7,
  • FIG. 10 shows a variant according to FIG. 9, FIG. 11 shows a plan view of emission electrodes with electrode plates, and
  • FIG. 12 shows a variant of FIG. 11. Essentially only the housing 18 of an electrostatic dust separator 10 with filter bags that are not visible is visible. The loaded gas stream 20 enters the filter at about half the height and leaves it as a clean gas stream 26.
  • a gas inlet opening 28 has a truncated cone-shaped attachment 29, the clean gas 26 leaves the filter via a cuboid-shaped gas outlet connection 30.
  • a dust collection funnel 32 is formed beneath the essentially cubic housing 18.
  • a compressed air tube 34 is mounted, from which a plurality of pressure lines 36 branch off. These are used to clean the filter bags 12 by means of compressed air blasts, also called a pulsjet. Each pressure line 36 leads to a series of filter bags. This can be better seen in FIG. 4, a compressed air nozzle 38 is formed above each opening 40 of the filter bags 12.
  • the filter bags 12 are surrounded by a filter basket, which will be shown in detail later and which forms the emission electrode 16.
  • the filter bags 12 themselves are supported by an inner basket, which is also shown in detail later.
  • the emission electrodes 16 are suspended in a perforated base 42. From a certain size, it is advantageous to also fix the emission electrodes 16 in the lower part and to connect them mechanically and electrically to the housing 18 by means of a stabilizing frame.
  • the precipitation electrodes 14 are electrically insulated from the housing 18 and connected to the positive connection of a high-voltage generation system, not shown.
  • the precipitation electrodes 14 are suspended from a support 46 on support insulators 44, more precisely a frame must be placed before and after the field 46 can be hung on two support insulators 44.
  • the plate carrier 50 lie, two of which are fixed to the cross member 48 and form a mechanical connection to the other frame 46.
  • a voltage distance to the perforated base 42 must be maintained, for example 150 mm.
  • the plate-shaped precipitation electrodes 14 are hung in the carrier iron 50 as usual with bolts.
  • the perforated plate 42 separates the raw gas area from the clean gas area.
  • the filter bags 12 must therefore be suspended gas-tight at the openings 40 so that slippage is impossible.
  • the basket-shaped emission electrodes 16 with the filter tubes 12 can also be suspended obliquely in the filter housing 18. Furthermore, a filter housing 18 can be designed such that horizontal guidance of the emission electrodes 16 and the filter bags 12 is possible.
  • FIG. 5 shows an emission electrode 16 in the form of a metallic filter basket. Twelve longitudinal wires 52 are connected on the inside at a distance of 2 to 3 cm in an electrically conductive manner to an upper and a lower ring 54, 56. Depending on the length of the basket emission electrode 16, at least one reinforcing ring 58 is attached between these rings.
  • Spray tips 60 pointing radially outward are attached to all the longitudinal wires 52 at regular intervals.
  • FIG. 6 again shows an emission electrode 16 designed as a filter basket, but with the filter tube 12 inserted.
  • This partially cut filter tube is supported by an inner support basket 62 in the shape of a cylinder jacket. From this support basket only the longitudinal rods are indicated, the respective inner rings have been omitted for simplicity, "or not visible.
  • the filter basket and the support basket form an installation module which can be attached to the perforated base 42 (FIG. 4) in a gas-tight manner.
  • the precleaned raw gas as indicated by an arrow 70, passes through the filter medium 64 into the interior 66 of the filter hose 12 and is thereby freed from the last finely divided dust residues.
  • the clean gas stream 26 emerges from the filter hose 12 via the upper filter opening 68.
  • the gas-tight attachment of the filter hose 12 to the perforated base 42 (FIG. 4) prevents gas slippage.
  • the electrode system is shown in addition to Fig.4. 7 clearly shows that the plate-shaped precipitation electrodes 14 are suspended with support insulators 44. The precipitation electrodes 14 are also insulated from the housing 18 (FIG. 4) in the lower region.
  • the emission electrodes 16 designed as a filter basket are not only attached to the perforated base 42 from a certain length and thus electrically connected to the filter housing 18 forming the mass 24, but also in the lower region, which is symbolized by 24.
  • the perforated base 42 with the sealed filter hoses 12 separates the interior of the hybrid filter into a raw gas space 72 and an overhead clean gas space 74.
  • the passage from the raw gas space 72 into the clean gas space 74 can take place exclusively via the filter tubes 12.
  • the filter medium 64 expediently consists of fabric material that makes best use of the synergies between electrical and fabric filter separation. On the one hand, it has to filter the fine dust fraction, which, for example, is still in a flue gas after the pre-separation is contained, and on the other hand to give the adhering dust the best possible impulse in the electrical field during cleaning.
  • High-quality ePTFE membrane filter bags polytetrafluoroethylene
  • FIG. 11 shows a variant of emission electrodes 16 with filter hoses 12 arranged at regular intervals k of, for example, 200 mm.
  • the spray tips 60 of the filter basket are formed only in the direction of the precipitation electrodes 14.
  • FIG. 12 shows an example of how the emission electrodes 16 can be brought closer to the filter bags 12 without a filter basket being formed around the filter bag.
  • the filter bags 12 are arranged alternately with a smaller distance k of, for example, 200 mm and a larger distance g of, for example, 240 mm. Thanks to this paired arrangement of filter bags 12, the emission electrodes 16 can be placed on both sides in the space between the filter bags 12.
  • the spray tips 60 of the emission electrodes 16 are formed only in the direction of the precipitation electrodes 14.

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Electrostatic Separation (AREA)

Abstract

Der elektrostatische Staubabscheider (10) hat integrierte Filterschläuche (12), weshalb er auch Hybridfilter genannt wird. Er umfasst im wesentlichen parallel angeordnete, plattenförmige Niederschlagselektroden (14), in den so gebildeten Gassen (72) parallel zu den Niederschlagselektroden (14) verlaufende Filterschläuche (12), und zwischen diesen Niederschlagselektroden (14) und Filterschläuchen (12) angeordnete Emmissionselektroden (16). Die Elektroden (14, 16) sind an Hochspannungs- Erzeugungsanlagen angeschlossen. Ein Filtergehäuse (18) weist eine zu den Elektroden (14, 16) führende Gaseintrittsöffnung (28), einen mit dem Innenraum (66) der Filterschläuche kommunizierenden Gasaustrittsstutzen (3) und einen Staubsammeltrichter (32) auf. Die Niederschlagselektroden (14) sind gegenüber dem Filtergehäuse (18) elektrisch isoliert und mit dem positiven Pol der Hochspannungs- Erzeugungsanlage verbunden. Der negative Pol der Hochspannungs- Erzeugungsanlage ist mit dem die Masse (24) bildenden Filtergehäuse (18) verbunden. Die Emmissionselektroden (16) mit den Sprühspitzen (60), wie auch die in deren Unmittelbaren Nähe angebrachten Filterschläuche (12) sind elektrisch leitend mit dem Filtergehäuse (18) verbunden.

Description

Elektrostatischer Staubabscheider mit integrierten Filterschläuchen
Die Erfindung bezieht sich auf einen elektrostatischen Staubabscheider mit integrierten Filterschläuchen, welcher im wesentlichen parallel angeordnete, plattenförmige Niederschlagselektroden, in den so gebildeten Gassen parallel zu den Niederschlagselektroden verlaufende Filterschläuche, und zwischen diesen Niederschlagselektroden und Filterschläuchen angeordnete Emmissionselektroden umfasst, wobei die Elektroden an Hochspannungs- Erzeugungsanlagen angeschlossen sind, und ein Filtergehäuse eine zu den Elektroden führende Gaseintrittsöffnung, eine mit dem Innenraum der Filterschläuche kommunizierende Gasaustrittsöffnung und einen Staubsammeltrichter aufweist.
In einem elektrostatischen Staubabscheider üblicher Bauart, oft auch kurz Elektrofilter genannt, wird das zu reinigenden, staubbeladene Gas durch die vielen parallelen Gassen eines Filtergehäuses geleitet. Die hintereinander angeordneten Niederschlagselektroden können lineare Abmessungen bis etwa 15 m und mehr erreichen. Längsmittig zwischen den Niederschlagselektroden sind die Emmissionselektroden angeordnet, welche Elektronen emittieren.
Während die Niederschlagselektroden von bekannten Staubabscheidern an der Masse liegen, bzw. geerdet sind, liegen die Emmissionselektroden an hoher negativer Gleichspannung, welche üblicherweise im Bereich von 30 bis 100 kV liegt, aber diesen Wert auch überschreiten kann. Zwischen den beiden Elektroden entsteht ein elektrisches Kraftfeld. Die elektrische Kraftkonzentration an der Emmissionselektrode muss gross genug sein, um eine Glimm- oder Koronarentladung zu erzeugen, welches sich als starkes, bläuliches Aufleuchten be- merkbar macht. Die austretenden Elektronen ionisieren die Luft und andere, die Atmosphäre bildende Gase. Die bei der Ionisierung entstehenden negativen und positiven Ionen wandern zu den Elektroden entgegengesetzter Polarität. Die wandernden Ionen ihrerseits stossen mit den im Gasstrom suspendierten Staubteilchen zusammen, haften an ihnen und verleihen dadurch eine elektrische Ladung. Unter Einwirkung des elektrischen Feldes werden auch die geladenen Staubpartikel von den Elektroden der entgegengesetzten Polarität angezogen. Die Staubpartikel werden wegen den Elektronen emittierenden Emmissionselektroden in überwiegender Mehrheit negativ geladen. Sie scheiden sich an den positiven Niederschlagselektroden ab. Nur ein bis drei Prozent der Staubpartikel werden positiv geladen und scheiden sich an den Emmissionselektroden mit negativem Potenzial ab.
Die Staubpartikel geben jedoch nicht alle ihre Ladung sofort an die betreffende Elektrode ab, sondern bilden, auch infolge von Adhäsions- und Kohäsionskräf- ten, locker zusammenhängende Feststoffschichten, insbesondere auf den Niederschlagselektroden.
Wenn die Staubschicht eine Dicke von 0,5 bis 2 cm erreicht hat, muss diese von der Elektrode abgelöst werden. Diese periodische Reinigung erfolgt bei Trockenfiltern durch Klopf- und Rüttelvorrichtungen, bei Nassfiltern durch Waschvorrichtungen. In der Praxis wird z.B. ein- bis achtmal pro Stunde ge- klopft, indem eine Welle mit Purzelhämmern gedreht wird.
Für den Wirkungsgrad von Elektrofiltem sind die durchströmende Gasmenge, die physikalische Beschaffenheit des Trägergases, dessen Feuchtigkeit und Temperatur, der elektrische Widerstand und das Verhalten des Staubes im elektrischen Feld von wesentlicher Bedeutung. Schliesslich sind auch die chemische und die Kornzusammensetzung des Staubes, die Charakteristik des wirksamen elektrischen Feldes, die Gasgeschwindigkeit, das Wiederaufwirbeln des Staubes beim Klopfen, die Gaszusammensetzung, der Strom und der Spannungsverlauf für die Wandergeschwindigkeit der elektrisch geladenen Teilchen mitbestimmend. In der WO, A1 90/07382 wird ein Staubabscheider beschrieben, welcher zwei funktioneile Elemente enthält, Sprühelektroden und Filterschläuche. Es handelt sich um einen verbesserten Schlauchfilter mit an den Schläuchen angebrachten Fasern, welche durch die Sprühelektroden ionisiert werden, wobei die Filter- schlauche wenigstens eine Öffnung zur Entladung der durch das Filtermaterial strömenden Gase haben. Weiter sind die Filterschläuche mit stützendem Material versehen. Die Sprühelektroden können inner- und/oder ausserhalb der Filterschläuche angeordnet sein.
Vor wenigen Jahren wurden Hybridfilter, eine Kombination von Elektrofiltern mit Gewebefiltern bekannt. Dabei steht die Nutzung von Synergien, die sich zwischen elektrischer und filternder Abscheidung ergeben können, im Vordergrund. Vorerst wurden Hybridfilter bekannt, bei welchen die Elektrofilter und die Gewebefilter in Strömungsrichtung des Gases räumlich getrennt sind. Nach der WO,A1 99/10103 kann ein Hybridfilter eingesetzt werden, ohne dass eine räumliche Trennung der beiden Filtertypen im erwähnten Sinne erfolgt. Im Grundsatz wird jede zweite Niederschlagselektrode durch eine Reihe von im Querschnitt kreisförmigen Filterschläuchen ersetzt. Dieser aktuelle Stand der Technik wird in den Fig. 1 und 2 dargestellt.
Fig. 1 zeigt einen elektrostatischen Staubabscheider 10 mit integrierten Filterschläuchen 12, welche alternierend eine plattenförmige Niederschlagselektrode 14 ersetzen. Benachbart zu den beiden Niederschlagselektroden 14 sind parallel zu deren Ebene Emmissionselektroden 16 angeordnet.
Ein durch Pfeile charakterisierter, mit Staub beladener Gasstrom 20, das Rohgas, tritt seitlich in den elektrostatischen Staubabscheider 10 ein. Mehr als 90 % des Staubes werden dank des eingangs beschriebenen lonisierungsprozesses an den Niederschlagselektroden 14 abgeschieden. Durch entsprechende bauli- ehe Massnahmen wird das teilentstaubte Rohgas gezwungen, den elektrostatischen Staubabscheider 10 durch die Filterschläuche 12 als Reingas 26 (Fig. 3) mit ausserordentlich niedrigem Staubanteil zu verlassen. Aus Fig.2 können noch einige Details des aus der erwähnten WO, A1 99/10103 entnommen werden. Die Emmissionselektroden 16 sind gegenüber dem Gehäuse 18 des elektrostatischen Staubabscheiders 10 (Fig.1 ) isoliert und am negativen Pol einer nicht dargestellten Hochspannungs- Erzeugungsanlage angeschlossen. Der positive Pol der Hochspannungs- Erzeugungsanlage ist mit der Masse 24 verbunden. Die plattenförmigen Niederschlagselektroden 14 und die Filterschläuche 12 sind mit dem Filtergehäuse (18) verbunden. Die Staubpartikel des Rohgasstroms 20 werden grösstenteils in Richtung der Niederschlagselektroden 14 abgelenkt und bilden auf diesem eine Staubschicht 22, welche durch regelmässiges Klopfen entfernt wird. Nur eine verhältnismässig geringe Zahl von Staubpartikeln wird in Richtung der Filterschläuche 12 abgelenkt.
Der Erfindung liegt die Aufgabe zugrunde, einen Staubabscheider der eingangs genannten Art zu schaffen, welcher eine Leistungssteigerung pro Volumeneinheit erlaubt und damit wirtschaftlicher arbeitet.
Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Niederschlagselektroden gegenüber dem Filtergehäuse elektrisch isoliert und mit dem positi- ven Pol der Hochspannungs- Erzeugungsanlage verbunden sind, der negative Pol der Hochspannungs- Erzeugungsanlage mit dem die Masse bildenden Filtergehäuse verbunden ist, und die Emmissionselektroden mit den Sprühspitzen, wie auch die in deren unmittelbarer Nähe angebrachten Filterschläuche elektrisch leitend mit dem Filtergehäuse verbunden sind. Spezielle und weiterbil- dende Ausführungsformen der Vorrichtung sind Gegenstand von abhängigen Patentansprüchen.
Dank des gleichen elektrischen Potenzials der Emmissionselektroden und der Filterschläuche entfällt der tote Raum, in dem Staub ohne Vorionisierung zu den Filterschläuchen gelangen kann. Der Abstand der Emmissionselektroden zu den Filterschläuchen kann derart kleiner gehalten werden. Zweckmässig ist der Abstand der Emmissionselektroden bzw. der Sprühspitzen von der zugeordneten Niederschlagselektrode wenigstens doppelt so gross wie der Abstand der Emmissionselektroden vom nächsten Filterschlauch. Vorzugsweise ist dieser Abstand Emmissionselektrode bzw. Sprühspitzen von der Nie- derschlagselektrode drei- bis zehnmal grösser als der Abstand der Emmissionselektrode vom nächstgelegenen Filterschlauch.
Nach einer ersten Variante werden die erwähnten Abstandsverhältnisse realisiert, indem die parallel zur Niederschlagselektrode in Reihe angeordneten Fil- terschläuche alternierend kleinere und grössere Abstände haben, mit anderen Worten die Filterschläuche paarweise gruppiert sind. So können die Emmissionselektroden mit Sprühspitzen wenigstens in Richtung der zugeordneten Niederschlagselektrode in der durch die grösseren Abstände der Filterschläuche gebildeten Lücke angeordnet sein. Der Abstand der in der Praxis beidseits der Längsmittelebene der Filterschläuche liegenden Emmissionselektroden entspricht zweckmässig etwa dem Radius der Filterschläuche, kann jedoch auch verhältnismässig geringfügig grösser oder kleiner sein.
Nach einer anderen, besonders vorteilhaften Variante haben die Filterschläuche einen inneren Stützkorb aus auch bei Arbeitstemperaturen mechanisch festen Werkstoff, beispielsweise aus einem mechanisch festen Kunststoff oder einem leicht bearbeitbaren Metall. Der innere Korb hat eine reine Stützfunktion, keine elektrische. Metallische innere Filterkörbe sind im Arbeitseinsatz direkt mit der Masse verbunden und/oder mit einem Metalldraht oder -band mit der betreffen- den Sprühelektrode verbunden.
Ausserhalb des Filterschlauchs ist in Abstand eine als äusserer Korb mit nach aussen gerichteten Sprühspitzen ausgebildete gasdurchlässige Emmissionselektrode aus einem metallischen Werkstoff angeordnet, welche mit dem die Masse bildendem Filtergehäuse verbunden ist.
Die Sprühspitzen sind regelmässig über den ganzen Umfang der korbförmigen Emmissionselektrode verteilt oder in Richtung der zugeordneten Niederschlagsplatten konzentriert angeordnet.
Vorzugsweise sind die Sprühspitzen und der Filterschlauch 20 - 70 mm, insbe- sondere etwa 30 - 50 mm von einander entfernt.
Für die Filterschläuche können normale Filtermedien eingesetzt werden, bevorzugt ist jedoch antistatisches Material mit Membrane. Die Filterschläuche sind vollständig vom elektrischen Feld getrennt. Obwohl im Normalfall vom inneren Korb gestützt, können die Filterschläuche auch auf einer speziell für diesen Zweck konzipierten Innenseite eines die Emmissionselektrode bildenden äusse- ren Filterkorbes aufgehängt werden.
Im Normalfall sind die Filterschläuche bezüglich ihres Querschnitts kreisförmig ausgebildet. Der Querschnitt kann jedoch jede beliebige, in der Praxis handhabbare Form annehmen, beispielsweise quadratisch, elliptisch, rechteckig, langrechteckig oder langrechteckig mit halbkreisförmig ausgebildeten Schmalseiten. Der innere und der äussere Korb sind entsprechend angepasst ausgebildet.
Der als Emmissionselektrode ausgebildete äussere Filterkorb und der gestützte Filterschlauch können als Einbaumodul konzipiert sein. Mit anderen Worten kann die Erstmontage erfolgen, indem die äussere Korbelektrode mit den Sprühspitzen zusammen mit Schlauch und Innenkorb als vormontiertes Modul eingebaut wird. Beim Auswechseln eines Filterschlauches wird das ganze Modul ausgewechselt, das eigentliche Ersetzen des Filterschlauchs erfolgt in der Werkstatt.
Nach einer Variante kann vorerst der Aussenkorb mit den Sprühspitzen, dann der Schlauch und zuletzt der Innenkorb, also der Stützkorb für den Filterschlauch, montiert werden. Bei einem Schlauchwechsel wird die äussere Korbelektrode mit den Sprühspitzen in der Filteranlage belassen. Während dem Einführen des neuen Filterschlauches ist die äussere Korbelektrode eine genaue Führung zum unteren Stabilisiersystem, der Wechsel kann komplett von oben gemacht werden.
Im Übrigen können die Hybridfilter wie bisherige Elektrofilter betrieben werden. Die Hauptmenge des Staubes, 95 % oder mehr, scheidet sich weiterhin an den nun gegenüber dem Filtergehäuse elektrisch isolierten Niederschlagselektroden ab. Nachdem die Staubschicht eine vorausbestimmte Schichtdicke erreicht hat, werden die Niederschlagselektroden mit einem Klopfmechanismus üblicher Bauart erschüttert, die Staubschicht fällt hinunter.
Das so vorgereinigte Abgas kann ausschliesslich durch die Filterschläuche aus der Filterkammer austreten und als Reingas abfliessen. Von Zeit zu Zeit werden auch die Filterschläuche gereinigt, indem Druckluft von innen nach aussen durch das Filtermedium geblasen wird. Durch diese Abreinigung erfährt der auf der Schlauchoberfläche haftende Staub eine Beschleunigung in Richtung des elektrischen Feldes. Er wird an den Emmissionselektroden vorbei in das elektrische Feld transportiert und an den Niederschlagselektroden wie in einem klassischen Elektrofilter abgeschieden.
Für die Filterschläuche wird Gewebematerial benötigt, das die Synergien zwischen elektrischer und Gewebefilter -abscheidung bestmöglich nutzt. An das Gewebefiltermedium wird der Anspruch gestellt, einerseits den erhöhten Feinstaubanteil zu filtrieren, der nach der Vorabscheidung vermehrt im Gasstrom noch enthalten ist und andererseits dem anhaftenden Staub einen möglichst optimalen Impuls bei der Abreinigung ins elektrische Feld zu geben.
Zusammengefasst hat die vorliegende Erfindung die folgenden wesentlichen Vorteile:
Der Abstand der Emmissionselektroden bzw. Sprühspitzen zu den Filterschläuchen kann wesentlich kleiner als üblich gehalten werden, dadurch können auch die Filtergehäuse bis 50% kleiner gebaut werden.
- Dank der geringeren zu den Schlauchfiltern gelangenden Staubmenge ist eine höhere Schlauchbelastung möglich.
- Das an einen Filterschlauch abgeschiedene staubförmige Material wird bei der Abreinigung zurück in das elektrische Feld transportiert und wie beim Elektrofilter abgeschieden. Das erlaubt gegenüber normalen Filterschläuchen eine höhere Schlauchbelastung.
- Das gleiche elektrische Potenzial für die Emmissionselektroden und die Innenkörbe der Filterschläuche ermöglicht, dass beide unten, mit dem gleichen System, aneinander und am Filtergehäuse fixiert werden.
Hauptanwendungsgebiete der vorliegenden Erfindung sind die Zementindustrie und Verbrennungsanlagen, wie Kohlekraftwerke, Müllheizkraftwerke, usw.
Die Erfindung wird anhand von in der Zeichnung dargestellten Ausführungsbeispielen, welche auch Gegenstand von abhängigen Ansprüchen sind, näher erläutert. Es zeigen schematisch:
- Fig. 3 eine perspektivische Ansicht eines Hybridfilters,
- Fig. 4 eine teilweise aufgeschnittene Ansicht gemäss Fig. 3,
- Fig. 5 eine perspektivische Ansicht einer Emmissionselektrode,
- Fig. 6 eine teilweise aufgeschnittene perspektivische Ansicht eines Filter- moduls mit Emmissionselektrode und Filterschlauch,
- Fig. 7 einen Aufriss eines Elektrodensystems,
- Fig. 8 einen Grundriss gemäss Fig. 7,
- Fig. 9 einen Querschnitt durch einen Filterschlauch,
- Fig. 10 eine Variante gemäss Fig. 9, - Fig. 11 eine Draufsicht auf Emmissionselektroden mit Elektrodenplatten, und
- Fig. 12 eine Variante von Fig. 11. Von einem elektrostatischen Staubabscheider 10 mit nicht sichtbaren Filterschläuchen ist im wesentlichen lediglich das Gehäuse 18 sichtbar. Der bela- dene Gasstrom 20 tritt auf etwa halber Höhe in den Filter ein und verlässt diesen als Reingasstrom 26.
Eine Gaseintrittsöffnung 28 hat einen kegelstumpfförmigen Aufsatz 29, das Reingas 26 verlässt den Filter über einen quaderförmig ausgebildeten Gasaustrittsstutzen 30. Unterhalb des im wesentlichen kubusförmigen Gehäuses 18 ist ein Staubsämmeltrichter 32 ausgebildet.
Im oberen Bereich des Gehäuses 18 ist ein Druckluftrohr 34 montiert, von welchem mehrere Druckleitungen 36 abzweigen. Diese dienen der Abreinigung der Filterschläuche 12 durch Druckluftstösse, auch Pulsjet genannt. Jede Druckleitung 36 führt zu einer Reihe von Filterschläuchen. Dies ist besser in Fig. 4 er- kennbar, oberhalb jeder Öffnung 40 der Filterschläuche 12 ist eine Druckluftdüse 38 ausgebildet.
Die Filterschläuche 12 sind von einem später im Detail dargestellten Filterkorb umgeben, welcher die Emmissionselektrode 16 bildet. Die Filterschläuche 12 selbst sind von einem Innenkorb, welcher ebenfalls später im Detail dargestellt ist, abgestützt.
Die Emmissionselektroden 16 sind in einem Lochboden 42 aufgehängt. Ab einer gewissen Grosse ist es vorteilhaft, die Emmissionselektroden 16 im unte- ren Teil ebenfalls zu fixieren und durch einen Stabilisierungsrahmen mit dem Gehäuse 18 mechanisch und elektrisch zu verbinden.
Für den Aufbau eines elektrischen Feldes sind die Niederschlagselektroden 14 gegenüber dem Gehäuse 18 elektrisch isoliert und mit dem positiven Anschluss einer nicht dargestellten Hochspannungs-Erzeugungsanlage verbunden. Dazu werden die Niederschlagselektroden 14 über einen Rahmen 46 an Tragisolatoren 44 aufgehängt, genauer gesagt muss vor und nach dem Feld ein Rahmen 46 an je zwei Tragisolatoren 44 aufgehängt werden. Auf dem oberen Querträger 48 des Rahmens 46 liegen die Plattentrageisen 50 auf, von welchen zwei fest mit dem Querträger 48 verbunden sind und eine mechanische Verbindung zum anderen Rahmen 46 bilden. Dabei muss zum Lochboden 42 ein Span- nungsabstand eingehalten werden, beispielsweise 150 mm. Die plattenförmigen Niederschlagselektroden 14 werden wie üblich mit Bolzen in den Trageisen 50 eingehängt.
Der Lochboden 42 trennt den Rohgas- vom Reingasbereich. Die Filterschläu- ehe 12 müssen deshalb an den Öffnungen 40 gasdicht aufgehängt sein, damit ein Schlupf verunmöglicht wird.
In analoger Weise, wie in Fig. 4 gezeigt, können die korbförmig ausgebildeten Emmissionselektroden 16 mit den Filterschläuchen 12 auch schräg im Filter- gehäuse 18 eingehängt sein. Weiter kann ein Filtergehäuse 18 derart gestaltet sein, dass eine horizontale Führung der Emmissionselektroden 16 und der Filterschläuche 12 möglich ist.
Fig. 5 zeigt eine als metallischen Filterkorb ausgebildete Emmissionselektrode 16. Zwölf Längsdrähte 52 sind in 2 - 3 cm Abstand innenseitig elektrisch leitend mit einem oberen und einem unteren Ring 54, 56 verbunden. Zwischen diesen Ringen ist je nach der Länge der Korbemmissionselektrode 16 wenigstens ein Verstärkungsring 58 angebracht.
An allen Längsdrähten 52 sind in regelmässigen Abständen radial nach aussen weisende Sprühspitzen 60 angebracht.
In Fig. 6 ist wiederum eine als Filterkorb ausgebildete Emmissionselektrode 16 dargestellt, jedoch mit eingesetztem Filterschlauch 12. Dieser teilweise wegge- schnittene Filterschlauch wird von einem inneren Stützkorb 62 in Zylindermantelform gestützt. Von diesem Stützkorb sind lediglich die Längsstäbe angedeutet, die entsprechenden Innenringe sind einfachheitshalber" weggelassen bzw. nicht sichtbar.
Der Filterkorb und der Stützkorb bilden ein Einbaumodul, welches am Lochboden 42 (Fig. 4) gasdicht befestigt werden kann. Das vorgereinigte Rohgas tritt, wie mit einem Pfeil 70 angedeutet, durch das Filtermedium 64 in den Innenraum 66 des Filterschlauchs 12 und wird dabei von den letzten feinteiligen Staubresten befreit. Über die obere Filteröffnung 68 tritt der Reingasstrom 26 aus dem Filterschlauch 12 aus. Die gasdichte Befestigung des Filterschlauches 12 am Lochboden 42 (Fig.4) verhindert einen Gasschlupf.
In den Fig. 7 und 8 ist, in Ergänzung von Fig.4, das Elektrodensystem gezeigt. Aus Fig. 7 geht deutlich hervor, dass die plattenförmigen Niederschlagselektroden 14 mit Tragisolatoren 44 aufgehängt sind. Auch im unteren Bereich sind die Niederschlagselektroden 14 gegenüber dem Gehäuse 18 (Fig. 4) isoliert. Die als Filterkorb ausgebildeten Emmissionselektroden 16 dagegen sind ab einer gewissen Länge nicht nur am Lochboden 42 befestigt und dadurch elektrisch mit dem die Masse 24 bildenden Filtergehäuse 18 verbunden, sondern auch im unteren Bereich, was mit 24 symbolisiert ist.
Der Lochboden 42 mit den abgedichtet aufgehängten Filterschläuchen 12 trennt den Innenraum des Hybridfilters in einen Rohgasraum 72 und einen oben liegenden Reingasraum 74. Der Übertritt vom Rohgasraum 72 in den Reingasraum 74 kann ausschliesslich über die Filterschläuche 12 erfolgen.
In den Fig. 9 und 10 sind Querschnitte durch Varianten von Filterschläuchen 12 dargestellt. Die geometrischen Querschnittsform, in Fig. 9 quadratisch und in Fig. 10 elliptisch, wird durch den betreffenden Stützkorb 62 festgelegt. Dieser liegt, wie der die Emmissionselektrode 16 bildende Filterkorb bzw. das Filtermedium 64, an der Masse 24. Das Filtermedium 64 besteht zweckmässig aus Gewebematerial, das die Synergien zwischen elektrischer und Gewebefilter- abscheidung bestmöglich nutzt. Es hat einerseits den Feinststaubanteil zu filtrieren, der beispielsweise nach der Vorabscheidung noch in einem Rauchgas enthalten ist, und andererseits bei der Abreinigung dem anhaftenden Staub einen möglichst optimalen Impuls ins elektrische Feld zu geben. Hochwertige ePTFE-Membranfilterschläuche (Polytetrafluorethylen) erfüllen diese Forderung problemlos, da sie den Staub auf der Oberfläche abscheiden.
Fig. 11 zeigt eine Variante von in regelmässigen Abständen k von beispielsweise 200 mm angeordneten Emmissionselektroden 16 mit Filterschläuchen 12. Die Sprühspitzen 60 des Filterkorbes sind lediglich in Richtung der Niederschlagselektroden 14 ausgebildet.
Fig. 12 zeigt ein Beispiel, wie die Emmissionselektroden 16 näher zu den Filterschläuchen 12 gebracht werden können, ohne dass ein Filterkorb um den Filterschlauch herum ausgebildet ist. In einer Reihe sind die Filterschläuche 12 alternierend mit einem kleineren Abstand k von beispielsweise 200 mm und einem grösseren Abstand g von beispielsweise 240 mm angeordnet. Dank dieser paarweisen Anordnung von Filterschläuchen 12 können die Emmissionselektroden 16 beidseits in den Zwischenraum zwischen den Filterschläuchen 12 gebracht werden. Die Sprühspitzen 60 der Emmissionselektroden 16 sind nur in Richtung der Niederschlagselektroden 14 ausgebildet.
In beiden Ausführungsformen gemäss Fig. 11 und 12 ist gezeigt, dass der Abstand a einer Sprühspitze 60 vom nächsten Filterschlauch 12 wesentlich kleiner ist als der Abstand b einer Sprühspitze 60 zur zugeordneten Niederschlagselektrode 14.

Claims

Patentansprüche
1. Elektrostatischer Staubabscheider (10) mit integrierten Filterschläuchen (12), welcher im wesentlichen parallel angeordnete, plattenförmige Nieder- schlagselektroden (14), in den so gebildeten Gassen (72) parallel zu den
Niederschlagselektroden (14) verlaufende Filterschläuche (12), und zwischen diesen Niederschlagselektroden (14) und Filterschläuchen (12) angeordnete Emmissionselektroden (16) umfasst, wobei die Elektroden (14, 16) an Hochspannungs- Erzeugungsanlagen angeschlossen sind, und ein Fil- tergehäuse (18) eine zu den Elektroden (14, 16) führende Gaseintrittsöffnung (28), einen mit dem Innenraum (66) der Filterschläuche kommunizierenden Gasaustrittsstutzen (30) und einen Staubsammeltrichter (32) aufweist,
dadurch gekennzeichnet, dass
die Niederschlagselektroden (14) gegenüber dem Filtergehäuse (18) elektrisch isoliert und mit dem positiven Pol der Hochspannungs- Erzeugungsanlage verbunden sind, der negative Pol der Hochspannungs- Erzeugungs- anläge mit dem die Masse (24) bildenden Filtergehäuse (18) verbunden ist, und die Emmissionselektroden (16) mit den Sprühspitzen (60), wie auch die in deren unmittelbarer Nähe angebrachten Filterschläuche (12) elektrisch leitend mit dem Filtergehäuse (18) verbunden sind.
2. Staubabscheider (10) nach Anspruch 1 , dadurch gekennzeichnet, dass der Abstand (b) der Emmissionselektroden (16) bzw. der Sprühspitzen (60) von der zugeordneten Niederschlagselektrode (14) wenigstens doppelt, vorzugsweise drei- bis zehnmal, grösser ist als der Abstand (a) der Emmissionselektroden (16) bzw. der Sprühspitzen (60) vom nächsten Filterschlauch (12).
3. Staubabscheider (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die parallel zur Niederschlagselektrode (14) in Reihe angeordneten Filterschläuche (12) alternierend kleinere (k) und grössere Abstände (g) haben, wobei die Emmissionselektroden (16) mit Sprühspitzen (60) wenigstens in Richtung der zugeordneten Niederschlagselektrode (14) in der durch die grösseren Abstände (g) gebildeten Lücke angeordnet sind.
4. Staubabscheider (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Filterschläuche (12), auch mit einem inneren Stützkorb (62), in Abstand von einer als gasdurchlässiger, metallischer Filterkorb ausgebildeten Emmissionselektrode (16) mit wenigstens in Richtung der Niederschlagselektroden (14) ausgebildeten Sprühspitzen (60) angeordnet sind.
5. Staubabscheider (10) nach Anspruch 4, dadurch gekennzeichnet, dass der Abstand zwischen den Sprühspitzen (60) und dem Filterschlauch (12) 20 bis 70 mm, vorzugsweisen 30 bis 50 mm, beträgt.
6. Staubabscheider (10) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der innere Stützkorb (62) des Filterschlauchs (12) aus Kunststoff oder Metall besteht und zusammen mit dem Filtermedium (64) am die Masse (24) bildenden Filtergehäuse (18) angeschlossen ist.
7. Staubabscheider (10) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der die Emmissionselektrode (16) bildende äussere Filterkorb und der innere Stützkorb (62) mit einem elektrischen Leiter verbunden sind.
8. Staubabscheider (10) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Filterschlauch (12) mit einem inneren Stützkorb (62) im Querschnitt rund, quadratisch, elliptisch, langrechteckig oder langrechteckig mit halbkreisförmigen Schmalseiten ausgebildet und die als äusserer Filterkorb ausgebildete Emmissionselektrode (16) an die betreffende Form adaptiert ist.
9. Staubabscheider (10) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Filtermedium (64) aus antistatischem Material besteht.
10. Staubabscheider (10) nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass der die Emmissionselektrode (16) bildende Filterkorb und der innengestützte Filterschlauch (12) als Einbaumodul ausgebildet sind.
PCT/CH2002/000081 2001-02-23 2002-02-12 Elektrostatischer staubabscheider mit integrierten filterschläuchen WO2002066167A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/468,374 US20040065201A1 (en) 2001-02-23 2002-02-12 Electrostatic dust separator with integrated filter tubing
EP02710737A EP1361927A1 (de) 2001-02-23 2002-02-12 Elektrostatischer staubabscheider mit integrierten filterschläuchen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3282001 2001-02-23
CH328/01 2001-02-23

Publications (2)

Publication Number Publication Date
WO2002066167A1 true WO2002066167A1 (de) 2002-08-29
WO2002066167A8 WO2002066167A8 (de) 2003-11-06

Family

ID=4500900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2002/000081 WO2002066167A1 (de) 2001-02-23 2002-02-12 Elektrostatischer staubabscheider mit integrierten filterschläuchen

Country Status (3)

Country Link
US (1) US20040065201A1 (de)
EP (1) EP1361927A1 (de)
WO (1) WO2002066167A1 (de)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713026B2 (en) 1998-11-05 2004-03-30 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US6896853B2 (en) 1998-11-05 2005-05-24 Sharper Image Corporation Personal electro-kinetic air transporter-conditioner
US6908501B2 (en) 2002-06-20 2005-06-21 Sharper Image Corporation Electrode self-cleaning mechanism for air conditioner devices
US6911186B2 (en) 1998-11-05 2005-06-28 Sharper Image Corporation Electro-kinetic air transporter and conditioner device with enhanced housing configuration and enhanced anti-microorganism capability
US6972057B2 (en) 1998-11-05 2005-12-06 Sharper Image Corporation Electrode cleaning for air conditioner devices
US6974560B2 (en) 1998-11-05 2005-12-13 Sharper Image Corporation Electro-kinetic air transporter and conditioner device with enhanced anti-microorganism capability
US6984987B2 (en) 2003-06-12 2006-01-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with enhanced arching detection and suppression features
US7056370B2 (en) 2002-06-20 2006-06-06 Sharper Image Corporation Electrode self-cleaning mechanism for air conditioner devices
US7077890B2 (en) 2003-09-05 2006-07-18 Sharper Image Corporation Electrostatic precipitators with insulated driver electrodes
US7220295B2 (en) 2003-05-14 2007-05-22 Sharper Image Corporation Electrode self-cleaning mechanisms with anti-arc guard for electro-kinetic air transporter-conditioner devices
US7285155B2 (en) 2004-07-23 2007-10-23 Taylor Charles E Air conditioner device with enhanced ion output production features
US7291207B2 (en) 2004-07-23 2007-11-06 Sharper Image Corporation Air treatment apparatus with attachable grill
US7311762B2 (en) 2004-07-23 2007-12-25 Sharper Image Corporation Air conditioner device with a removable driver electrode
US7318856B2 (en) 1998-11-05 2008-01-15 Sharper Image Corporation Air treatment apparatus having an electrode extending along an axis which is substantially perpendicular to an air flow path
US7405672B2 (en) 2003-04-09 2008-07-29 Sharper Image Corp. Air treatment device having a sensor
US7517505B2 (en) 2003-09-05 2009-04-14 Sharper Image Acquisition Llc Electro-kinetic air transporter and conditioner devices with 3/2 configuration having driver electrodes
US7517504B2 (en) 2001-01-29 2009-04-14 Taylor Charles E Air transporter-conditioner device with tubular electrode configurations
US7517503B2 (en) 2004-03-02 2009-04-14 Sharper Image Acquisition Llc Electro-kinetic air transporter and conditioner devices including pin-ring electrode configurations with driver electrode
US7638104B2 (en) 2004-03-02 2009-12-29 Sharper Image Acquisition Llc Air conditioner device including pin-ring electrode configurations with driver electrode
US7695690B2 (en) 1998-11-05 2010-04-13 Tessera, Inc. Air treatment apparatus having multiple downstream electrodes
US7724492B2 (en) 2003-09-05 2010-05-25 Tessera, Inc. Emitter electrode having a strip shape
US7767169B2 (en) 2003-12-11 2010-08-03 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
US7833322B2 (en) 2006-02-28 2010-11-16 Sharper Image Acquisition Llc Air treatment apparatus having a voltage control device responsive to current sensing
US7906080B1 (en) 2003-09-05 2011-03-15 Sharper Image Acquisition Llc Air treatment apparatus having a liquid holder and a bipolar ionization device
US7959869B2 (en) 1998-11-05 2011-06-14 Sharper Image Acquisition Llc Air treatment apparatus with a circuit operable to sense arcing
US8043573B2 (en) 2004-02-18 2011-10-25 Tessera, Inc. Electro-kinetic air transporter with mechanism for emitter electrode travel past cleaning member
CN106000648A (zh) * 2016-07-21 2016-10-12 浙江天地环保科技有限公司 一种集成式的湿式电除尘器绝缘装置
CN113908651A (zh) * 2021-11-22 2022-01-11 江苏科技大学 一种钢结构车间焊接烟尘收集净化系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117654779B (zh) * 2023-12-29 2024-06-07 华能辛店发电有限公司 一种火力发电厂除尘装置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007382A1 (en) * 1989-01-03 1990-07-12 Fläkt Ab Filter for separating particles from gases

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915676A (en) * 1972-11-24 1975-10-28 American Precision Ind Electrostatic dust collector
US5217511A (en) * 1992-01-24 1993-06-08 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Enhancement of electrostatic precipitation with electrostatically augmented fabric filtration
SE469466B (sv) * 1992-02-20 1993-07-12 Tl Vent Ab Tvaastegs elektrofilter
US5601791A (en) * 1994-12-06 1997-02-11 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Electrostatic precipitator for collection of multiple pollutants
US5938818A (en) * 1997-08-22 1999-08-17 Energy & Environmental Research Center Foundation Advanced hybrid particulate collector and method of operation
US6152988A (en) * 1997-10-22 2000-11-28 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Enhancement of electrostatic precipitation with precharged particles and electrostatic field augmented fabric filtration
FI108992B (fi) * 1998-05-26 2002-05-15 Metso Paper Inc Menetelmä ja laite hiukkasten erottamiseksi ilmavirrasta
US6224653B1 (en) * 1998-12-29 2001-05-01 Pulsatron Technology Corporation Electrostatic method and means for removing contaminants from gases
US6524369B1 (en) * 2001-09-10 2003-02-25 Henry V. Krigmont Multi-stage particulate matter collector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007382A1 (en) * 1989-01-03 1990-07-12 Fläkt Ab Filter for separating particles from gases

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097695B2 (en) 1998-11-05 2006-08-29 Sharper Image Corporation Ion emitting air-conditioning devices with electrode cleaning features
US6713026B2 (en) 1998-11-05 2004-03-30 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US7695690B2 (en) 1998-11-05 2010-04-13 Tessera, Inc. Air treatment apparatus having multiple downstream electrodes
US6911186B2 (en) 1998-11-05 2005-06-28 Sharper Image Corporation Electro-kinetic air transporter and conditioner device with enhanced housing configuration and enhanced anti-microorganism capability
US6953556B2 (en) 1998-11-05 2005-10-11 Sharper Image Corporation Air conditioner devices
US6972057B2 (en) 1998-11-05 2005-12-06 Sharper Image Corporation Electrode cleaning for air conditioner devices
US6974560B2 (en) 1998-11-05 2005-12-13 Sharper Image Corporation Electro-kinetic air transporter and conditioner device with enhanced anti-microorganism capability
US8425658B2 (en) 1998-11-05 2013-04-23 Tessera, Inc. Electrode cleaning in an electro-kinetic air mover
US7767165B2 (en) 1998-11-05 2010-08-03 Sharper Image Acquisition Llc Personal electro-kinetic air transporter-conditioner
US7404935B2 (en) 1998-11-05 2008-07-29 Sharper Image Corp Air treatment apparatus having an electrode cleaning element
US6896853B2 (en) 1998-11-05 2005-05-24 Sharper Image Corporation Personal electro-kinetic air transporter-conditioner
US7662348B2 (en) 1998-11-05 2010-02-16 Sharper Image Acquistion LLC Air conditioner devices
USRE41812E1 (en) 1998-11-05 2010-10-12 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner
US7976615B2 (en) 1998-11-05 2011-07-12 Tessera, Inc. Electro-kinetic air mover with upstream focus electrode surfaces
US7959869B2 (en) 1998-11-05 2011-06-14 Sharper Image Acquisition Llc Air treatment apparatus with a circuit operable to sense arcing
US7318856B2 (en) 1998-11-05 2008-01-15 Sharper Image Corporation Air treatment apparatus having an electrode extending along an axis which is substantially perpendicular to an air flow path
US7517504B2 (en) 2001-01-29 2009-04-14 Taylor Charles E Air transporter-conditioner device with tubular electrode configurations
US7056370B2 (en) 2002-06-20 2006-06-06 Sharper Image Corporation Electrode self-cleaning mechanism for air conditioner devices
US6908501B2 (en) 2002-06-20 2005-06-21 Sharper Image Corporation Electrode self-cleaning mechanism for air conditioner devices
US7405672B2 (en) 2003-04-09 2008-07-29 Sharper Image Corp. Air treatment device having a sensor
US7220295B2 (en) 2003-05-14 2007-05-22 Sharper Image Corporation Electrode self-cleaning mechanisms with anti-arc guard for electro-kinetic air transporter-conditioner devices
US7371354B2 (en) 2003-06-12 2008-05-13 Sharper Image Corporation Treatment apparatus operable to adjust output based on variations in incoming voltage
US6984987B2 (en) 2003-06-12 2006-01-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with enhanced arching detection and suppression features
US7077890B2 (en) 2003-09-05 2006-07-18 Sharper Image Corporation Electrostatic precipitators with insulated driver electrodes
US7906080B1 (en) 2003-09-05 2011-03-15 Sharper Image Acquisition Llc Air treatment apparatus having a liquid holder and a bipolar ionization device
US7724492B2 (en) 2003-09-05 2010-05-25 Tessera, Inc. Emitter electrode having a strip shape
US7517505B2 (en) 2003-09-05 2009-04-14 Sharper Image Acquisition Llc Electro-kinetic air transporter and conditioner devices with 3/2 configuration having driver electrodes
US7767169B2 (en) 2003-12-11 2010-08-03 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
US8043573B2 (en) 2004-02-18 2011-10-25 Tessera, Inc. Electro-kinetic air transporter with mechanism for emitter electrode travel past cleaning member
US7517503B2 (en) 2004-03-02 2009-04-14 Sharper Image Acquisition Llc Electro-kinetic air transporter and conditioner devices including pin-ring electrode configurations with driver electrode
US7638104B2 (en) 2004-03-02 2009-12-29 Sharper Image Acquisition Llc Air conditioner device including pin-ring electrode configurations with driver electrode
US7897118B2 (en) 2004-07-23 2011-03-01 Sharper Image Acquisition Llc Air conditioner device with removable driver electrodes
US7311762B2 (en) 2004-07-23 2007-12-25 Sharper Image Corporation Air conditioner device with a removable driver electrode
US7291207B2 (en) 2004-07-23 2007-11-06 Sharper Image Corporation Air treatment apparatus with attachable grill
US7285155B2 (en) 2004-07-23 2007-10-23 Taylor Charles E Air conditioner device with enhanced ion output production features
US7833322B2 (en) 2006-02-28 2010-11-16 Sharper Image Acquisition Llc Air treatment apparatus having a voltage control device responsive to current sensing
CN106000648A (zh) * 2016-07-21 2016-10-12 浙江天地环保科技有限公司 一种集成式的湿式电除尘器绝缘装置
CN106000648B (zh) * 2016-07-21 2018-05-22 浙江天地环保科技有限公司 一种集成式的湿式电除尘器绝缘装置
CN113908651A (zh) * 2021-11-22 2022-01-11 江苏科技大学 一种钢结构车间焊接烟尘收集净化系统及方法

Also Published As

Publication number Publication date
US20040065201A1 (en) 2004-04-08
WO2002066167A8 (de) 2003-11-06
EP1361927A1 (de) 2003-11-19

Similar Documents

Publication Publication Date Title
WO2002066167A1 (de) Elektrostatischer staubabscheider mit integrierten filterschläuchen
DE69508810T2 (de) Elektrostatischer Abscheider
EP0216227B1 (de) Elektrodeanordnung für Koronaentladungen
US5217511A (en) Enhancement of electrostatic precipitation with electrostatically augmented fabric filtration
DE3122515C2 (de) Elektrostatische Filteranordnung
US4126434A (en) Electrostatic dust precipitators
DD242568A5 (de) Verfahren und vorrichtung zur entstaubung eines feste oder fluessige partikel in suspension enthaltenden gasstromes mittels eines elektrischen feldes
EP2744597B1 (de) Elektrostatischer feinstaubabscheider
WO2001091908A1 (de) Staubfilter mit filterschlauch, sprühelektrode und niederschlagselektrode
CH673237A5 (de)
DE102011052946B4 (de) Elektroabscheider
DE102011110805B4 (de) Elektronischer Feinstaubabscheider
DE2307508A1 (de) Elektrische ausfaellvorrichtung
CH623240A5 (de)
EP2062649B1 (de) Elektrostatischer Abscheider mit Partikelabweisemittel, Heizungssystem und Verfahren zum Betrieb
EP0345309B1 (de) Elektrostatisches filter für die kontinuierliche abscheidung von in einem gasstrom suspendierten festen oder flüssigen partikeln
DE102006009765B4 (de) Röhrenelektrofilter
DE19841973C2 (de) Aus Sprühelektroden und einer Niederschlagselektrode gebildete Elektro-Filterstufe
WO2004030825A1 (de) Elektrostatisch arbeitender filter und verfahren zum abscheiden von partikeln aus einem gas
DE2216436A1 (de) Staubfiltervorrichtung
DE19521320A1 (de) Einrichtung zur Entfernung von Staubpartikeln aus Abgasen
EP0658380A1 (de) Einrichtung zur Entfernung von Staubpartikeln aus Abgasen
EP0352451A2 (de) Elektrofilter
DE2058685A1 (de) Elektro-Luftfilter
CH621492A5 (en) Gas ioniser for an electrostatic precipitator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002710737

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10468374

Country of ref document: US

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 35/2002 DUE TO A TECHNICAL PROBLEM AT THE TIME OF INTERNATIONAL PUBLICATION, SOME INFORMATION WAS MISSING (81). THE MISSING INFORMATION NOW APPEARS IN THE CORRECTED VERSION.

Free format text: IN PCT GAZETTE 35/2002 DUE TO A TECHNICAL PROBLEM AT THE TIME OF INTERNATIONAL PUBLICATION, SOME INFORMATION WAS MISSING (81). THE MISSING INFORMATION NOW APPEARS IN THE CORRECTED VERSION.

WWP Wipo information: published in national office

Ref document number: 2002710737

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002710737

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP