EP1276811A1 - Bindemittel für anorganische materialpulver zur herstellung metallischer und keramischer formkörper - Google Patents

Bindemittel für anorganische materialpulver zur herstellung metallischer und keramischer formkörper

Info

Publication number
EP1276811A1
EP1276811A1 EP01931625A EP01931625A EP1276811A1 EP 1276811 A1 EP1276811 A1 EP 1276811A1 EP 01931625 A EP01931625 A EP 01931625A EP 01931625 A EP01931625 A EP 01931625A EP 1276811 A1 EP1276811 A1 EP 1276811A1
Authority
EP
European Patent Office
Prior art keywords
weight
binder
component
powders
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01931625A
Other languages
English (en)
French (fr)
Other versions
EP1276811B1 (de
Inventor
Martin Blömacher
Dieter Weinand
Hans Wohlfromm
Johan Herman Hendrik Ter Maat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1276811A1 publication Critical patent/EP1276811A1/de
Application granted granted Critical
Publication of EP1276811B1 publication Critical patent/EP1276811B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • B22F3/1025Removal of binder or filler not by heating only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to binders for inorganic material powders, thermoplastic compositions containing these binders for the production of inorganic moldings, processes for their production, their use and processes for the production of moldings therefrom.
  • thermoplastic materials which, in addition to metal or metal oxide powders, have an organic binder. These are highly filled organic polymer molding compounds. After the injection molding, extrusion or compression of the thermoplastic material into a green body, the organic binder is removed and the debindered green body obtained is sintered.
  • EP-A-0 465 940 relates to thermoplastic compositions of this type for the production of metallic moldings which, in addition to a sinterable powdered metal or a powdered metal alloy or mixtures thereof, contain a mixture of polyoxymethylene homo- or copolymers and a polymer immiscible therewith as a binder , Polyolefins, in particular polyethylene and polypropylene, and also polymers of methacrylic acid esters such as PMMA can be considered as additional polymers. Debinding can be carried out by treatment in a gaseous acidic atmosphere at elevated temperature.
  • DE-A-40 00 278 relates to a method for producing an inorganic sintered molded part.
  • a mixture of a sinterable inorganic powder and polyoxymethylene as a binder is shaped into a green body.
  • the binder is removed by treating the green body with a gaseous atmosphere containing boron trifluoride.
  • the green body treated in this way is then sintered.
  • sintered Capable powders are oxide ceramic powders such as Al 2 O 3 , ZrO 2 , Y 2 O 3 , as well as non-oxide ceramic powders such as SiC, Si 3 N 4 .
  • binders can be their fluidity, which is not always satisfactory, provided that they have been processed into highly filled thermoplastic materials. This may result in insufficient filling of the mold, in particular in the case of complex injection molded parts.
  • the object of the present invention is therefore to provide an improved binder for inorganic material powders which avoids the disadvantages of the known binders.
  • it should be removable without residue during the residual debinding, even in cases where the known binders are inadequate.
  • it should have a high fluidity.
  • a binder B for inorganic material powder containing a mixture of
  • b22 0 to 95% by weight of at least one polymer B22 from C 2 . 8 -01ef_nen, vinyl aromatic monomers, vinyl esters aliphatic C ⁇ . 8- carboxylic acids,
  • the individual components of the binder B are described in more detail below.
  • Polyoxymethylene homo- or copolymers are used as component B1 in an amount of 80 to 99.5% by weight, preferably 85 to 98% by weight, based on the total amount of binder B.
  • the polyoxymethylene homo- or copolymers are known per se.
  • the homopolymers are generally obtained by polymerizing formaldehyde
  • Polyoxymethylene copolymers preferred according to the invention contain, in addition to the repeating units -OCH 2 - up to 50, preferably 0.1 to 20 and in particular 0.3 to 10 mol% of repeating units of the formula -O-CR'R ⁇ CR ⁇ 4 - ( R 5 -) n -, where R 1 to R 4 independently of one another denote hydrogen atoms, C -alkyl radicals or halogen-substituted C -alkyl radicals.
  • R 5 denotes a unit CH 2 -, CH 2 O-, a C-alkyl or halogen-substituted C-alkyl-substituted methylene group or a corresponding oxymethylene group.
  • n has a value in the range from 0 to 3.
  • groups can preferably be introduced into the copolymers by ring opening of cyclic ethers.
  • Preferred cyclic ethers are mentioned in EP-A-0 465 940. Examples include ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, 1,3-butylene oxide, 1,3-dioxane, 1,3-dioxolane and dioxepane.
  • linear oligo- or polyformals such as polydioxolane or polydioxepane can be mentioned as comonomers.
  • oxymethylene terpolymers can be used, which can be obtained, for example, by reacting trioxane with one of the cyclic ethers described above and with a bisglycidyl compound, as described in EP-A-0 465 940.
  • Preferred monomers of this type are ethylene diglycide, diglycidyl ether and diether from glycidylene and formaldehyde, dioxane or trioxane in a molar ratio of 2: 1 and diether from 2 mol of glycidyl compound and 1 mol of an aliphatic diol with 2 to 8 carbon atoms, such as diglydyl ether from ethylene glycol, 1,4-butanediol, 1,3-butanediol, cyclobutane-1,3-diol, 1,2-propanediol and cyclohexane-1,4-diol.
  • Processes for the preparation of the polyoxymethylene homopolymers and copolymers are known to the person skilled in the art.
  • the preferred polyoxymethylene homo- or copolymers have melting points of at least 150 ° C. and molecular weights (weight average) in the range from 5,000 to 150,000, preferably from 7,000 to 60,000.
  • component B2 Polymer components which are immiscible with component B1 are used as component B2 in an amount of 0.5 to 20% by weight, preferably 2 to 15% by weight, based on the binder B.
  • the polymer system B2 in turn is composed of 50 to 100% by weight, preferably 10 to 90% by weight, of polytetrahydrofiiran as component B21 and 0 to 95% by weight, preferably 10 to 90% by weight, of at least one polymer B22 C 2 - 8 -Olef ⁇ nen, vinyl aromatic monomers, vinyl esters of aliphatic -s-carboxylic acids, vinyl alkyl ethers or C ⁇ _ 8 Ci. 12 alkyl (meth) acrylates built. Mixtures of the monomers can also be present in polymer B22. The quantities relate to the polymer system B2.
  • the polytetrahydrofiiran used as component B21 is known per se and can be obtained by known processes.
  • the polytetrahydrofiiran preferably has a melting point of at least 15 ° C. and a molecular weight (weight average) in the range from 500 to 2500, preferably from 1000 to 2000.
  • Component B22 is preferably selected from polymers of C 2 . 8 olefins, preferably C 2-4 olefins such as ethylene and propylene, vinylaromatic monomers such as styrene and ⁇ -methyl styrene, vinyl esters of aliphatic carboxylic acids such as 8 C ⁇ - acetate and vinyl propionate, vinyl -s-Alky lethern Vinylmethy as ethers and ether Vinylethy and C ⁇ . i 2 alkyl (meth) acrylates such as methyl methacrylate or ethyl methacrylate.
  • Component B22 is preferably at least one polymer of ethylene, propylene or ethyl methacrylate.
  • the polymers of component B22 can be prepared by polymerization processes known per se, preferably by radical means, for example by emulsion, bead, solution or bulk polymerization.
  • suitable initiators are radical initiators such as peroxy compounds and azo compounds, the amounts of initiator generally being in the range from 0.001 to 0.5 wt .-%, based on the monomers.
  • Suitable polymerization processes are described in EP-A-0 465 940.
  • the binders B according to the invention are used in thermoplastic compositions for the production of inorganic moldings. These masses contain
  • the inorganic sinterable powder A can be selected from all known suitable inorganic sinterable powders. It is preferably selected from metal powders, metal alloy powders, metal carbonyl powders, ceramic powders and mixtures thereof.
  • Metals that can be in powder form include iron, cobalt, nickel and silicon. Alloys are, for example, light metal alloys based on aluminum and titanium as well as alloys of copper or bronze. Hard metals such as tungsten carbide, boron carbide or titanium nitride can also be used in combination with metals such as cobalt and nickel. The latter can be used in particular in the production of metal-bound hard cutting tools (so-called cermets). Suitable inorganic powders are also oxide ceramic powders, such as Al 2 O 3 , ZrO 2 , Y 2 O 3 , but also non-oxide ceramic powders such as SiC, Si 3 N 4 .
  • Suitable powders are described, for example, in EP-A-0465 940, EP-A-0 710 516, DE-A-39 36 869, DE-A-40 00 278 and EP-A-0 114 746 and the literature cited therein.
  • the grain sizes of the powders are preferably 0.1 to 50 ⁇ m, particularly preferably 0.2 to 8 ⁇ m.
  • the metal powder, metal alloy powder, metal carbonyl powder or ceramic powder can also be used in a mixture. Because of the high flowability of the binder according to the invention, a high loading of the binder with the powder A is possible without the flowability being impaired too much.
  • the dispersing agent optionally present as component C can be selected from known dispersing agents. Examples are oligomeric polyethylene oxide with an average molecular weight of 200 to 600, stearic acid, stearic acid amide, hydroxystearic acid, fatty alcohols,
  • Polyisobutylene is particularly preferably used in an amount of 1 to 6% by volume, based on components A, B and C.
  • thermoplastic compositions can also contain customary additives and processing aids which have a favorable effect on the theological properties of the mixtures during shaping.
  • thermoplastic compositions according to the invention are produced by melting component B and mixing in components A and optionally C.
  • component B can be melted in a twin-screw extruder at temperatures of preferably 150 to 220 ° C., in particular 170 to 200 ° C.
  • Component A is then metered into the melt flow of component B in the required amount at temperatures in the same range.
  • Component A advantageously contains the dispersing agent (s) C on the surface.
  • a particularly preferred device for metering component A contains, as an essential element, a screw conveyor located in a heatable metal cylinder, which demands component A into the melt of component B.
  • thermoplastic compositions according to the invention can be used to produce moldings from powder A.
  • These are, in particular, metallic or ceramic shaped bodies, and the metallic shaped bodies can also be shaped bodies made of metal alloys.
  • the present invention also relates to a process for the production of moldings from the powders A described
  • thermoplastic composition as described above, by injection molding, extrusion or compression to form a green body
  • the usual screw and piston injection molding machines can be used for the deformation by injection molding.
  • the deformation is generally carried out at temperatures of 175 to 200 ° C and pressures of 3,000 to 20,000 kPa in molds which have a temperature of 60 to 120 ° C.
  • the extrusion to tubes, bars and profiles is preferably carried out at temperatures of 170 to 200 ° C.
  • the green bodies obtained after the deformation are treated with a gaseous, acidic atmosphere.
  • this treatment is preferably carried out at temperatures in the range from 20 to 180 ° C. over a period of preferably 0.1 to 24 hours, particularly preferably 0.5 to 12 hours.
  • Suitable acids for the treatment in this first stage of the process according to the invention are, for example, inorganic acids which are already gaseous at room temperature, but at least evaporable at the treatment temperature. Examples are hydrohalic acids and nitric acid.
  • Suitable organic acids are those which have a boiling point of less than 130 ° C. under normal pressure, such as formic acid, acetic acid or trifluoroacetic acid and mixtures thereof.
  • BF 3 and its adducts with inorganic ethers can also be used as the acid.
  • the required treatment time depends on the treatment temperature and the concentration of the acid in the treatment atmosphere as well as on the size of the molded body.
  • a carrier gas is used, this is generally passed through the acid beforehand and loaded with it.
  • the carrier gas loaded in this way is then brought to the treatment temperature, which is expediently higher than the loading temperature, in order to avoid condensation of the acid.
  • the acid is preferably mixed into the carrier gas via a metering device and the mixture is heated to such an extent that the acid can no longer condense.
  • the acid treatment is preferably carried out until the polyoxymethylene fraction of the binder has been removed by at least 80% by weight, preferably at least 90% by weight. This can be checked, for example, on the basis of weight loss.
  • the product thus obtained is then preferably heated for a period of 0.1 to 12, particularly preferably 0.3 to 6 hours to a temperature of preferably 250 to 700 ° C., particularly preferably 250 to 600 ° C., around the rest of the binder present to remove completely.
  • the product thus freed from the binder can be converted into the desired shaped body, in particular metallic or ceramic shaped body, in a customary manner by sintering.
  • thermoplastic compositions according to the invention also have the advantage that the green bodies or metallic or ceramic shaped bodies produced therefrom are free of cracks and pores even with large wall thicknesses.
  • Another advantage is that the binder can be removed in two stages. First, the polyoxymethylene at relatively low temperatures through hydrolytic degradation the polyoxymethylene is removed at relatively low temperatures by hydrolytic degradation, leaving most of the polymer system B2. The products obtained afterwards (white bodies) are relatively stable and can be handled or transported without any problems. The remainder of the polymer system B2 can then be removed at elevated temperatures.
  • the mass 1B had the following composition:
  • the second mass 2B had the following composition:
  • thermoplastic compositions according to the invention were tested with a so-called flow spiral. It is a tool with a spiral flow path.
  • This injection molding tool was sprayed on a commercially available injection molding machine (Engel cc 90) under standard conditions.
  • the spray conditions such as cylinder and nozzle temperature, plasticizing time, injection speed and mold temperature were kept unchanged in order to be able to determine the path of the material covered under identical conditions. This distance (in cm) is therefore a practical test for the flowability of the material under production conditions.
  • Table 2 The results are summarized in Table 2 below.
  • thermoplastic compositions according to the invention With the thermoplastic compositions according to the invention, a clear improvement in the flowability could be achieved even under conditions similar to production. With the thermoplastic materials that contained PTHF, a better shaping of the flow spiral was also found. Examination of deposits in the sintering furnace

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

Bindemittel für anorganische Materialpulver zur Herstellung metallischer und keramischer Formkörper
Die vorliegende Erfindung betrifft Bindemittel für anorganische Materialpulver, diese Bindemittel enthaltende thermoplastische Massen für die Herstellung anorganischer Formkörper, Verfahren zu ihrer Herstellung, ihre Verwendung und Verfahren zur Herstellung von Formkörpern daraus.
und keramische Formkörper können durch Spritzgießen von thermoplastischen Massen hergestellt werden, die neben Metall- oder Metalloxidpulvern ein organisches Bindemittel aufweisen. Es handelt sich um hochgefüllte organische Polymerformmassen. Nach dem Spritzgießen, Extrudieren oder Verpressen der thermoplastischen Masse zu einem Grünkörper wird das organische Bindemittel entfernt, und der erhaltene entbinderte Grünkörper wird gesintert.
EP-A-0 465 940 betrifft derartige thermoplastische Massen für die Herstellung metallischer Formkörper, die neben einem sinterbaren pulverförmigen Metall oder einer pulver- förmigen Metalllegierung oder deren Mischungen eine Mischung aus Polyoxymethylen- homo- oder copolymerisaten und einem damit nicht mischbaren Polymerisat als Bindemittel enthalten. Als zusätzliches Polymerisat kommen Polyolefine, insbesondere Polye- thylen und Polypropylen, wie auch Polymerisate von Methacrylsäureestern wie PMMA in Betracht. Die Entbinderung kann durch Behandlung in einer gasförmigen säurehaltigen Atmosphäre bei erhöhter Temperatur erfolgen.
DE-A-40 00 278 betrifft ein Verfahren zur Herstellung eines anorganischen Sinterformteils. Dazu wird ein Gemisch aus einem sinterbaren anorganischen Pulver und Polyoxymethylen als Bindemittel zu einem Grünkörper verformt. Das Bindemittel wird durch Be- handeln des Grünkörpers mit einer gasförmigen, Bortrifluorid enthaltenden Atmosphäre entfernt. Anschließend wird der so behandelte Grünkörper versintert. Beispiele für sinter- fähige Pulver sind oxidische Keramikpulver wie Al2O3, ZrO2, Y2O3, wie auch nicht-oxidische Keramikpulver wie SiC, Si3N4.
Die verwendeten Bindemittelsysteme lassen sich jedoch nicht in allen Fällen völlig rück- standsfrei entfernen.
Ein weiterer Nachteil der bekannten Bindemittel kann in ihrer nicht immer zufriedenstellenden Fließfahigkeit liegen, sofern sie zu hoch gefüllten thermoplastischen Massen verarbeitet wurden. Insbesondere bei komplexen Spritzgußteilen kann sich hierdurch unter Um- ständen eine mangelnde Ausfüllung der Form ergeben.
Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung eines verbesserten Bindemittels für anorganische Materialpulver, das die Nachteile der bekannten Bindemittel vermeidet. Insbesondere soll es bei der Restentbinderung rückstandsfrei entfernbar sein, auch in den Fällen, in denen die bekannten Bindemittel unzureichend sind. Zudem soll es eine hohe Fließfahigkeit aufweisen.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Bindemittel B für anorganische Materialpulver, enthaltend eine Mischung aus
bl 80 bis 99,5 Gew.-% eines Polyoxymethylenhomo- oder copolymerisats Bl und
b2 0,5 bis 20 Gew.-% eines mit Bl nicht mischbaren Polymersystems B2 aus
b21 5 bis 100 Gew.-% Polytetrahydrofiiran B21 und
b22 0 bis 95 Gew.-% mindestens eines Polymers B22 aus C2.8-01ef_nen, vinyl- aromatischen Monomeren, Vinylestern aliphatischer Cι.8-Carbonsäuren,
Vinyl-Cϊ-g-alky lethern oder Cι_ι2-Alkyl(meth)acrylaten, oder Gemischen davon.
Es wurde erfindungsgemäß gefunden, daß durch Mitverwendung von Polytetrahydrofiiran in Polyoxymethylenhomo- oder copolymerisate enthaltenden Bindemitteln diese eine verbesserte Fließfähigkeit aufweisen und bei der Entbinderung rückstandsfrei entfernt werden können. So lassen sich insbesondere komplex geformte Spritzgußkörper problemlos herstellen und entbindern. Der Aufwand für eine Reinigung der Sinteröfen entfällt.
Die einzelnen Komponenten des Bindemittels B werden im folgenden näher beschrieben.
Als Komponente Bl werden Polyoxymethylenhomo- oder copolymerisate in einer Menge von 80 bis 99,5 Gew.-%, vorzugsweise 85 bis 98 Gew.-%, bezogen auf die Gesamtmenge des Bindemittels B, eingesetzt.
Die Polyoxymethylenhomo- oder copolymerisate sind an sich bekannt. Die Homopolymere werden im allgemeinen durch Polymerisation von Formaldehyd
oder Trioxan hergestellt, vorzugsweise in Gegenwart von geeigneten Katalysatoren.
Erfindungsgemäß bevorzugte Polyoxymethylencopolymere enthalten neben den wiederkehrenden Einheiten -OCH2- noch bis zu 50, vorzugsweise 0,1 bis 20 und insbesondere 0,3 bis 10 mol-% an wiederkehrenden Einheiten der Formel -O-CR'R^CR^4- (R5-)n-, wobei R1 bis R4 unabhängig voneinander Wasserstoffatome, C -Alkylreste oder Halogen- substituierte C -Alkylreste bedeuten. R5 bedeutet eine Einheit CH2-, CH2O-, eine durch C^-Alkyl oder Halogen substituierte C -Alkyl-substituierte Methylengruppe oder eine entsprechende Oxymethylengruppe. n hat einen Wert im Bereich von 0 bis 3. Vorzugsweise können diese Gruppen durch Ringöffnung von zyklischen Ethern in die Copolymere eingeführt werden. Bevorzugte zyklische Ether sind in EP-A-0 465 940 genannt. Beispiele dafür sind Ethylenoxid, 1 ,2-Propylenoxid, 1 ,2-Butylenoxid, 1,3-Butylenoxid, 1,3-Dioxan, 1,3-Dioxolan und Dioxepan. Zudem können lineare Oligo- oder Polyformale wie Polydi- oxolan oder Polydioxepan als Comonomere genannt werden. Zudem können Oxymethy- lenterpolymerisate eingesetzt werden, die beispielsweise durch Umsetzung von Trioxan mit einem der vorstehend beschriebenen zyklischen Ether und mit einer Bisglycidyl-Ver- bindung erhalten werden können, wie sie in EP-A-0 465 940 beschrieben sind. Bevorzugte Monomere dieser Art sind Ethylendiglycid, Diglycidylether und Diether aus Glycidylen und Formaldehyd, Dioxan oder Trioxan im Molverhältnis 2:1 sowie Diether aus 2 Mol Glycidylverbindung und 1 Mol eines aliphatischen Diols mit 2 bis 8 C-Atomen wie Digly- dy lether von Ethylenglycol, 1,4-Butandiol, 1,3-Butandiol, Cyclobutan-l,3-diol, 1,2-Pro- pandiol und Cyclohexan-l,4-diol. Verfahren zur Herstellung der Polyoxymethylenhomo- und -copolymerisate sind dem Fachmann bekannt.
Die bevorzugten Polyoxymethylenhomo- oder -copolymerisate haben Schmelzpunkte von mindestens 150°C und Molekulargewichte (Gewichtsmittelwert) im Bereich von 5.000 bis 150.000, vorzugsweise von 7.000 bis 60.000.
Als Komponente B2 werden mit der Komponente Bl nicht mischbare Polymersysteme in einer Menge von 0,5 bis 20 Gew.-%, bevorzugt 2 bis 15 Gew.-%, bezogen auf das Binde- mittel B eingesetzt.
Das Polymersystem B2 wiederum ist aus 50 bis 100 Gew.-%, vorzugsweise 10 bis 90 Gew.-%, Polytetrahydrofiiran als Komponente B21 und 0 bis 95 Gew.-%, vorzugsweise 10 bis 90 Gew.-%, mindestens eines Polymers B22 aus C2-8-Olefιnen, vinylaromatischen Monomeren, Vinylestem aliphatischer -s-Carbonsäuren, Vinyl-Cι_8-Alkylethern oder Ci. 12-Alkyl(meth)acrylaten aufgebaut. Es können auch Gemische der Monomere im Polymer B22 vorliegen. Die Mengen beziehen sich dabei auf das Polymersystem B2.
Das als Komponente B21 eingesetzte Polytetrahydrofiiran ist an sich bekannt und kann nach bekannten Verfahren erhalten werden.
Vorzugsweise hat das Polytetrahydrofiiran einen Schmelzpunkt von mindestens 15°C und ein Molekulargewicht (Gewichtsmittelwert) im Bereich von 500 bis 2500, vorzugsweise von 1000 bis 2000.
Die Komponente B22 ist bevorzugt ausgewählt aus Polymeren von C2.8-Olefinen, bevorzugt C2-4-Olefinen wie Ethylen und Propylen, vinylaromatischen Monomeren wie Styrol und α-Methylstyrol, Vinylestem aliphatischer Cι-8-Carbonsäuren wie Vinylacetat und Vinylpropionat, Vinyl- -s-Alky lethern wie Vinylmethy lether und Vinylethy lether und C\. i2-Alkyl(meth)acrylaten wie Methylmethacrylat oder Ethylmethacrylat. Bevorzugt ist die Komponente B22 mindestens ein Polymer von Ethylen, Propylen oder Ethylmethacrylat.
Die Polymere der Komponente B22 können nach an sich bekannten Polymerisationsverfahren, vorzugsweise radikalisch, beispielsweise durch Emulsions-, Perl-, Lösungs- oder Substanzpolymerisation hergestellt werden. Als Initiator kommen, abhängig von den Monomeren und dem Polymerisationstyp, Radikal-Initiatoren wie Peroxyverbindungen und Azoverbindungen in Betracht, wobei die Initiatormengen im allgemeinen im Bereich von 0,001 bis 0,5 Gew.-%, bezogen auf die Monomeren, liegen. Geeignete Polymerisationsverfahren sind in EP-A-0 465 940 beschrieben.
Die erfindungsgemäßen Bindemittel B werden in thermoplastischen Massen für die Her- Stellung anorganischer Formkörper eingesetzt. Diese Massen enthalten
a 40 bis 85 Vol-%, vorzugsweise 45 bis 70 Vol-%, mindestens eines anorganischen sinterbaren Pulvers A,
b 15 bis 60 Vol-%, vorzugsweise 29 bis 54 Vol-%, mindestens eines Bindemittels B, wie es vorstehend beschrieben ist,
c 0 bis 7 Vol-%, vorzugsweise 1 bis 4 Vol-%, mindestens eines Dispergierhilfs- mittels C,
wobei die Summe der Mengen der Komponenten A, B und C 100 Vol-% ergibt.
Das anorganische sinterbare Pulver A kann aus allen bekannten geeigneten anorganischen sinterbaren Pulvern ausgewählt werden. Vorzugsweise ist es ausgewählt aus Metallpul- vern, Metalllegierungspulvern, Metallcarbonylpulvem, keramischen Pulvern und Gemischen davon.
Als Metalle, die in Pulverform vorliegen können, seien beispielsweise Eisen, Kobalt, Nickel und Silicium genannt. Legierungen sind beispielsweise Leichtmetalllegierungen auf der Basis von Aluminium und Titan sowie Legierungen von Kupfer oder Bronze. Auch Hartmetalle wie Wolframcarbid, Borcarbid oder Titannitrid kommen in Kombination mit Metallen wie Kobalt und Nickel in Betracht. Letztere können insbesondere bei der Herstellung von metallgebundenen Hartschneidewerkzeugen (sogenannten Cermets) eingesetzt werden. Geeignete anorganische Pulver sind ferner oxidische Keramikpulver, wie Al2O3, Zr02, Y2O3, aber auch nicht oxidische Keramikpulver wie SiC, Si3N4. Geeignete Pulver sind beispielsweise in EP-A-0465 940, EP-A-0 710 516, DE-A-39 36 869, DE-A-40 00 278 und EP-A-0 114 746 sowie der darin zitierten Literatur beschrieben.
Die Korngrößen der Pulver betragen vorzugsweise 0,1 bis 50 μm, besonders bevorzugt 0,2 bis 8 μm. Die Metallpulver, Metalllegierungspulver, Metallcarbonylpulver oder keramischen Pulver können auch im Gemisch eingesetzt werden. Aufgrund der hohen Fließfähigkeit des erfindungsgemäßen Bindemittels ist eine hohe Beladung des Bindemittels mit dem Pulver A möglich, ohne daß die Fließfähigkeit zu stark beeinträchtigt wird.
Das als Komponente C gegebenenfalls vorliegende Dispergierhilfsmittel kann aus bekannten Dispergierhilfsmitteln ausgewählt sein. Beispiele sind oligomeres Polyethylenoxid mit einem mittleren Molekulargewicht von 200 bis 600, Stearinsäure, Stearinsäureamid, Hydroxystearinsäure, Fettalkohole,
Fettalkoholsulfonate und Blockcopolymere von Ethylen- und Propylenoxid, wie auch besonders bevorzugt Polyisobutylen. Besonders bevorzugt wird Polyisobutylen in einer Menge von 1 bis 6 Vol-%, bezogen auf die Komponenten A, B und C, eingesetzt.
Zusätzlich können die thermoplastischen Massen auch übliche Zusatzstoffe und Verarbeitungshilfsmittel, die die Theologischen Eigenschaften der Mischungen bei der Verformung günstig beeinflussen, enthalten.
Die Herstellung der erfindungsgemäßen thermoplastischen Massen erfolgt erfindungsge- maß durch Aufschmelzen der Komponente B und Einmischen der Komponenten A und gegebenenfalls C. Beispielsweise kann die Komponente B in einem Zweischneckenextruder bei Temperaturen von vorzugsweise 150 bis 220°C, insbesondere 170 bis 200°C aufgeschmolzen werden. Die Komponente A wird anschließend bei Temperaturen im gleichen Bereich in der erforderlichen Menge zu dem Schmelzestrom der Komponente B dosiert. Vorteilhafterweise enthält die Komponente A auf der Oberfläche das oder die Dispergierhilfsmittel C.
Eine besonders bevorzugte Vorrichtung zur Dosierung der Komponente A enthält als wesentliches Element eine in einem heizbaren Metalizylinder befindliche Förderschnecke, die die Komponente A in die Schmelze der Komponente B fordert.
Das vorstehend beschriebene Verfahren hat gegenüber der Mischung der Komponenten bei Raumtemperatur und anschließender Extrusion unter Temperaturerhöhung den Vorteil, daß eine Zersetzung des als Bindemittel eingesetzten Polyoxymethylens infolge der bei dieser Variante auftretenden hohen Scherkräfte weitgehend vermieden wird. Die erfindungsgemäßen thermoplastischen Massen können zur Herstellung von Formkörpern aus dem Pulver A verwendet werden. Dabei handelt es sich insbesondere um metallische oder keramische Formkörper, wobei es sich bei den metallischen Formkörpern auch um Formkörper aus Metalllegierungen handeln kann.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung von Formkörpern aus den beschriebenen Pulvern A durch
1) Verformen einer thermoplastischen Masse, wie sie vorstehend beschrieben ist, durch Spritzgießen, Extrudieren oder Verpressen zu einem Grünkörper,
2) Entfernen des Bindemittels durch Behandeln des Grünkörpers bei einer Temperatur im Bereich von 20 bis 180°C für 0,1 bis 24 Stunden mit einer gasförmigen säurehaltigen Atmosphäre,
3) nachfolgendes Erhitzen für 0,1 bis 12 Stunden auf eine Temperatur im Bereich von 250 bis 500°C und
4) nachfolgend Sintern des so erhaltenen entbinderten Grünkörpers.
Für die Verformung durch Spritzguß können die üblichen Schnecken- und Kolbenspritzgußmaschinen eingesetzt werden. Die Verformung erfolgt im allgemeinen bei Temperaturen von 175 bis 200°C und Drücken von 3.000 bis 20.000 kPa in Formen, die eine Temperatur von 60 bis 120°C aufweisen.
Die Extrusion zu Rohren, Stangen und Profilen erfolgt vorzugsweise bei Temperaturen von 170 bis 200°C.
Zur Entfernung des Bindemittels werden die nach der Verformung erhaltenen Grünkörper mit einer gasförmigen, säurehaltigen Atmosphäre behandelt. Entsprechende Verfahren sind beispielsweise in DE-A-39 29 869 und DE-A-40 00 278 beschrieben. Diese Behandlung erfolgt erfindungsgemäß vorzugsweise bei Temperaturen im Bereich von 20 bis 180°C über einen Zeitraum von vorzugsweise 0,1 bis 24 Stunden, besonders bevorzugt 0,5 bis 12 Stunden. Geeignete Säuren für die Behandlung in dieser ersten Stufe des erfindungsgemäßen Verfahrens sind beispielsweise anorganische, bei Raumtemperatur bereits gasförmige, zumindest aber bei der Behandlungstemperatur verdampfbare Säuren. Beispiele sind Halogenwasserstoffsäuren und Salpetersäure. Geeignete organische Säuren sind solche, die bei Normaldruck eine Siedetemperatur von weniger als 130°C aufweisen, wie Ameisensäure, Essigsäure oder Trifluoressigsäure und deren Mischungen.
Weiterhin können als Säure BF3 und dessen Addukte an anorganische Ether eingesetzt werden. Die erforderliche Behandlungsdauer hängt von der Behandlungstemperatur und der Konzentration der Säure in der Behandlungsatmosphäre wie auch von der Größe des Formkörpers ab.
Wird ein Trägergas verwendet, so wird dies im allgemeinen vorher durch die Säure geleitet und mit dieser beladen. Das so beladene Trägergas wird dann auf die Behandlungstempe- ratur gebracht, die zweckmäßigerweise höher als die Beladungstemperatur ist, um eine Kondensation der Säure zu vermeiden. Bevorzugt wird die Säure über eine Dosiereinrichtung dem Trägergas zugemischt und die Mischung soweit erwärmt, daß die Säure nicht mehr kondensieren kann.
Die Säurebehandlung wird vorzugsweise solange durchgeführt, bis der Polyoxymethylen- anteil des Bindemittels zumindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-% entfernt ist. Dies läßt sich beispielsweise anhand der Gewichtsabnahme überprüfen. Anschließend wird das so erhaltene Produkt vorzugsweise für 0,1 bis 12, besonders bevorzugt 0,3 bis 6 Stunden auf eine Temperatur von vorzugsweise 250 bis 700°C, besonders bevor- zugt 250 bis 600 °C erhitzt, um den vorhandenen Rest des Bindemittels vollständig zu entfernen.
Das so vom Bindemittel befreite Produkt kann in üblicher Weise durch Sintern in den gewünschten Formkörper, insbesondere metallischen oder keramischen Formkörper über- führt werden.
Die erfindungsgemäßen thermoplastischen Massen weisen neben der rückstandsfreien Ent- binderung, der hohen Fließfähigkeit und hohen Beladbarkeit mit den Pulvern A zudem den Vorteil auf, daß die daraus hergestellten Grünkörper bzw. metallischen oder keramischen Formkörper auch bei großen Wandstärken frei von Rissen und Poren sind. Zudem liegt ein Vorteil darin, daß die Entfernung des Bindemittels in zwei Stufen erfolgen kann. Zunächst wird das Polyoxymethylen bei relativ niedrigen Temperaturen durch hydrolytischen Abbau wird das Polyoxymethylen bei relativ niedrigen Temperaturen durch hydrolytischen Abbau entfernt, wobei der größte Teil des Polymersystems B2 verbleibt. Die danach erhaltenen Produkte (Weißkörper) sind relativ stabil und können problemlos gehandhabt oder transportiert werden. Die Entfernung des Restes des Polymersystems B2 kann dann bei erhöh- ten Temperaturen erfolgen.
Die Erfindung wird nachstehend anhand von Beispielen näher erläutert.
Beispiele
In den nachfolgenden Beispielen wurden unterschiedliche Polyoxymethylen enthaltende Bindemittel eingesetzt. Die Masse 1B wies die folgende Zusammensetzung auf:
56, 5 Vol-% einer Mischung aus 92 Gew.-% Carbonyleisen und 8 Gew.-%
Carbonylnickel
37,3 Vol-% Polyoximethylen
6,2 Vol-% Polyolefin
Die zweite Masse 2B wies die folgende Zusammensetzung auf:
64,8 Vol-% eines vorlegierten Pulvers der Legierung 316L
32.5 Vol-% Polyoximethylen
2,7 Vol-% Polyolefin
Zudem wurde folgende Masse 3B untersucht, die zur Herstellung von Keramiken dient:
81.6 Gew.-% Zirkonoxid
14,2 Gew.-% Polyoximethylen
1,7 Gew.-% Dispergator In diesen Basismaterialien nach dem Stand der Technik wurden in den folgenden Versuchen unterschiedliche Mengen der neben Polyoxymethylen vorliegenden Polymersysteme durch Polytetrahydrofiiran ersetzt. In den nachfolgenden Tabellen ist angegeben, welcher Gewichtsanteil (in Gew.-%) der Menge des neben Polyoxymethylen vorliegenden Polymersystems durch Polytetrahydrofuran (PTHF) ersetzt wurde. Sodann wurde die Fließfahigkeit bestimmt. Als Maß für die Fließfähigkeit wurde der sogenannte Schmelzindex (MFI) herangezogen. Der Schmelzindex wurde bei 190°C mit einer Belastung von 21,9 kg bzw. 10 kg in Nr. V9 und 10 bestimmt.
Die unterschiedlichen Zusammensetzungen sind in der nachstehenden Tabelle aufgeführt.
Tabelle 1
Die Ergebnisse aus Tabelle 1 zeigen, daß die Fließfahigkeit um ein Mehrfaches steigt, wenn die gleiche oder eine ähnlich große Menge des neben Polyoxymethylen vorliegenden Polymersystems durch PTHF ersetzt wird. Untersuchung der Fließfähigkeit
Um einen möglichst praxisnahen Vergleich der Fließfähigkeit und damit der Verarbeitbar- keit der erfindungsgemäßen thermoplastischen Massen zu ermöglichen, wurde ein Teil der vorstehenden Massen mit einer sogenannten Fließspirale getestet. Dabei handelt es sich um ein Werkzeug mit einem spiralförmigen Fließweg. Dieses Spritzgußwerkzeug wurde auf einer handelsüblichen Spritzgußmaschine (Engel cc 90) unter Standardbedingungen abgespritzt. Dabei wurden die Spritzbedingungen wie Zylinder- und Düsentemperatur, Plastifi- zierzeit, Einspritzgeschwindigkeit und Werkzeugtemperatur unverändert gehalten, um den unter identischen Bedingungen zurückgelegten Weg des Materials bestimmen zu können. Dieser zurückgelegte Weg (in cm) ist somit ein praxisnaher Test für die Fließfähigkeit des Materials unter Produktionsbedingungen. Die Ergebnisse sind in der nachstehenden Tabelle 2 zusammengefaßt.
Tabelle 2
Mit den erfindungsgemäßen thermoplastischen Massen konnte auch unter produktionsähnlichen Bedingungen eine deutliche Verbesserung der Fließfahigkeit erreicht werden. Mit den thermoplastischen Massen, die PTHF enthielten, war zudem ein besseres Ausformen der Fließspirale festzustellen. Untersuchung von Ablagerungen im Sinterofen
Hervorgerufen durch die polymeren Bestandteile der Massen IB und 2B, die während der katalytischen Entbinderung nicht angegriffen werden, kann es beim Aufheizen der spritzgegossenen und entbinderten Teile in Sinterofen mitunter zu erheblichen Verschmutzungen im Sinterofen kommen.
Verantwortlich dafür sind wahrscheinlich die nicht katalytisch entbinderbaren Komponen- ten der Massen IB und 2B. Eine solche Verschmutzung trat zum Beispiel mitunter in den Abgasventilen des Ofens auf.
Durch die Verwendung von PTHF als Polymer neben POM konnten solche Verschmutzungen weitestgehend vermieden werden.

Claims

Patentansprüche
1. Bindemittel B für anorganische Materialpulver, enthaltend eine Mischung aus
bl 80 bis 99,5 Gew.-% eines Polyoxymethylenhomo- oder -copolymerisats B 1 und
b2 0,5 bis 20 Gew.-% eines mit Bl nicht mischbaren Polymersystems B2 aus
b21 5 bis 100 Gew.-% Polytetrahydrofiiran B21 und
b22 0 bis 95 Gew.-% mindestens eines Polymers B22 aus C2.8-Olefinen, vinylaromatischen Monomeren, Vinylestem aliphatischer Cj-s- Carbonsäuren, Vinyl-C].8-alky lethern oder oder Gemischen davon.
2. Bindemittel nach Anspruch 1, dadurch gekennzeichnet, daß die Mischung 85 bis 98 Gew.-% der Komponente Bl und 2 bis 15 Gew.-% der Komponente B2 enthält.
3. Bindemittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Komponente B2 aus 10 bis 90 Gew.-% der Komponente B21 und 10 bis 90 Gew.- % der Komponente B22 aufgebaut ist.
4. Bindemittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Komponente B22 mindestens ein Polymer von Ethylen, Propylen oder Methyl(meth)acrylat ist.
5. Thermoplastische Masse für die Herstellung anorganischer Formkörper, enthaltend,
a 40 bis 85 Vol-% mindestens eines anorganischen sinterbaren Pulvers A,
b 15 bis 60 Vol-% mindestens eines Bindemittels B gemäß einem der
Ansprüche 1 bis 4, c 0 bis 5 Vol-% mindestens eines Dispergierhilfsmittels C,
wobei die Summe der Mengen der Komponenten A, B und C 100 Vol-% ergibt.
6. Thermoplastische Masse nach Anspmch 5, dadurch gekennzeichnet, daß das Pulver A ausgewählt ist aus Metallpulvern, Metalllegierungspulvern, Metallcarbonylpulvem, keramischen Pulvern und Gemischen davon.
7. Verfahren zur Herstellung von thermoplastischen Massen nach Anspmch 5 oder 6 durch Aufschmelzen der Komponente B und Einmischen der Komponenten A und gegebenenfalls C.
8. Verwendung von thermoplastischen Massen nach Anspmch 5 oder 6 zur Herstellung von Formkörpern aus dem Pulver A.
9. Verwendung nach Anspmch 8 zur Herstellung von metallischen oder keramischen Formkörpern.
10. Verfahren zur Herstellung von Formkörpern aus Pulvern A durch
(1) Verformen einer thermoplastischen Masse gemäß Anspmch 5 oder 6 durch Spritzgießen, Extradieren oder Verpressen zu einem Grünkörper,
(2) Entfernen des Bindemittels durch Behandeln des Grünkörpers bei einer
Temperatur im Bereich von 20 bis 180°C für 0,1 bis 24 Stunden mit einer gasförmigen säurehaltigen Atmosphäre,
(3) Nachfolgendes Erhitzen für 0,1 bis 12 Stunden auf eine Temperatur im Bereich von 250 bis 500°C und
(4) nachfolgend Sintern des so erhaltenen entbinderten Grünkörpers.
EP01931625A 2000-04-19 2001-04-19 Bindemittel für anorganische materialpulver zur herstellung metallischer und keramischer formkörper Expired - Lifetime EP1276811B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10019447 2000-04-19
DE10019447A DE10019447A1 (de) 2000-04-19 2000-04-19 Bindemittel für anorganische Materialpulver zur Herstellung metallischer und keramischer Formkörper
PCT/EP2001/004448 WO2001081467A1 (de) 2000-04-19 2001-04-19 Bindemittel für anorganische materialpulver zur herstellung metallischer und keramischer formkörper

Publications (2)

Publication Number Publication Date
EP1276811A1 true EP1276811A1 (de) 2003-01-22
EP1276811B1 EP1276811B1 (de) 2005-02-09

Family

ID=7639354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01931625A Expired - Lifetime EP1276811B1 (de) 2000-04-19 2001-04-19 Bindemittel für anorganische materialpulver zur herstellung metallischer und keramischer formkörper

Country Status (9)

Country Link
US (1) US6939488B2 (de)
EP (1) EP1276811B1 (de)
JP (1) JP5063849B2 (de)
CN (1) CN1257225C (de)
AT (1) ATE288942T1 (de)
DE (2) DE10019447A1 (de)
ES (1) ES2236223T3 (de)
TW (1) TW564193B (de)
WO (1) WO2001081467A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343209B2 (en) 2008-04-28 2016-05-17 Basf Se Open-celled, porous shaped body for heat exchangers

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039522A1 (de) * 2002-10-29 2004-05-13 Basf Aktiengesellschaft Metallpulverspritzgussmasse und verfahren zum metallpulverspritzguss
US7786503B2 (en) * 2002-12-27 2010-08-31 Momentive Performance Materials Inc. Gallium nitride crystals and wafers and method of making
US7098487B2 (en) * 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
US7638815B2 (en) * 2002-12-27 2009-12-29 Momentive Performance Materials Inc. Crystalline composition, wafer, and semi-conductor structure
US7859008B2 (en) * 2002-12-27 2010-12-28 Momentive Performance Materials Inc. Crystalline composition, wafer, device, and associated method
US8357945B2 (en) * 2002-12-27 2013-01-22 Momentive Performance Materials Inc. Gallium nitride crystal and method of making same
US9279193B2 (en) 2002-12-27 2016-03-08 Momentive Performance Materials Inc. Method of making a gallium nitride crystalline composition having a low dislocation density
US20060169996A1 (en) * 2002-12-27 2006-08-03 General Electric Company Crystalline composition, wafer, and semi-conductor structure
US20070040181A1 (en) * 2002-12-27 2007-02-22 General Electric Company Crystalline composition, wafer, and semi-conductor structure
US7691174B2 (en) 2004-03-08 2010-04-06 Battelle Memorial Institute Feedstock composition and method of using same for powder metallurgy forming a reactive metals
DE102005031669A1 (de) * 2005-07-05 2007-01-18 Basf Ag Polyoxymethylene mit Eisenpulver
DE102005045046A1 (de) * 2005-09-21 2007-03-22 Basf Ag Wolfram-Schrot
DE102006031532B3 (de) * 2006-07-07 2008-04-17 Emil Müller GmbH Wasserlöslicher Salzkern mit Funktionsbauteil
JP5249213B2 (ja) * 2006-07-13 2013-07-31 ビーエーエスエフ ソシエタス・ヨーロピア 金属成形体を製造するためのバインダーを含有する熱可塑性材料
JP5259953B2 (ja) * 2006-12-28 2013-08-07 三洋化成工業株式会社 セラミック材料用潤滑剤
US7883662B2 (en) * 2007-11-15 2011-02-08 Viper Technologies Metal injection molding methods and feedstocks
ES2741892T3 (es) 2009-06-25 2020-02-12 Basf Se Procedimiento para la eliminación continua de aglutinante por vía térmica de un compuesto termoplástico de moldeo
NL2003325C2 (en) * 2009-08-03 2011-02-04 Syroko B V Method for producing a powder injection moulded part.
US8124187B2 (en) 2009-09-08 2012-02-28 Viper Technologies Methods of forming porous coatings on substrates
US9162927B2 (en) 2011-03-16 2015-10-20 Basf Se Process for producing metallic or ceramic shaped bodies
JP6133874B2 (ja) * 2011-09-07 2017-05-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se バインダーおよび粉末射出成型による金属製またはセラミック製成型物の製造方法
US8674018B2 (en) 2011-09-07 2014-03-18 Basf Se Binder and process for producing metallic or ceramic moldings in powder injection molding
WO2014191304A1 (fr) * 2013-05-28 2014-12-04 Comadur S.A. Liant pour composition de moulage par injection
TW201643129A (zh) * 2015-06-04 2016-12-16 優克材料科技股份有限公司 成型線材及陶瓷立體物件的製作方法
EP3322843B1 (de) * 2015-07-14 2019-11-06 Basf Se Fäden auf der basis von beschichtetem kernmaterial
DE102016110337B4 (de) 2016-06-03 2022-06-02 WZR ceramic solutions GmbH 3D-Druck von verschiedenen anorganischen Materialien
CN109382507B (zh) 2017-08-03 2020-01-31 全亿大科技(佛山)有限公司 粉末射出成型喂料的制备方法
EP3980389A4 (de) 2019-06-05 2023-07-19 Indian Institute Of Technology, Kharagpur Grünkörperzusammensetzung und daraus hergestellte funktionelle gradientenmaterialien
US20220372282A1 (en) * 2019-12-24 2022-11-24 Kolon Plastics, Inc. Binder composition for metal powder injection molding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000278A1 (de) 1990-01-08 1991-07-11 Basf Ag Verfahren zur herstellung eines anorganischen sinterformteils
DE4007345A1 (de) * 1990-03-08 1991-09-12 Basf Ag Thermoplastische massen fuer die herstellung metallischer formkoerper
DE4021739A1 (de) 1990-07-07 1992-01-09 Basf Ag Thermoplastische massen fuer die herstellung metallischer formkoerper
DE4338122A1 (de) * 1993-11-08 1995-05-11 Basf Ag Verfahren zur Herstellung von Sinterformteilen und dafür geeignete Zusammensetzungen
DE4435904A1 (de) * 1994-10-07 1996-04-11 Basf Ag Verfahren und Spritzgußmasse für die Herstellung metallischer Formkörper
US5804437A (en) * 1997-08-19 1998-09-08 Biomerieux Vitek, Inc. Locking structure for securing a fluid transfer tube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0181467A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343209B2 (en) 2008-04-28 2016-05-17 Basf Se Open-celled, porous shaped body for heat exchangers

Also Published As

Publication number Publication date
EP1276811B1 (de) 2005-02-09
WO2001081467A1 (de) 2001-11-01
DE50105305D1 (de) 2005-03-17
ATE288942T1 (de) 2005-02-15
TW564193B (en) 2003-12-01
US20030091456A1 (en) 2003-05-15
CN1430646A (zh) 2003-07-16
US6939488B2 (en) 2005-09-06
CN1257225C (zh) 2006-05-24
DE10019447A1 (de) 2001-10-25
JP2003531293A (ja) 2003-10-21
ES2236223T3 (es) 2005-07-16
JP5063849B2 (ja) 2012-10-31

Similar Documents

Publication Publication Date Title
EP1276811B1 (de) Bindemittel für anorganische materialpulver zur herstellung metallischer und keramischer formkörper
EP2043802B1 (de) Bindemittel enthaltende thermoplastische massen für die herstellung metallischer formkörper
EP0465940B1 (de) Thermoplastische Massen für die Herstellung metallischer Formkörper
DE69307172T2 (de) Bindersystem für den Gebrauch beim Spritzgiessen von sinterfähigen Pulvern und dieses Bindersystem enthaltende Formmasse
EP0701875B1 (de) Verfahren zur Herstellung metallischer Formteile durch Pulverspritzguss
EP2686286B1 (de) Verfahren zur herstellung von metallischen oder keramischen formkörpern
DE4207865C2 (de) Lösungsmittelfreie formpreßbare Keramik-Zusammensetzungen sowie Verfahren zur Bildung von Keramikgegenständen
DE4314694C1 (de) Verfahren zur Herstellung von Sinterformteilen
EP2416910A1 (de) Verfahren zur herstellung eines turbinenrads für einen abgasturbolader
EP2709967A1 (de) Verfahren zur herstellung von bauteilen im pulverspritzgussverfahren
EP0800882A2 (de) Verfahren zur Herstellung von Granulat und Formteilen aus Hartmetall- oder Cermet-Materialien
EP0652190B1 (de) Verfahren zur Herstellung von Sinterformteilen
EP0599285B1 (de) Verfahren und Formmasse zur Herstellung anorganischer Sintererzeugnisse durch Spritzgiessen
EP2739417B1 (de) Bindemittelmischung für die herstellung von formteilen mittels spritzverfahren
DE69023062T2 (de) Verbindung zum Spritzgiessen.
DE102005045046A1 (de) Wolfram-Schrot
EP2753443B1 (de) Bindemittel und verfahren zur herstellung von metallischen oder keramischen formkörpern im pulverspritzguss
EP0595099B1 (de) Verfahren zur Herstellung von Sinterformteilen
EP0517025A1 (de) Verfahren zum thermoplastischen Verarbeiten nichtplastifizierbarer Polymerer
WO2008077776A2 (de) Verfahren zum thermischen entbindern eines durch spritzgiessen, extrudieren oder verpressen unter verwendung einer thermoplastischen masse hergestellten metallischen und/oder keramischen formkörpers
DE4021741A1 (de) Thermoplastische massen fuer die herstellung keramischer formkoerper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50105305

Country of ref document: DE

Date of ref document: 20050317

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050419

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050419

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050525

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2236223

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050709

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160426

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160502

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160428

Year of fee payment: 16

Ref country code: BE

Payment date: 20160427

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200511

Year of fee payment: 20

Ref country code: CH

Payment date: 20200424

Year of fee payment: 20

Ref country code: FR

Payment date: 20200429

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200629

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50105305

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210420