EP1272691B1 - Bain electrolytique destine au depot electrochimique du palladium ou de ses alliages - Google Patents

Bain electrolytique destine au depot electrochimique du palladium ou de ses alliages Download PDF

Info

Publication number
EP1272691B1
EP1272691B1 EP01921482A EP01921482A EP1272691B1 EP 1272691 B1 EP1272691 B1 EP 1272691B1 EP 01921482 A EP01921482 A EP 01921482A EP 01921482 A EP01921482 A EP 01921482A EP 1272691 B1 EP1272691 B1 EP 1272691B1
Authority
EP
European Patent Office
Prior art keywords
palladium
electrolysis bath
bath according
baths
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01921482A
Other languages
German (de)
English (en)
Other versions
EP1272691A1 (fr
Inventor
José GONZALEZ
Lionel Chalumeau
Michel Limayrac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metalor Technologies France Sas
Original Assignee
Metalor Technologies France Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metalor Technologies France Sas filed Critical Metalor Technologies France Sas
Publication of EP1272691A1 publication Critical patent/EP1272691A1/fr
Application granted granted Critical
Publication of EP1272691B1 publication Critical patent/EP1272691B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • C25D3/52Electroplating: Baths therefor from solutions of platinum group metals characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/567Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of platinum group metals

Definitions

  • the present invention relates to an electrolytic bath intended for deposition electrochemical of palladium or its alloys as well as a process electroplating palladium or one of its alloys.
  • the electrical contacts and connectors used in the field of electronics use, in finishing, thin layers of precious metals, electrodeposited which must be of suitable gloss, good ductility, non-porous, corrosion-resistant, friction-resistant and have low contact resistances.
  • the industry began by using deposits, often referred to as "Hard Gold", of gold hardened with small amounts of nickel or codeposited cobalt. Palladium is a precious metal with a lower deposit density (12 g / cm 3 ) than "Hard Gold” deposits (17.3 g / cm 3 ), also with higher hardness and lower porosity. Cheaper, palladium and its alloys have been found suitable for replacing gold for most applications.
  • the industry uses thin deposits (also referred to as flash-type deposits) of gold on palladium or on palladium alloys for finishing.
  • the palladium alloys used are mainly palladium-nickel, or palladium-silver alloys.
  • the barrel, the vibrating basket, the attachment, the discontinuous metallization, continuously high speed, or the jet deposition, also known by the term “jet-plating” deposition, or with the pad are commonly used techniques, for electrodepositing palladium and its alloys.
  • the industry is constantly looking for electrolytic baths and more efficient processes. Palladium and its alloys are also used for decorative applications, as an undercoat or as a finish.
  • the palladium and alloy baths currently sold are mostly ammonia baths, most often containing ions chlorides. These baths remain nevertheless baths with strong nuisances, so much for the health of operators, that for corrosion of equipment, they require many maintenance and upkeep operations.
  • Ammonia tends to evaporate at room temperature, a lot of commercial baths and, in particular, so-called “high speed” baths, operate from 40 to 60 ° C. These baths generate strong gaseous fumes in the processing workshops; not only are these vapors irritating to the airways respiratory agents, but are corrosive to all copper metals surrounding, including for parts of parts not submerged in the electrolyte.
  • the ammoniacal baths are conventionally alkaline baths, operating in pH ranges between 8 and 13.
  • the alkalinity of the electrolyte promotes the passivation of nickel, which can cause a lack of adhesion of palladium alloy deposits.
  • the first baths of this type described were baths of pure palladium, in very acidic environments, without organic amines. They were difficult to use, In fact, at pH values between 0 and 3, the attack on the substrates is too great. In addition, many of these formulations contain chlorides.
  • a second type relates to baths of pure palladium or of alloy, which contain organic amines, operating from 40 to 65 ° C, but typically in a pH range from 9 to 12, therefore under strongly alkaline conditions. AT these high pH, at these temperatures, polyamines tend to evaporate strongly, and to carbonate quickly by generating crystallizations. On the other hand, in these conditions, the passivation of nickel-plated substrates is then even more important than in ammonia baths. To overcome the lack of grip, a pre-palladium is necessary as a preliminary. This increases the cost of these deposits.
  • a third type of bath of pure palladium containing organic amines is described in particular in US Pat. No. 4,278,514.
  • These baths of intermediate pH located from 3 to 7 generally contain phosphates, and use as a brightener an imide type compound, such as than succinimide.
  • the admissible current densities are less than 4 A / dm 2 .
  • these baths contain pure palladium and are therefore mainly intended for decoration.
  • the imide-type compounds are capable of improving the brightness of these baths of pure palladium at low current densities, but the maximum current densities giving brilliant deposits do not exceed 4 A / dm 2 . Furthermore, to obtain this brightening action, the imides are added in large quantities. However, imides are strong complexing agents and their concentration therefore has a strong influence on the complexing of any incorporated secondary metal. This makes it too difficult to control the composition of the alloys, under suitable gloss conditions.
  • the present invention precisely proposes an optimal formulation, to meet all these requirements.
  • a problem which arises particularly for electronic applications is that of finding an effective brightener with very high current density, in a non-ammoniacal medium. Indeed, as explained above, many brighteners, and this is in particular the case of imide type brighteners, only allow glossy deposits to be obtained at medium or low current densities. In non-ammoniacal baths, known commercial brighteners such as nicotinamide, or sulfonate-type compounds, are not able to extend the gloss of deposits at high current densities, in particular those between 15 and 150 A / dm 2 desired in so-called "high speed" plating baths.
  • US Patent 4,767,507 describes gold plating baths using uses two specific brighteners, namely 3- (3-pyridyl) acrylic acid or 3- (3-quinolyl) acrylic acid.
  • these brighteners can also be used in electrolyte baths intended for the electrochemical deposition of palladium or its alloys in the presence of ethylenediamine acting as an agent complexing palladium.
  • these brighteners are particularly active for the high densities of current, even in very low concentrations.
  • the invention made it possible to find conditions where, in the absence chlorides and ammonia, plating could be done without deposit of insoluble salts on the anodes, which makes it possible to envisage applications in "jet-plating" and in continuous selective metallization of the metallization type at buffer.
  • the invention relates to an aqueous electrolytic bath at acid pH for deposition electrochemical of palladium or its alloys comprising a compound of palladium, and optionally at least one compound of a secondary metal intended to be codeposited in the form of an alloy with palladium, and comprising in addition, ethylenediamine as a complexing agent for palladium and an agent organic brightener, characterized in that said brightening agent is 3- (3-pyridyl) acid acrylic, 3- (3-quinolyl) acrylic acid or a salt thereof, preferably one of their alkaline salts, for example a sodium or potassium.
  • the bath of the invention makes it possible to deposit palladium or alloys of palladium, in particular alloys containing from 60 to 100% of palladium and 40 to 0% of one or more secondary metals such as: nickel, cobalt, iron, indium, gold, silver, or tin.
  • the baths according to the present invention are completely ammonia-free, both in their constitution and in their maintenance.
  • ethylenediamine as complexing agent which, at acidic pH, is very not very volatile, there is no emission of irritating vapors for the tracks operators' respiratory systems. Can operate at 75 ° C, without actually smell noticeable, these baths therefore allow operating temperatures above those practiced with ammonia baths (40 to 60 ° C), which is interesting for high speed electronic filing.
  • the electrolytic baths of the invention are baths with a low pH acid, preferably at a pH between 3 and 5. Indeed, in this range of pH, the baths of the invention prove to be particularly stable. This pH range is particularly suitable for baths containing nickel or cobalt, the hydroxides may precipitate at pH between 6 and 7 and allow to avoid obtaining veiled deposits, as is the case for certain pH baths between 5 and 6.
  • the gloss of the deposits obtained is generally further increased by the presence of a secondary metal which plays the role of mineral shine and, in a way analogous to what is observed in acidic gold baths.
  • the electrolytic bath will advantageously contain between 0 and 60 g / l at least one metal acting as a mineral shine.
  • One of the features of the baths according to the present invention is that they operate at weakly acidic pH preferably between 3 and 5.
  • the baths of the invention are intended for deposition of palladium or its alloys, in particular alloys containing minus a secondary metal such as nickel, cobalt, iron, indium, gold, silver or tin in proportions of 0.1 to 40%.
  • the baths of the invention advantageously contain from 1 to 100 g / l of palladium.
  • they contain at least one metal secondary selected from the group consisting of nickel, cobalt, iron, indium, gold, silver and tin, at a concentration between 0.1 and 60g / l.
  • one of the essential constituents of the the invention is ethylenediamine which acts to complex and therefore dissolve the palladium in the bath.
  • This ethylenediamine is contained in the bath in sufficient amount to complex the palladium and make it soluble in said bath, preferably at a concentration between 2 and 200 ml / l.
  • the specific brightening agent used according to the invention namely the acid 3- (3-pyridyl) acrylic or 3- (3-quinolyl) acrylic acid or a salt thereof, is contained in the bath at concentrations advantageously between 0.01 and 3 g / l.
  • these two brighteners can be used at relatively low concentrations and with high current densities, in particular with current densities of up to 150 A / dm 2 , which makes it possible to envisage the application of the baths of the invention in particular as a high-speed bath for producing shiny deposits. They can also be used for jet plating and selective metallization applications.
  • the electrolytic baths of the invention can contain various additives conventionally used in electroplating baths such only conductive salts, buffers to stabilize the pH, agents wetting agents, additives intended to reduce the internal stresses of deposits Electrolytic.
  • the baths of the invention advantageously contain at least 20 g / l at least one conductive salt.
  • This conductive salt will advantageously be chosen from the group consisting of sodium sulfate, potassium sulfate and their mixtures.
  • the buffers intended to stabilize the pH will preferably be of the type acetic, citric, boric, lactic, malic, phthalic, acrylic, tartaric, oxalic or succinic.
  • wetting agents are used.
  • the agents preferred wetting agents according to the invention will be bromide or iodide of cetyltrimethylammonium.
  • the invention proposes conditions allowing in particular to totally avoid the use of chlorides.
  • the baths according to the present invention are advantageously without chlorides and the basic anion of these baths is advantageously sulphate.
  • He is in known effect that sulfate anions are often used in electroplating because they react much less easily to electrodes, than nitrites or sulfites, the concentrations of which are much more difficult to maintain at a stable level in the electrolyte. These composition fluctuations can lead to to veiled deposits.
  • the baths of the invention have very good stability.
  • the palladium in the form of a compound specifically adapted for this purpose is the subject of a request for patent filed on the same day as this application.
  • this compound which is in the form of a salt insoluble in water present the advantage of being able to be transformed in the presence of an excess of ethylenediamine into a soluble complex upon its introduction into the bath.
  • this compound makes it possible to introduce palladium with a significantly lower amount of counterions (sulfate) than in the prior art.
  • palladium was introduced into the electrolytic baths either in the form of one of its salts, for example its sulfate, or, where appropriate, directly as the water-soluble complex between the sulfate and ethylenediamine.
  • palladium is introduced into the electrolytic bath of the invention in a particularly advantageous form in the form of a solid salt of palladium sulfate and of ethylenediamine comprising from 31 to 41% by weight of palladium and in which the molar ratio [SO 4 ]: [Pd] is between 0.9 and 1.15 and the [ethylenediamine]: [Pd] ratio is between 0.8 and 1.2.
  • Secondary metals can also be introduced in the form of sulfate.
  • the secondary metals will advantageously introduced in the form of sulfates, carbonates, hydroxides or their mixtures.
  • the invention make it possible to extend the life of electroplating equipment by avoiding their corrosion.
  • the invention also relates to a process for the electrodeposition of palladium or a palladium alloy, characterized in that it comprises the electrolysis of an electrolytic bath as defined above by implementing current densities between 0.5 and 150 A / dm 2 .
  • the process of the invention is particularly advantageous. in electronic applications, where we try to work with a speed of maximum deposit and where the desired deposits should be, among other things, brilliant, ductile, non-porous. To obtain high productivity, the baths must operate under the highest possible current density and temperature and high agitation is often necessary. Ethylene diamine baths allow operating temperatures higher than that practiced with baths ammonia exposed to the generated gaseous fumes.
  • the specific gloss of the invention can be used in baths of palladium and palladium alloys, where it's also very effective, like bright at high current densities and even at very low concentrations.
  • the baths of the invention therefore admit current densities similar to, or greater than, the most efficient ammonia baths.
  • bright deposits of 0.1 to 6 ⁇ m can be produced at current densities between 0.5 to 150 A / dm 2 .
  • baths of the invention can also be used for lower speeds and densities of current and, in particular, in decoration applications.
  • the anodes are insoluble anodes, preferably platinum titanium, oxide coated platinum iridium or a precious metal such as platinum. Furthermore, the cathode is made of a metallized substrate.
  • the concentrations of palladium and alloy metals are related to metal.
  • This method of adding palladium to the electrolyte can be used for the first preparation of the bath, and for palladium readjustments during of operation.
  • This bath deposits the 80% palladium - 20% nickel alloy.
  • the deposit of 0.1 to 6 ⁇ m is mirror-gloss, ductile, with low contact resistance, hardness Vickers of 390 HV under 100 gf (measured according to ISO standard 4,516 (1980)).
  • the deposits checked according to iso 4524/3 (85), are non-porous, they have a good corrosion resistance and, for a thickness of 0.5 to 6 ⁇ m, they are conforms to the so-called "CASS TEST" test defined by standard ISO 9 227 (1990). Through elsewhere, they have good resistance to friction and pass the test positively says "BRITISH TELECOM".
  • This bath deposits the palladium alloy 75% - cobalt 25%, the deposit from 0.1 to 6 ⁇ m is mirror-gloss, ductile, with low contact resistance, hard.
  • the deposits are non-porous, they have good resistance to corrosion and friction.
  • the 0.2 to 6 ⁇ m deposit is mirror-gloss, white, ductile, without cracks.
  • the deposits are non-porous, they have good resistance corrosion and friction.
  • This bath deposits the palladium alloy 80% nickel 20%.
  • the deposit of 0.2 to 6 ⁇ m is mirror-gloss, white, ductile, without cracks. Deposits are no porous, they have good resistance to corrosion and friction.
  • This bath deposits the palladium alloy 70% - cobalt 30% for application decorative, the deposit of 0.2 to 6 ⁇ m is shiny-mirror, ductile, without cracks.
  • the deposits are non-porous, they have good resistance to corrosion and friction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

La présente invention concerne un bain électrolytique destiné au dépôt électrochimique du palladium ou de ses alliages ainsi qu'un procédé d'électrodéposition du palladium ou d'un de ses alliages.
Les contacts électriques et les connecteurs utilisés dans le domaine de l'électronique utilisent, en finition, de fines couches de métaux précieux, électrodéposés qui doivent être de brillance convenable, de bonne ductilité, non poreux, résistants à la corrosion, résistants au frottement et avoir de faibles résistances de contact. L'industrie a commencé par utiliser des dépôts, souvent désignés par "Hard Gold", d'or durci par de faibles quantités de nickel ou de cobalt codéposé. Le palladium est un métal précieux ayant une plus faible densité de dépôt (12 g/cm3) que les dépôts d'" Hard Gold " (17,3 g/cm3), avec aussi une dureté supérieure et une plus faible porosité. Moins chers, le palladium et ses alliages ont été jugés aptes à être substitués à l'or pour la plupart des applications. Pour une grande variété d'applications, l'industrie utilise en finition des dépôts de faible épaisseur (également désignés par dépôt de type flash) d'or sur palladium ou sur alliages de palladium. Les alliages de palladium utilisés sont principalement des alliages palladium-nickel, ou palladium-argent. Le tonneau, le panier vibrant, l'attache, la métallisation en discontinu, en continu haute vitesse, ou le dépôt au jet, encore désigné sous le vocable anglais dépôt en "jet-plating", ou au tampon sont des techniques couramment utilisées, pour électrodéposer le palladium et ses alliages. L'industrie recherche en permanence des bains électrolytiques et des procédés plus performants. Le palladium et ses alliages sont également utilisés pour les applications décoratives, en sous-couche ou en finition.
Etat de l'art concernant les bains ammoniacaux
Les bains de palladium et d'alliages actuellement commercialisés sont majoritairement des bains ammoniacaux, contenant le plus souvent des ions chlorures. Ces bains restent néanmoins des bains à fortes nuisances, tant pour la santé des opérateurs, que pour la corrosion des équipements, ils nécessitent beaucoup d'opérations de maintenance et d'entretien.
L'ammoniaque tend à s'évaporer à température ambiante, beaucoup de bains commercialisés et, en particulier, les bains dits "haute vitesse", fonctionnent de 40 à 60°C. Ces bains engendrent de fortes émanations gazeuses dans les ateliers de traitement ; ces vapeurs non seulement sont irritantes pour les voies respiratoires des opérateurs, mais sont corrosives pour tous les métaux cuivreux environnants, y compris pour les parties des pièces non immergées dans l'électrolyte.
Par ailleurs, l'intense évaporation d'ammoniaque, engendre une diminution rapide du pH et du volume de ces électrolytes, et contraint les utilisateurs à d'incessants et coûteux ajouts d'ammoniaque et réglages de pH. Cette maintenance est indispensable, y compris après toute période d'arrêt d'utilisation de l'électrolyte.
Les bains ammoniacaux sont classiquement des bains alcalins, fonctionnant dans des gammes de pH entre 8 et 13. Lors de la métallisation sur du nickel par exemple, lors de l'immersion de la pièce, l'alcalinité de l'électrolyte favorise la passivation du nickel, qui peut engendrer un manque d'adhérence des dépôts d'alliage palladium.
Quand ils sont présents, les chlorures ajoutent encore d'autres désagréments:
  • La corrosion des équipements en acier inoxydable est facilitée, d'où des pollutions d'électrolytes.
  • Au cours de l'électrolyse un sel jaune insoluble de palladium est généré à la surface des anodes titane-platinées, d'où de multiples difficultés pour toutes les applications de type jet-plating ou métallisation sélective au tampon en continu.
Etat de l'art concernant les bains non ammoniacaux
Les premiers bains de ce type décrits ont été des bains de palladium pur, en milieux très acides, sans amines organiques. Ils étaient difficilement utilisables, En effet, à des pH situés entre 0 et 3, l'attaque des substrats est trop importante. De plus beaucoup de ces formulations contiennent des chlorures.
Un second type concerne des bains de palladium pur ou d'alliage, qui contiennent des amines organiques, fonctionnant de 40 à 65°C, mais typiquement dans une gamme de pH 9 à 12, donc dans des conditions fortement alcalines. A ces pH élevés, à ces températures, les polyamines tendent à s'évaporer fortement, et à se carbonater rapidement en générant des cristallisations. D'autre part, dans ces conditions, la passivation des substrats nickelés est alors encore plus importante que dans les bains ammoniacaux. Pour pallier le manque d'adhérence, un pré-palladiage est nécessaire de façon préliminaire. Ceci augmente d'autant le prix de revient de ces dépôts.
Un troisième type de bains de palladium pur contenant des amines organiques est décrit en particulier dans le brevet US 4 278 514. Ces bains de pH intermédiaires situés de 3 à 7 contiennent généralement des phosphates, et utilisent comme brillanteur un composé de type imide, tel que le succinimide. Dans de tels bains, les densités de courant admissibles sont inférieures à 4 A/dm2. Par ailleurs, ces bains contiennent du palladium pur et sont donc principalement destinés à la décoration.
Ces bains utilisent généralement des tampons phosphates efficaces pour les pH alcalins visés. Toutefois, dans certains cas, l'incorporation de traces de phosphore dans les dépôts peut influencer la qualité des dépôts, et en particulier nuire à leur brillance.
D'autre part, les composés de type imide sont capables d'améliorer la brillance de ces bains de palladium pur à faibles densités de courant, mais les densités de courant maximales donnant des dépôts brillants ne dépassent pas 4 A/dm2. Par ailleurs, pour obtenir cette action de brillantage les imides sont ajoutées en quantité importante. Or, les imides sont des complexants forts et leur concentration influe donc fortement sur la complexation de tout métal secondaire incorporé. Ceci rend trop difficile la maítrise de composition des alliages, dans des conditions de brillance convenable.
Il existe donc un besoin pour un procédé nouveau, qui exclurait l'utilisation de l'ammoniaque, des chlorures, des phosphates, et des imides, et qui permettrait de déposer des alliages stables d'aspect brillant éventuellement à très haute vitesse, donnant des dépôts ductiles, adhérents sans pré-palladiage. Le pH de ces bains devrait rester dans la gamme des pH faiblement acides. Ces bains devraient en outre pouvoir être associés à un procédé de recharge en métal, capable d'éviter la concentration rapide des sels, de façon à obtenir une longue durée de vie.
Pour le moment, aucun procédé existant sur le marché n'est pleinement satisfaisant.
La présente invention propose justement une formulation optimale, permettant de répondre à toutes ces exigences.
Un problème qui se pose particulièrement pour les applications électroniques est celui de trouver un brillanteur efficace à très forte densité de courant, en milieu non ammoniacal. En effet, comme exposé précédemment, beaucoup de brillanteurs, et, c'est en particulier le cas des brillanteurs de type imide, ne permettent l'obtention de dépôts brillants qu'aux moyennes ou faibles densités de courant. Dans les bains non ammoniacaux, les brillanteurs commerciaux connus tels que le nicotinamide, ou les composés de type sulfonate, ne sont pas en mesure d'étendre la brillance des dépôts aux fortes densités de courant, en particulier à celles comprises entre 15 et 150 A/dm2 souhaitées dans les bains d'électrodéposition dits "haute vitesse".
C'est en particulier, à la résolution de ce problème que s'adresse la présente invention en proposant l'utilisation de brillanteurs bien déterminés pouvant être utilisés dans les conditions idéales exposées ci-dessus.
Le brevet US 4 767 507 décrit des bains d'électrodéposition d'or mettant en oeuvre deux brillanteurs spécifiques, à savoir l'acide 3-(3-pyridyl) acrylique ou l'acide 3-(3-quinolyl) acrylique.
Dans les bains d'or décrits dans ce document, ces brillanteurs démontrent une très bonne stabilité, même employés en très faibles quantités. Ils permettent d'étendre la brillance dans les hautes densités de courant.
Il a maintenant été établi que ces brillanteurs peuvent également être utilisés dans des bains d'électrolytes destinés au dépôt électrochimique du palladium ou de ses alliages en présence d'éthylènediamine agissant comme agent complexant du palladium. Il a en particulier été mis en évidence que dans de tels bains, ces brillanteurs s'avèrent particulièrement actifs pour les fortes densités de courant, et cela, même en très faible concentration.
Il a été ainsi possible, en utilisant ces brillanteurs de réaliser des bains pouvant être utilisés dans des procédés d'électrodéposition à haute vitesse, utilisant des densités de courant analogues ou même supérieures à celles utilisées dans les bains ammoniacaux les plus performants. Pour de telles applications, des dépôts brillants de 0,1 à 6 µm ont pu être réalisés à des densités de courant comprises entre 0,5 et 150 A/dm2.
Par ailleurs l'invention a permis de trouver des conditions où, en l'absence de chlorures et d'ammoniaque, on pouvait réaliser l'électrodéposition sans dépôt de sels insolubles sur les anodes, ce qui permet d'envisager des applications en "jet-plating" et en métallisation sélective en continu du type métallisation au tampon.
Plus précisément, selon l'une de ses caractéristiques essentielles, l'invention concerne un bain électrolytique aqueux à pH acide pour le dépôt électrochimique du palladium ou de ses alliages comprenant un composé du palladium, et de façon optionnelle au moins un composé d'un métal secondaire destiné à être codéposé sous forme d'alliage avec le palladium, et comprenant en outre, de l'éthylènediamine comme agent complexant du palladium et un agent brillanteur organique, caractérisé en ce que ledit agent brillanteur est l'acide 3-(3-pyridyl) acrylique, l'acide 3-(3-quinolyl) acrylique ou un de leurs sels, de préférence un de leurs sels alcalins, par exemple un sel de sodium ou de potassium.
Le bain de l'invention permet de déposer du palladium ou des alliages de palladium, en particulier des alliages contenant de 60 à 100 % de palladium et de 40 à 0 % d'un ou plusieurs métaux secondaires tels que : nickel, cobalt, fer, indium, or, argent, ou étain.
Les bains selon la présente invention sont totalement sans ammoniaque, tant dans leur constitution, que pour leur entretien.
Ils utilisent comme complexant l'éthylènediamine qui, à pH acide, est très peu volatile, il n'y a pas d'émission de vapeurs irritantes pour les voies respiratoires des opérateurs. Pouvant fonctionner à 75°C, sans odeur réellement perceptible, ces bains autorisent donc des températures opératoires supérieures à celles pratiquées avec les bains ammoniacaux (40 à 60°C), ce qui est intéressant pour les dépôts électroniques à haute vitesse.
En l'absence de vapeurs corrosives, les métaux cuivreux environnants ne sont pas attaqués, et il n'y a pas de pollution en cuivre du bain. Nombre d'opérations de décapage et de nettoyage sont ainsi évitées.
Pour les mêmes raisons, le pH reste inchangé en l'absence d'électrolyse et lors des électrolyses les ajustements de pH sont beaucoup moins importants. Les variations de volume du bain ne correspondent qu'aux seules évaporation d'eau, à la température de travail ainsi qu'aux pertes par entraínement.
Les bains électrolytiques de l'invention sont des bains à pH faiblement acide, de préférence à un pH compris entre 3 et 5. En effet, dans cette gamme de pH, les bains de l'invention s'avèrent particulièrement stables. Cette gamme de pH est particulièrement adaptée aux bains contenant du nickel ou du cobalt dont les hydroxydes risqueraient de précipiter à des pH compris entre 6 et 7 et permet d'éviter d'obtenir des dépôts voilés, comme c'est le cas pour certains bains à pH compris entre 5 et 6.
Dans l'intervalle préféré de pH compris entre 3 et 5, la brillance des dépôts obtenus est encore généralement accrue par la présence d'un métal secondaire qui joue le rôle de brillanteur minéral et, cela d'une façon analogue à ce qui est observé dans les bains d'or acides.
Ainsi, le bain électrolytique contiendra avantageusement entre 0 et 60 g/l d'au moins un métal agissant comme brillanteur minéral.
L'une des particularités des bains selon de la présente invention est qu'ils fonctionnent à des pH faiblement acides de préférence compris entre 3 et 5.
Ces bains n'ont donc pas les inconvénients des premiers bains trop acides susceptibles d'attaquer le substrat, ils ne nécessitent néanmoins pas de pré-palladiage. A l'inverse à ces pH, un substrat nickelé ne se passive pas à l'entrée dans l'électrolyte comme avec les bains alcalins, le dépôt est toujours très adhérent.
Ces valeurs de pH et la possibilité de déposer à température élevée, sont les conditions les plus favorables à l'obtention de dépôts non poreux.
Comme exposé précédemment les bains de l'invention sont destinés au dépôt de palladium ou de ses alliages, en particulier des alliages contenant au moins un métal secondaire tel que le nickel, le cobalt, le fer, l'indium, l'or, l'argent ou l'étain dans des proportions de 0,1 à 40 %.
Les bains de l'invention contiennent avantageusement de 1 à 100 g/l de palladium.
Selon une autre variante de l'invention, ils contiennent au moins un métal secondaire choisi dans le groupe constitué du nickel, du cobalt, du fer, de l'indium, de l'or, de l'argent et de l'étain, à une concentration comprise entre 0,1 et 60g/l.
Comme exposé précédemment, un des constituants essentiels du bain de l'invention est l'éthylènediamine qui agit pour complexer et donc solubiliser le palladium au sein du bain. Cette éthylènediamine est contenue dans le bain en quantité suffisante, pour complexer le palladium et le rendre soluble dans ledit bain, de préférence à une concentration comprise entre 2 et 200 ml/l.
Enfin, l'agent brillanteur spécifique utilisé selon l'invention, à savoir l'acide 3-(3-pyridyl) acrylique ou l'acide 3-(3-quinolyl) acrylique ou un de leurs sels, est contenu dans le bain à des concentrations avantageusement comprises entre 0,01 et 3 g/l.
Parmi ces deux brillanteurs, on utilisera de façon particulièrement avantageuse l'acide 3-(3 pyridyl) acrylique et, plus particulièrement, l'isomère trans de cet acide.
Comme exposé précédemment, ces deux brillanteurs, à la différence des brillanteurs de l'art antérieur peuvent être utilisés à des concentrations relativement basses et avec des densités de courant élevées, en particulier avec des densités de courant pouvant aller jusqu'à 150 A/dm2, ce qui permet d'envisager l'application des bains de l'invention en particulier en tant que bain haute vitesse pour réaliser des dépôts brillants. Ils peuvent également être utilisés pour des applications de type "jet plating" et de métallisation sélective en continu.
Par ailleurs, les bains électrolytiques de l'invention peuvent contenir différents additifs classiquement utilisés dans les bains d'électrodéposition tels que des sels conducteurs, des tampons destinés à stabiliser le pH, des agents mouillants, des additifs destinés à réduire les tensions internes des dépôts électrolytiques.
On choisira avantageusement ces différents additifs de façon à ce qu'ils n'introduisent pas d'ions non désirés dans le bain électrolytique et, en particulier, de façon à ce qu'ils n'introduisent dans le bain électrolytique ni chlorure, ni acide phosphorique.
Ainsi, les bains de l'invention contiennent avantageusement au moins 20g/l d'au moins un sel conducteur. Ce sel conducteur sera avantageusement choisi dans le groupe constitué du sulfate de sodium, du sulfate de potassium et de leurs mélanges.
Les tampons destinés à stabiliser le pH seront de préférence de type acétique, citrique, borique, lactique, malique, phtalique, acrylique, tartrique, oxalique ou succinique.
On recourra avantageusement à des agents mouillants. Les agents mouillants préférés selon l'invention seront le bromure ou l'iodure de céthyltriméthylammonium.
Pour éviter les tensions internes on choisira avantageusement d'incorporer dans le bain électrolytique du saccharinate de sodium.
Selon différentes variantes particulièrement avantageuses, l'invention propose des conditions permettant en particulier d'éviter totalement l'utilisation de chlorures.
Elle propose également des conditions où l'on évite au maximum de charger le bain en ions et, cela, de façon à améliorer sa durée de vie.
Ainsi, pour éviter l'utilisation de chlorures, on introduit avantageusement le palladium sous forme de sulfate.
Ainsi, les bains selon la présente invention sont avantageusement sans chlorures et l'anion de base de ces bains est avantageusement le sulfate. Il est en effet connu que les anions sulfates sont souvent utilisés en galvanoplastie, car ils réagissent beaucoup moins facilement aux électrodes, que les ions nitrites ou sulfites, dont les concentrations sont beaucoup plus difficiles à maintenir à un niveau stable dans l'électrolyte. Ces fluctuations de composition peuvent conduire à des dépôts voilés. Contrairement à ces formulations, les bains de l'invention ont une très bonne stabilité.
Par ailleurs, il est bien connu que la durée de vie d'un bain de galvanoplastie peut être largement prolongée en évitant l'accumulation des espèces chimiques au cours du fonctionnement de ce bain, de façon à éviter de saturer l'électrolyte.
C'est ainsi que, selon l'invention, on introduit avantageusement le palladium sous forme d'un composé spécifiquement adapté à cet effet. Ce composé qui est en lui-même un composé nouveau fait l'objet d'une demande de brevet déposée le même jour que la présente demande. Plus précisément, ce composé qui se présente sous forme d'un sel insoluble dans l'eau présente l'avantage de pouvoir être transformé en présence d'un excès d'éthylènediamine en un complexe soluble dès son introduction dans le bain. Par ailleurs, du fait de sa composition chimique, ce composé permet d'introduire le palladium avec une quantité de contre-ions (sulfate) nettement plus faible que dans l'art antérieur. En effet, dans l'art antérieur on introduisait dans les bains électrolytiques le palladium soit sous forme d'un de ses sels, par exemple de son sulfate soit, le cas échéant, directement sous forme du complexe soluble dans l'eau entre le sulfate et l'éthylènediamine.
Plus précisément, le palladium est introduit dans le bain électrolytique de l'invention de façon particulièrement avantageuse sous forme d'un sel solide de sulfate de palladium et d'éthylènediamine comprenant de 31 à 41 % en poids de palladium et dans lequel le rapport molaire [SO4] : [Pd] est compris entre 0,9 et 1,15 et le rapport [éthylènediamine] : [Pd] est compris entre 0,8 et 1,2.
Une méthode de synthèse du sulfate de palladium complexé par une seule éthylènediamine sous forme de sel solide a été spécialement mise au point. Ce sel, bien qu'insoluble dans l'eau est soluble dans les bains où un excès d'agent complexant est toujours présent. Ce sel est très intéressant pour réajuster la concentration en palladium, sa fabrication est détaillée plus loin.
Toujours avec le même souci d'éviter de charger le bain électrolytique en contre-ions, quand un ou plusieurs métaux d'alliage sont codéposés, donc consommés, la recharge des bains en ces métaux sous forme de carbonates s'est révélée la plus adaptée. En effet les carbonates réagissent en milieu acide pour former du CO2 qui s'échappe rapidement sous forme gazeuse au moment de l'addition. CO3 2- + 2 H+ → H2O + CO2
Cette réaction a lieu, lorsque le carbonate du métal est ajouté à l'électrolyte. Avec ce système, les métaux secondaires peuvent être réajustés sans laisser aucun anion dans le bain. Ce système permet donc de prolonger la vie des bains de la présente invention.
Une autre voie pour introduire les métaux, toujours avec le même souci d'éviter de charger le bain en contre-ions consiste à les introduire sous forme de leurs hydroxydes.
Les métaux secondaires pourront également être introduits sous forme de sulfate.
D'une façon générale, les métaux secondaires seront avantageusement introduits sous forme de sulfates, de carbonates, d'hydroxydes ou de leurs mélanges.
Ainsi, en évitant de préférence la présence de chlorures, les bains de l'invention permettent de prolonger la vie des équipements de galvanoplastie en évitant leur corrosion.
Selon un autre de ses aspects, l'invention concerne également un procédé d'électrodéposition du palladium ou d'un alliage de palladium, caractérisé en ce qu'il comprend l'électrolyse d'un bain électrolytique tel que défini précédemment en mettant en oeuvre des densités de courant comprises entre 0,5 et 150 A/dm2.
Le procédé de l'invention s'applique de façon particulièrement avantageuse dans les applications électroniques, où l'on cherche à travailler avec une vitesse de dépôt maximale et où les dépôts souhaités doivent être, entre autres, brillants, ductiles, non poreux. Pour obtenir de fortes productivités, les bains doivent fonctionner sous la densité de courant la plus élevée possible et une température et une agitation élevée sont souvent nécessaires. Les bains à base d'éthylènediamine autorisent des températures opératoires supérieures à celle pratiquée avec les bains ammoniacaux en butte aux émanations gazeuses générées.
L'utilisation des bains de l'invention, grâce à la présence conjointe de l'éthylènediamine comme agent complexant et de l'un des deux brillanteurs spécifiques de l'invention dans une gamme de pH de préférence comprise entre 3 et 5, permet d'étendre nettement la brillance dans les fortes et très fortes densités de courant. La densité de courant maximale accessible donnant des dépôts brillants est alors proportionnelle à la quantité de ce brillanteur.
Le brillanteur spécifique de l'invention peut être utilisé dans des bains de palladium et d'alliages de palladium, où il est aussi très efficace, comme brillanteur à des fortes densités de courant et même à très faible concentration.
Dans leur version haute vitesse, les bains de l'invention admettent donc des densités de courant analogues, ou supérieures aux bains ammoniacaux les plus performants. Selon les applications, des dépôts brillants de 0,1 à 6 µm peuvent être réalisés à des densités de courant comprises entre 0,5 à 150 A/dm2.
Toutefois les bains de l'invention peuvent également être utilisés à des vitesses et à des densités de courant moindres et, en particulier, dans des applications de décoration.
Il n'y a pas de formation de sel insoluble sur les anodes de titane platiné. Cette particularité permet des applications en "jet plating", ainsi que des métallisations sélectives en continu, du type métallisation au tampon.
Dans le procédé d'électrodéposition de l'invention, les anodes sont des anodes insolubles, de préférence en titane platiné, en platine recouvert d'oxyde d'iridium ou en métal précieux tel que le platine. Par ailleurs, la cathode est constituée d'un substrat métallisé.
Les formulations préférées de bains selon la présente invention peuvent être de manière non restrictive décrites par la composition générale suivante dans laquelle les concentrations en dérivés métalliques (du palladium et éventuellement des métaux d'alliage) sont rapportées au métal et dans lesquelles le palladium est avantageusement introduit sous forme d'un composé de sulfate de palladium et d'éthylènediamine présentant des rapports molaires [SO4] : [Pd] = 0,9 à 1,15 et [Ethylènediamine] : [Pd] = 0,8 à 1,2 :
  • Palladium   1 à 100 g/l
  • Métal d'alliage choisi entre Ni, Co, Fe, In, Au, Ag,ou Sn   0 à 60 g/l
  • Ethylènediamine   2 à 200 ml/l
  • Acide 3-(3- pyridyl) acrylique   0,01 à 3 g/l ou acide 3-(3-quinolyl) acrylique
  • Sulfate de sodium   > 20 g/l
Les conditions opératoires sont avantageusement les suivantes :
  • pH   3 à 5
  • Température   10 à 75°C
  • Agitation   Modérée, à très vigoureuse
  • Densité de courant   0,5 à 150 A/dm2
  • Anode   Titane platiné
EXEMPLES
Dans les exemples les concentrations en palladium et métaux d'alliages sont rapportées au métal.
Les exemples qui suivent illustrent les bonnes performances des bains de l'invention.
  • a) Dans tous ces exemples, le substrat à métalliser, est préparé par une procédure convenable, selon la nature du métal. Par exemple, les substrats cuivreux, ou en nickel, sont préalablement dégraissés électrolytiquement, après un rinçage à l'eau, le substrat est dépassivé, dans de l'acide sulfurique dilué à 5 - 20% en volume, le substrat est rincé à l'aide d'eau désionisée, avant d'être immergé dans un des électrolytes de l'invention. De façon facultative, certains additifs peuvent être ajoutés. Ainsi :
    • Comme sel conducteur, on peut utiliser le sulfate de sodium, mais aussi le sulfate de potassium ou encore un mélange des deux sels.
    • Un tampon acétique, citrique, borique, ou tout autre système tampon efficace dans la gamme de pH concernée peut être utilisé pour stabiliser le pH du bain.
    • Un agent mouillant, peut être ajouté pour éviter les piqûres causées par le dégagement d'hydrogène sur les pièces. Un agent mouillant cationique, ou non ionique peut convenir, on pourra par exemple utiliser de l'iodure ou du bromure de cétyltriméthylammonium en très faibles quantités.
    • Un réducteur de tensions internes pourra être ajouté pour les applications décoratives, de très petites quantités de saccharinate de sodium peuvent être ajoutées, dans certains cas.
  • b) Le réajustement de la concentration en palladium est réalisé, par addition d'un composé ci-après désigné par A préparé selon la procédure suivante :
    • Matière première : une solution acide de nitrate de palladium.
    • Addition d'acide sulfurique dans un rapport molaire [H2SO4]/[Palladium] =1,0 à 1,7
    • Distillation d'un mélange eau+acide nitrique
    • Evaporation à sec
    • Redissolution dans l'eau du sulfate de palladium
    • Addition à une solution diluée d'éthylènediamine dans un rapport molaire [Ethylènediamine]:[Palladium] = 0,8 à 1,2
    • Temps de réaction sous agitation, à température ambiante.(> 12 h)
    • Filtration, séchage
  • Le sel de teinte jaune, de sulfate de palladium et d'éthylènediamine contient approximativement 31 à 41% de palladium et présente des rapports molaires [SO4] : [Pd] = 0,9 à 1,15 et [Ethylènediamine] : [Pd] = 0,8 à 1,2 ci-après désigné par A.
    Cette méthode d'addition du palladium à l'électrolyte, peut être utilisée pour la première préparation du bain, et pour les réajustements palladium au cours du fonctionnement.
    EXEMPLE 1 : Bain de palladium Haute vitesse
    • Palladium (introduit sous forme du composé A)   17 à 23 g/l
    • Nickel (sous forme de sulfate)   0,2 à 0,5 g/l
    • Ethylènediamine   55 à 75 ml/l
    • Acide Trans 3-(3-pyridyl) acrylique   0,22 à 0,38 g/l
    • Sulfate de sodium   20 à 50 g/l
       Conditions opératoires :
    • pH (Acide sulfurique / Hydroxyde de sodium)   3,5 à 4,5
    • Température   40 à 75°C
    • Agitation   Vigoureuse, à très vigoureuse
    • Densité de courant   5 à 42 A/dm2
    • Anode   Titane platiné
    Ce bain dans lequel le nickel agit uniquement comme brillanteur, dépose du palladium à plus de 99,9%, le dépôt est brillant miroir, blanc, ductile, avec une faible résistivité, une faible porosité, et une bonne résistance à la corrosion.
    EXEMPLE 2 : Bain de palladium-nickel Haute vitesse
    • Palladium (introduit sous forme du composé A)   17 à 23 g/l
    • Nickel (sous forme de sulfate)   9,0 à 13,0 g/l
    • Ethylènediamine   55 à 75 ml/l
    • Acide Trans 3-(3-pyridyl) acrylique   0,22 à 0,38 g/l
    • Sulfate de sodium   20 à 50 g/l
    Conditions opératoires :
    • pH (Acide sulfurique / Hydroxyde de sodium)   3,5 à 4,5
    • Température   60 à 75°C
    • Agitation   Vigoureuse, à très vigoureuse
    • Densité de courant   21 à 56 A/dm2
    • Anode   Titane platiné
    Les résultats moyens sont les suivants :
    • Vitesse de dépôt à 70°C et 28 A/dm2   1µm en 10 secondes
    • Vitesse de dépôt à 70°C et 42 A/dm2   1 µm en 7 secondes
    • Vitesse de dépôt à 70°C et 56 A/dm2   1 µm en 5 secondes
    • Rendement cathodique à 70°C et 56 A/dm2   87,2 %
    Ce bain dépose l'alliage palladium 80 % - nickel 20 %. Le dépôt de 0,1 à 6 µm est brillant-miroir, ductile, avec une faible résistance de contact, une dureté Vickers de 390 HV sous 100 gf (mesurée selon la norme iso 4 516 (1980)). Les dépôts contrôlés selon la norme iso 4524/3 (85), sont non poreux, ils ont une bonne résistance à la corrosion et, pour une épaisseur de 0,5 à 6 µm, ils sont conforme au test dit "CASS TEST" défini par la norme iso 9 227 (1990). Par ailleurs, ils ont une bonne résistance au frottement et passent positivement le test dit "BRITISH TELECOM".
    EXEMPLE 3 : Bain de palladium-cobalt Haute vitesse
    • Palladium (introduit sous forme du composé A)   17 à 23 g/l
    • Cobalt (sous forme de sulfate)   6,0 à 9,0 g/l
    • Ethylènediamine   55 à 75 ml/l
    • Acide Trans 3-(3-pyridyl) acrylique   0,22 à 0,38 g/l
    • Sulfate de sodium   20 à 50 g/l
    Conditions opératoires :
    • pH (Acide sulfurique/Hydroxyde de sodium)   3,5 à 4,5
    • Température   60 à 75°C
    • Agitation   Vigoureuse, à très vigoureuse
    • Densité de courant   21 à 56 A/dm2
    • Anode   Titane platiné
    Ce bain dépose l'alliage palladium 75 % - cobalt 25 %, le dépôt de 0,1 à 6 µm est brillant-miroir, ductile, avec une faible résistance de contact, dur. Les dépôts sont non poreux, ils ont une bonne résistance à la corrosion et au frottement.
    EXEMPLE 4 : Bain de palladium Décoratif
    • Palladium (Introduit sous forme du composé A)   17 à 23 g/l
    • Nickel (sous forme de sulfate)   (de préférence 0,01 à 0,5 g/l)
    • Ethylènediamine   55 à 75 ml / l
    • Acide Trans 3-(3-pyridyl) acrylique   0,10 à 0,38 g/l
    • Sulfate de sodium   20 à 50 g/l
    Conditions opératoires :
    • pH (Acide sulfurique/Hydroxyde de sodium   3,5 à 4,5
    • Température   30 à 75°C
    • Agitation   Modérée
    • Densité de courant   0,5 à 5 A/dm2
    • Anode   Titane platiné
    Ce bain dans lequel le nickel agit uniquement comme brillanteur, dépose du palladium de pureté >99,9%. Le dépôt de 0,2 à 6 µm est brillant-miroir, blanc, ductile, sans craquelures. Les dépôts sont non poreux, ils ont une bonne résistance à la corrosion et au frottement.
    EXEMPLE 5 : Bain de palladium-nickel décoratif
    • Palladium (Introduit sous forme du composé A)   6 à 9 g/l
    • Nickel (sous forme de sulfate)   18,0 à 22,0g/l
    • Ethylènediamine   55 à 75 ml/l
    • Acide trans 3-(3-pyridyl) acrylique   0,02 à 0,15 g/l
    • Sulfate de sodium   20 à 50 g/l
    Conditions opératoires :
    • pH (Acide sulfurique/Hydroxyde de sodium)   3,5 à 4,5
    • Température   55 à 65°C
    • Agitation   Modérée
    • Densité de courant   1 à 5 A/dm2
    • Anode   Titane platiné
    Ce bain dépose l'alliage palladium 80% nickel 20%. Le dépôt de 0,2 à 6 µm est brillant-miroir, blanc, ductile, sans craquelures. Les dépôts sont non poreux, ils ont une bonne résistance à la corrosion et au frottement.
    EXEMPLE 6 : Bain de palladium-cobalt décoratif
    • Palladium (introduit sous forme du composé A)   10 à 14 g/l
    • Cobalt (sous forme de sulfate)   7,5 à 8,5 g/l
    • Ethylènediamine   55 à 75 ml/l
    • Acide trans 3-(3-pyridyl) acrylique   0,02 à 0,15 g/l
    • Sulfate de sodium   20 à 50 g/l
    • Conditions opératoires :
    • pH (Acide sulfurique/Hydroxyde de sodium)   3,5 à 4,5
    • Température   20 à 45°C
    • Agitation   Modérée
    • Densité de courant   1 à 8 A/dm2
    • Anode   Titane platiné
    Ce bain dépose l'alliage palladium 70 % - cobalt 30 % pour application décorative, le dépôt de 0,2 à 6 µm est brillant-miroir, ductile, sans craquelures. Les dépôts sont non poreux, ils ont une bonne résistance à la corrosion et au frottement.

    Claims (17)

    1. Bain électrolytique aqueux à pH acide pour le dépôt électrochimique du palladium ou de ses alliages comprenant un composé du palladium, et de façon optionnelle au moins un composé d'un métal secondaire destiné à être codéposé sous forme d'alliage avec le palladium, et comprenant en outre, de l'éthylènediamine comme agent complexant du palladium et un agent brillanteur organique, caractérisé en ce que ledit agent brillanteur est l'acide 3-(3-pyridyl) acrylique, l'acide 3-(3-quinolyl) acrylique ou un de leurs sels, de préférence un de leurs sels alcalins.
    2. Bain électrolytique selon la revendication 1, caractérisé en ce que son pH est compris entre 3 et 5.
    3. Bain électrolytique selon la revendication 1 ou 2, caractérisé en ce qu'il contient au moins un métal agissant comme brillanteur minéral.
    4. Bain électrolytique selon l'une des revendications 1 à 3, caractérisé en ce qu'il contient de 1 à 100 g/l de palladium.
    5. Bain électrolytique selon l'une des revendications 1 à 4, caractérisé en ce qu'il contient au moins un métal secondaire choisi dans le groupe constitué du nickel, du cobalt, du fer, de l'indium, de l'or, de l'argent et de l'étain, à une concentration comprise entre 0,1 et 60 g/l.
    6. Bain électrolytique selon l'une des revendications 1 à 5, caractérisé en ce qu'il contient de 2 à 200 ml/l d'éthylènediamine.
    7. Bain électrolytique selon l'une des revendications 1 à 6, caractérisé en ce qu'il contient de 0,01 à 3 g/l d'acide 3-(3-pyridyl) acrylique ou d'acide 3-(3-quinolyl) acrylique ou d'un de leurs sels.
    8. Bain électrolytique selon une des revendications 1 à 7, caractérisé en ce qu'il contient au moins 20 g/l d'au moins un sel conducteur.
    9. Bain électrolytique selon la revendication 8, caractérisé en ce que ledit sel conducteur est choisi dans le groupe constitué du sulfate de sodium, du sulfate de potassium et de leurs mélanges.
    10. Bain électrolytique selon l'une des revendications 1 à 9, caractérisé en ce qu'il contient un tampon destiné à stabiliser le pH, ledit tampon étant de préférence de type acétique, citrique, borique, lactique, malique, phtalique, acrylique, tartrique, oxalique ou succinique.
    11. Bain électrolytique selon l'une des revendications 1 à 10, caractérisé en ce qu'il contient au moins un agent mouillant, de préférence du bromure ou de l'iodure de cétyltriméthylammonium.
    12. Bain électrolytique selon l'une des revendications 1 à 11, caractérisé en ce qu'il contient un additif destiné à réduire les tensions internes dudit dépôt, de préférence du saccharinate de sodium.
    13. Bain électrolytique selon l'une des revendications 1 à 12, caractérisé en ce que le palladium est introduit sous forme de sulfate.
    14. Bain électrolytique selon l'une des revendications 1 à 13, caractérisé en ce que le palladium est introduit sous forme d'un sel solide de sulfate de palladium et d'éthylènediamine comprenant de 31 à 41 % de palladium et dans lequel le rapport molaire [SO4] : [Pd] est compris entre 0,9 et 1,15 et le rapport [éthylènediamine] : [Pd] est compris entre 0,8 et 1,2.
    15. Bain électrolytique selon l'une des revendications 1 à 14, caractérisé en ce qu'il contient au moins un métal secondaire introduit dans ledit bain sous forme de sulfate, de carbonate, d'hydroxyde ou d'un mélange de ces composés.
    16. Procédé d'électrodéposition du palladium ou d'un alliage de palladium, caractérisé en ce qu'il comprend l'électrolyse d'un bain électrolytique tel que défini dans l'une des revendications 1 à 15 en mettant en oeuvre des densités de courant comprises entre 0,5 et 150 A/dm2.
    17. Procédé selon la revendication 16, caractérisé en ce que ladite électrolyse est réalisée en utilisant des anodes insolubles, de préférence en titane platiné, en platine recouvert d'oxyde d'iridium ou en un métal précieux tel que le platine et un substrat métallisé placé en cathode.
    EP01921482A 2000-04-06 2001-04-05 Bain electrolytique destine au depot electrochimique du palladium ou de ses alliages Expired - Lifetime EP1272691B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR0004381 2000-04-06
    FR0004381A FR2807450B1 (fr) 2000-04-06 2000-04-06 Bain electrolytique destine au depot electrochimique du palladium ou de ses alliages
    PCT/FR2001/001021 WO2001077417A1 (fr) 2000-04-06 2001-04-05 Bain electrolytique destine au depot electrochimique du palladium ou de ses alliages

    Publications (2)

    Publication Number Publication Date
    EP1272691A1 EP1272691A1 (fr) 2003-01-08
    EP1272691B1 true EP1272691B1 (fr) 2004-03-17

    Family

    ID=8848927

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01921482A Expired - Lifetime EP1272691B1 (fr) 2000-04-06 2001-04-05 Bain electrolytique destine au depot electrochimique du palladium ou de ses alliages

    Country Status (10)

    Country Link
    US (1) US6743346B2 (fr)
    EP (1) EP1272691B1 (fr)
    JP (1) JP4790191B2 (fr)
    CN (1) CN1190522C (fr)
    AT (1) ATE262055T1 (fr)
    AU (1) AU2001248465A1 (fr)
    DE (1) DE60102364T2 (fr)
    ES (1) ES2220757T3 (fr)
    FR (1) FR2807450B1 (fr)
    WO (1) WO2001077417A1 (fr)

    Families Citing this family (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2807422B1 (fr) * 2000-04-06 2002-07-05 Engelhard Clal Sas Sel complexe de palladium et son utilisation pour ajuster la concentration en palladium d'un bain electrolytique destine au depot de palladium ou d'un de ses alliages
    US20050205425A1 (en) * 2002-06-25 2005-09-22 Integran Technologies Process for electroplating metallic and metall matrix composite foils, coatings and microcomponents
    US6828898B2 (en) * 2003-04-03 2004-12-07 Cts Corporation Fuel tank resistor card having improved corrosion resistance
    US8361553B2 (en) * 2004-07-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Methods and compositions for metal nanoparticle treated surfaces
    EP2116550B1 (fr) 2008-05-07 2010-07-14 Umicore Galvanotechnik GmbH Procédé de fabrication de complexes de carbonate de palladium (hydrogène) avec des ligands amines
    EP2283170B1 (fr) * 2008-05-07 2012-04-25 Umicore Galvanotechnik GmbH Bains d'électrolyte au pd et au pd-ni
    CN101838830B (zh) * 2010-05-07 2012-08-15 厦门大学 一种电镀钯镍合金的电解液
    EP2431502B1 (fr) 2010-09-21 2017-05-24 Rohm and Haas Electronic Materials LLC Solutions de dépôt électrique d'argent sans cyanure
    CN102677110B (zh) * 2012-04-19 2016-08-10 永保纳米科技(深圳)有限公司 一种金钯合金电镀液及其制备方法和电镀工艺
    CN106661735B (zh) * 2014-09-04 2019-12-10 日本高纯度化学株式会社 钯镀液和使用该钯镀液得到的钯覆膜
    JP6189878B2 (ja) * 2015-01-14 2017-08-30 松田産業株式会社 パラジウム又はパラジウム合金めっき用シアン耐性付与剤、めっき液、めっき液へのシアン耐性付与方法
    CN104694053B (zh) * 2015-02-15 2016-09-07 滁州云林数码影像耗材有限公司 一种墙体用丙烯酸酯压敏胶及其制备方法
    CN107858718A (zh) * 2017-11-28 2018-03-30 江苏澳光电子有限公司 一种用于塑料表面电镀的钯镀液及其应用
    CN108864200B (zh) * 2018-08-06 2020-12-11 金川集团股份有限公司 电镀用硫酸乙二胺钯的一步制备方法
    CN109183096B (zh) * 2018-11-08 2021-04-23 杭州云会五金电镀有限公司 一种用于合金的表面电镀液及电镀工艺
    CN114084984A (zh) * 2022-01-20 2022-02-25 河北海力香料股份有限公司 一种从联苯四甲酸含钯废水中回收钯的方法

    Family Cites Families (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1051383A (fr) * 1965-02-17
    CH572989A5 (fr) * 1973-04-27 1976-02-27 Oxy Metal Industries Corp
    US3925170A (en) * 1974-01-23 1975-12-09 American Chem & Refining Co Method and composition for producing bright palladium electrodepositions
    US4278514A (en) * 1980-02-12 1981-07-14 Technic, Inc. Bright palladium electrodeposition solution
    JPS5747891A (en) * 1980-09-03 1982-03-18 Nippon Dento Kogyo Kk Gold-palladium alloy plating bath
    US4297177A (en) * 1980-09-19 1981-10-27 American Chemical & Refining Company Incorporated Method and composition for electrodepositing palladium/nickel alloys
    JPS58500289A (ja) * 1981-02-27 1983-02-24 ウエスタ−ン エレクトリツク カムパニ−,インコ−ポレ−テツド パラジウムとパラジウム合金の電気メツキ方法
    GB8612361D0 (en) * 1986-05-21 1986-06-25 Engelhard Corp Gold electroplating bath
    EP0415632A1 (fr) * 1989-08-29 1991-03-06 AT&T Corp. Procédé de dépôt électrolytique d'un alliage de palladium
    JPH06340983A (ja) * 1993-06-02 1994-12-13 Takamatsu Mekki Kogyo Kk パラジウムー銅メッキ被覆を有する装身具
    JPH0711476A (ja) * 1993-06-23 1995-01-13 Kojima Kagaku Yakuhin Kk パラジウムめっき液
    KR0171685B1 (ko) * 1994-02-26 1999-02-18 문성수 팔라듐 2원 또는 3원 합금 도금 조성물, 이를 이용한 도금방법 및 도금체
    JPH07278870A (ja) * 1994-04-08 1995-10-24 Kojima Kagaku Yakuhin Kk パラジウムめっき液
    US5976344A (en) * 1996-05-10 1999-11-02 Lucent Technologies Inc. Composition for electroplating palladium alloys and electroplating process using that composition
    JP3685276B2 (ja) * 1996-07-01 2005-08-17 日本エレクトロプレイテイング・エンジニヤース株式会社 パラジウム・銀合金めっき浴
    FR2807422B1 (fr) * 2000-04-06 2002-07-05 Engelhard Clal Sas Sel complexe de palladium et son utilisation pour ajuster la concentration en palladium d'un bain electrolytique destine au depot de palladium ou d'un de ses alliages

    Also Published As

    Publication number Publication date
    EP1272691A1 (fr) 2003-01-08
    FR2807450B1 (fr) 2002-07-05
    US20030183533A1 (en) 2003-10-02
    DE60102364D1 (de) 2004-04-22
    WO2001077417A1 (fr) 2001-10-18
    ATE262055T1 (de) 2004-04-15
    AU2001248465A1 (en) 2001-10-23
    FR2807450A1 (fr) 2001-10-12
    US6743346B2 (en) 2004-06-01
    JP4790191B2 (ja) 2011-10-12
    CN1190522C (zh) 2005-02-23
    CN1430683A (zh) 2003-07-16
    DE60102364T2 (de) 2005-03-17
    ES2220757T3 (es) 2004-12-16
    JP2003530486A (ja) 2003-10-14

    Similar Documents

    Publication Publication Date Title
    EP1272691B1 (fr) Bain electrolytique destine au depot electrochimique du palladium ou de ses alliages
    EP1009869B1 (fr) Solutions d'electrodeposition de cuivre monovalent, exemptes de cyanure
    EP1423557B1 (fr) Bain electrolytique pour le depot electrochimique de l'or et de ses alliages
    KR20180072774A (ko) 은-팔라듐 합금 전해질을 위한 첨가물
    US4076598A (en) Method, electrolyte and additive for electroplating a cobalt brightened gold alloy
    EP1268347B1 (fr) Sel complexe de palladium et son utilisation pour ajuster la concentration en palladium d'un bain electrolytique destine au depot du palladium ou d'un de ses alliages
    FR2754831A1 (fr) Bain autocatalytique et procede de depot d'alliage nickel-phosphore sur un substrat
    FR2576609A1 (fr) Composition et procede pour former un revetement en palladium en alliages de palladium
    TW200825213A (en) Gold-silver alloy plating liquid
    JP2021181600A (ja) 電解金合金めっき浴及び電解金合金めっき方法
    GB2046794A (en) Silver and gold/silver alloy plating bath and method
    US20060163080A1 (en) Pulse plating process for deposition of gold-tin alloy
    US4436595A (en) Electroplating bath and method
    FR2538815A1 (fr) Procede pour former, par electrolyse, un revetement de cuivre sur un substrat, a partir d'un bain exempt de cyanure, et anode pour la mise en oeuvre de ce procede
    EP2312021A1 (fr) Procédé d'obtention d'un dépôt d'alliage d'or jaune par galvanoplastie sans utilisation de métaux toxiques
    EP1103637A1 (fr) Procédé de fabrication d'une couche en alliage AuCuGa en utilisant l'électrolyse et les alliages obtenus par ce procédé
    US20200240029A1 (en) Indium electroplating compositions and methods for electroplating indium on nickel
    FR2492849A1 (fr) Bains de revetement electrolytique pour le depot de nickel semi-brillant, renfermant un acide benzenesulfonique comme brillanteur et un agent de mouillage a base de perfluoroalkylsulfonates
    FR2463823A1 (fr) Procedes et compositions pour le depot electrolytique de palladium, utilisant une source d'ions nitrites libres
    RU2292408C1 (ru) Пирофосфатный электролит для нанесения сплава олово-цинк
    CA1272160A (fr) Bain et methode de placage a l'alliage d'or
    JP2001262390A (ja) パラジウムめっき液
    JPH06264281A (ja) パラジウムメッキ液及び該メッキ液を用いたパラジウムメッキ方法
    EP0121492A1 (fr) Bain galvanique pour le dépôt electrolytique d'alliage or-cuivre-cadmium, procédé d'utilisation de ce bain, article résultant de ce procédé
    FR2538816A1 (fr) Bain pour former, par electrolyse, un revetement en alliage d'or et procede d'utilisation de ce bain

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20021014

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20030327

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: METALOR TECHNOLOGIES FRANCE S.A.S.

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: GONZALEZ, JOSE

    Inventor name: LIMAYRAC, MICHEL

    Inventor name: CHALUMEAU, LIONEL

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040405

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 60102364

    Country of ref document: DE

    Date of ref document: 20040422

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040617

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040617

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040617

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040705

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040317

    BERE Be: lapsed

    Owner name: METALOR TECHNOLOGIES FRANCE S.A.S.

    Effective date: 20040430

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BOVARD AG PATENTANWAELTE

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2220757

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041220

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040817

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: METALOR TECHNOLOGIES FRANCE S.A.S.

    Free format text: METALOR TECHNOLOGIES FRANCE S.A.S.#RUE DES AQUEES#28190 COURVILLE SUR EURE (FR) -TRANSFER TO- METALOR TECHNOLOGIES FRANCE S.A.S.#RUE DES AQUEES#28190 COURVILLE SUR EURE (FR)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20110329

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20110426

    Year of fee payment: 11

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120405

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20130716

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120406

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20140317

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140422

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20140414

    Year of fee payment: 14

    Ref country code: IT

    Payment date: 20140417

    Year of fee payment: 14

    Ref country code: FR

    Payment date: 20140425

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150405

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20150501

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150405

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150405

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150430

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20151231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150501

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20200408

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 60102364

    Country of ref document: DE